Modeling high-temperature mechanical properties of austenitic stainless steels by neural networks

[Display omitted] •Tensile properties of 18Cr-12Ni-Mo steels were modeled using neural networks.•Graphical user interface (GUI) was developed for easy use.•The model was able to correlate the relationships between input-output variables.•A virtual 18Cr-12Ni-Mo steels were created with mean values of...

Full description

Saved in:
Bibliographic Details
Published in:Computational materials science Vol. 179; p. 109617
Main Authors: Narayana, P.L., Lee, Sang Won, Park, Chan Hee, Yeom, Jong-Taek, Hong, Jae-Keun, Maurya, A.K., Reddy, N. S.
Format: Journal Article
Language:English
Published: Elsevier B.V 15-06-2020
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract [Display omitted] •Tensile properties of 18Cr-12Ni-Mo steels were modeled using neural networks.•Graphical user interface (GUI) was developed for easy use.•The model was able to correlate the relationships between input-output variables.•A virtual 18Cr-12Ni-Mo steels were created with mean values of the databases.•Effect of temperature and composition on properties was estimated accurately. An artificial neural network (ANN) model was designed to correlate the complex relations among composition, temperature, and mechanical properties of 18Cr-12Ni-Mo austenitic stainless steels. The developed model was used to estimate the composition-property and temperature-property correlations with 97% and 91% accuracy, for train and unseen test datasets. The ANN predictions are more accurate with experimental results as compared with the calculated properties of the existing model. The effective response of the alloying elements on the mechanical properties at ambient as well as elevated temperatures was quantitatively estimated with the help of the index of relative importance (IRI). The calculated results of the ANN model beneficial for both researchers as well as designers to guide actual experiments. Hence, this proposed technique will be helpful in developing the components of austenitic stainless steel with desired properties.
AbstractList [Display omitted] •Tensile properties of 18Cr-12Ni-Mo steels were modeled using neural networks.•Graphical user interface (GUI) was developed for easy use.•The model was able to correlate the relationships between input-output variables.•A virtual 18Cr-12Ni-Mo steels were created with mean values of the databases.•Effect of temperature and composition on properties was estimated accurately. An artificial neural network (ANN) model was designed to correlate the complex relations among composition, temperature, and mechanical properties of 18Cr-12Ni-Mo austenitic stainless steels. The developed model was used to estimate the composition-property and temperature-property correlations with 97% and 91% accuracy, for train and unseen test datasets. The ANN predictions are more accurate with experimental results as compared with the calculated properties of the existing model. The effective response of the alloying elements on the mechanical properties at ambient as well as elevated temperatures was quantitatively estimated with the help of the index of relative importance (IRI). The calculated results of the ANN model beneficial for both researchers as well as designers to guide actual experiments. Hence, this proposed technique will be helpful in developing the components of austenitic stainless steel with desired properties.
ArticleNumber 109617
Author Yeom, Jong-Taek
Park, Chan Hee
Hong, Jae-Keun
Reddy, N. S.
Narayana, P.L.
Maurya, A.K.
Lee, Sang Won
Author_xml – sequence: 1
  givenname: P.L.
  surname: Narayana
  fullname: Narayana, P.L.
  organization: Advanced Metals Division, Korea Institute of Materials Science, Changwon 51508, Republic of Korea
– sequence: 2
  givenname: Sang Won
  surname: Lee
  fullname: Lee, Sang Won
  organization: Advanced Metals Division, Korea Institute of Materials Science, Changwon 51508, Republic of Korea
– sequence: 3
  givenname: Chan Hee
  surname: Park
  fullname: Park, Chan Hee
  organization: Advanced Metals Division, Korea Institute of Materials Science, Changwon 51508, Republic of Korea
– sequence: 4
  givenname: Jong-Taek
  surname: Yeom
  fullname: Yeom, Jong-Taek
  email: yjt96@kims.re.kr
  organization: Advanced Metals Division, Korea Institute of Materials Science, Changwon 51508, Republic of Korea
– sequence: 5
  givenname: Jae-Keun
  orcidid: 0000-0002-9841-8311
  surname: Hong
  fullname: Hong, Jae-Keun
  organization: Advanced Metals Division, Korea Institute of Materials Science, Changwon 51508, Republic of Korea
– sequence: 6
  givenname: A.K.
  surname: Maurya
  fullname: Maurya, A.K.
  organization: Advanced Metals Division, Korea Institute of Materials Science, Changwon 51508, Republic of Korea
– sequence: 7
  givenname: N. S.
  orcidid: 0000-0003-4206-4515
  surname: Reddy
  fullname: Reddy, N. S.
  email: nsreddy@gnu.ac.kr
  organization: School of Materials Science and Engineering, Gyeongsang National University, Jinju 52828, Republic of Korea
BookMark eNqFkN1uAiEQhUljk6rtM5QXWAvownJpTH9MbHrTXhMWZhW7CwawjW9fjE1vezUzJ3NOZr4JGvngAaF7SmaUUP6wn5kwDDon42aMsLMqORVXaEwbISvSEDpCYyKZqAir-Q2apLQnxSkbNkb6NVjond_indvuqgzDAaLOxwh4ALPT3hnd40MMRc4OEg4d1seUwbvsDE5ZO99DSqUD6BNuT9jDMRaPh_wd4me6Rded7hPc_dYp-nh6fF-9VJu35_VquanMnNa5MpLbcr0UneygEaTltdTM1JrYVggqBQVr6cJCmTTVCyYWbcOh5qxrWcvsfIrEJdfEkFKETh2iG3Q8KUrUmZTaqz9S6kxKXUgV5_LiLA_Al4OoygZ4A9ZFMFnZ4P7N-AHpXXsc
CitedBy_id crossref_primary_10_1038_s41598_022_06643_4
crossref_primary_10_4236_wjet_2022_101006
crossref_primary_10_1016_j_ces_2021_116949
crossref_primary_10_1007_s00521_023_08796_3
crossref_primary_10_1016_j_engfracmech_2021_108027
crossref_primary_10_1007_s10973_022_11410_8
crossref_primary_10_1016_j_jmrt_2022_06_046
crossref_primary_10_1016_j_matchemphys_2021_125136
crossref_primary_10_1016_j_mtcomm_2021_102356
crossref_primary_10_1007_s00170_021_07115_1
crossref_primary_10_1007_s12666_022_02835_8
crossref_primary_10_1016_j_envres_2021_111370
crossref_primary_10_1016_j_mtcomm_2021_102405
crossref_primary_10_1016_j_jmrt_2021_01_039
crossref_primary_10_3390_met11111832
crossref_primary_10_3390_met13091625
crossref_primary_10_1111_ffe_14379
crossref_primary_10_3390_app14104224
crossref_primary_10_3390_met11081314
crossref_primary_10_1016_j_mtcomm_2024_109640
crossref_primary_10_1016_j_engfracmech_2022_108689
crossref_primary_10_1016_j_envres_2021_111846
crossref_primary_10_3390_met11050747
Cites_doi 10.2355/isijinternational.34.764
10.1016/j.matlet.2015.06.015
10.1016/j.proeng.2012.06.395
10.1016/j.jmrt.2015.04.001
10.1007/BF02644292
10.1007/978-3-642-35167-9_3
10.1016/j.commatsci.2015.01.031
10.1179/026708302225002065
10.1016/j.matdes.2007.02.009
10.1016/j.msea.2008.12.022
10.1016/j.jcsr.2009.12.016
10.1016/S1003-6326(13)62530-3
10.1016/j.matdes.2005.06.003
10.1016/j.actamat.2018.08.022
10.2355/isijinternational.39.966
10.1016/j.commatsci.2015.05.026
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.commatsci.2020.109617
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0801
ExternalDocumentID 10_1016_j_commatsci_2020_109617
S0927025620301087
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AECPX
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LG9
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SPD
SSM
SST
SSZ
T5K
XPP
ZMT
~G-
29F
AAQXK
AAXKI
AAYXX
ABFNM
ABXDB
ACNNM
ADMUD
AFJKZ
AI.
AKRWK
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SEW
SMS
VH1
WUQ
ID FETCH-LOGICAL-c315t-c96d02097f9fe870b659a2c5a0db771971edd14deb77a1a4274b86e562fb2b2d3
ISSN 0927-0256
IngestDate Thu Sep 26 15:38:56 EDT 2024
Fri Feb 23 02:48:22 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Index of the relative importance
Austenitic stainless steels
Artificial neural networks
Graphical user interface
Property prediction
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c315t-c96d02097f9fe870b659a2c5a0db771971edd14deb77a1a4274b86e562fb2b2d3
ORCID 0000-0003-4206-4515
0000-0002-9841-8311
ParticipantIDs crossref_primary_10_1016_j_commatsci_2020_109617
elsevier_sciencedirect_doi_10_1016_j_commatsci_2020_109617
PublicationCentury 2000
PublicationDate 2020-06-15
PublicationDateYYYYMMDD 2020-06-15
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-15
  day: 15
PublicationDecade 2020
PublicationTitle Computational materials science
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Priddy, Keller (b0120) 2005
Bandyopadhyay, Kameda, McMahon (b0160) 1983; 14
Saravanakumar, Jothimani, Sureshbabu, Ayyappan, Noorullah, Venkatakrishnan (b0060) 2012; 38
Sha, Malinov (b0100) 2009
J. Horak, V. Sikka, D. Raske, Review of mechanical properties and microstructures of Types 304 and 316 stainless steel after long-term aging, Oak Ridge National Lab., TN (USA); Argonne National Lab., IL (USA), 1983.
Wikipedia contributors, Prices of chemical elements, Wikipedia, The Free Encyclopedia, 2018 (accessed 21 November 2018 09:18 UTC.2018).
Sourmail, Bhadeshia, MacKay (b0075) 2002; 18
[accessed 2017-09-24].
Davis (b0005) 1997
Moisă (b0145) 2011
Sha, Edwards (b0095) 2007; 28
Creep Database
Ohkubo, Miyakusu, Uematsu, Kimura (b0140) 1994; 34
N.S. Reddy, K. J, S.-G. Hong, J.S. Lee, Modeling medium carbon steels by using artificial neural networks, 2009.
Gardner, Insausti, Ng, Ashraf (b0010) 2010; 66
Samantaray, Kumar, Bhaduri, Dutta (b0020) 2013; 2
G. Callis, New competitive realities in steel, Millennium Steel (2006) 18.
Yang, Zhu, Nong, He, Lai, Liu, Liu (b0055) 2013; 23
Reddy, Krishnaiah, Young, Lee (b0045) 2015; 101
A. Grimmond, Energy Subsidies in the Steel Industry, OECD Steel Committe
Yetim, Codur, Yazici (b0070) 2015; 158
(2011).
Cassar, de Carvalho, Zanotto (b0050) 2018; 159
Desu, Krishnamurthy, Balu, Gupta, Singh (b0080) 2016; 5
C. Blundell, J. Cornebise, K. Kavukcuoglu, D. Wierstra, Weight uncertainty in neural networks, arXiv preprint arXiv:1505.05424 (2015).
Hkdh (b0090) 1999; 39
Reddy (b0135) 2004
Go, Lee (b0125) 1999
Reddy, Panigrahi, Ho, Kim, Lee (b0110) 2015; 107
Sudhakar, Haque (b0065) 2013
Creese, Adithan (b0025) 1992
Okuyucu, Kurt, Arcaklioglu (b0105) 2007; 28
Y. Gorash, H. Altenbach, G. Lvov, Modelling of high-temperature inelastic behavior of the austenitic steel AISI type 316 using a continuum damage mechanics approach, 2012.
Bhadeshia, Honeycombe (b0155) 2017
Sha (10.1016/j.commatsci.2020.109617_b0100) 2009
Reddy (10.1016/j.commatsci.2020.109617_b0110) 2015; 107
Hkdh (10.1016/j.commatsci.2020.109617_b0090) 1999; 39
Yetim (10.1016/j.commatsci.2020.109617_b0070) 2015; 158
Desu (10.1016/j.commatsci.2020.109617_b0080) 2016; 5
Priddy (10.1016/j.commatsci.2020.109617_b0120) 2005
Davis (10.1016/j.commatsci.2020.109617_b0005) 1997
10.1016/j.commatsci.2020.109617_b0040
10.1016/j.commatsci.2020.109617_b0030
Creese (10.1016/j.commatsci.2020.109617_b0025) 1992
10.1016/j.commatsci.2020.109617_b0130
Saravanakumar (10.1016/j.commatsci.2020.109617_b0060) 2012; 38
Gardner (10.1016/j.commatsci.2020.109617_b0010) 2010; 66
Reddy (10.1016/j.commatsci.2020.109617_b0045) 2015; 101
10.1016/j.commatsci.2020.109617_b0035
10.1016/j.commatsci.2020.109617_b0015
10.1016/j.commatsci.2020.109617_b0115
Ohkubo (10.1016/j.commatsci.2020.109617_b0140) 1994; 34
Yang (10.1016/j.commatsci.2020.109617_b0055) 2013; 23
Reddy (10.1016/j.commatsci.2020.109617_b0135) 2004
Samantaray (10.1016/j.commatsci.2020.109617_b0020) 2013; 2
Sudhakar (10.1016/j.commatsci.2020.109617_b0065) 2013
Sourmail (10.1016/j.commatsci.2020.109617_b0075) 2002; 18
Sha (10.1016/j.commatsci.2020.109617_b0095) 2007; 28
Moisă (10.1016/j.commatsci.2020.109617_b0145) 2011
Bhadeshia (10.1016/j.commatsci.2020.109617_b0155) 2017
10.1016/j.commatsci.2020.109617_b0150
10.1016/j.commatsci.2020.109617_b0085
Go (10.1016/j.commatsci.2020.109617_b0125) 1999
Bandyopadhyay (10.1016/j.commatsci.2020.109617_b0160) 1983; 14
Okuyucu (10.1016/j.commatsci.2020.109617_b0105) 2007; 28
Cassar (10.1016/j.commatsci.2020.109617_b0050) 2018; 159
References_xml – year: 1997
  ident: b0005
  article-title: ASM Specialty Handbook: Heat-resistant Materials
  contributor:
    fullname: Davis
– start-page: 95
  year: 2011
  end-page: 100
  ident: b0145
  article-title: Influence of chemical composition on stainless steels mechanical properties
  publication-title: Proceedings of the 13th WSEAS International Conference on Mathematical and Computational Methods in Science and Engineering, World Scientific and Engineering Academy and Society (WSEAS)
  contributor:
    fullname: Moisă
– volume: 34
  start-page: 764
  year: 1994
  end-page: 772
  ident: b0140
  article-title: Effect of alloying elements on the mechanical properties of the stable austenitic stainless steel
  publication-title: ISIJ Int.
  contributor:
    fullname: Kimura
– volume: 28
  start-page: 1747
  year: 2007
  end-page: 1752
  ident: b0095
  article-title: The use of artificial neural networks in materials science based research
  publication-title: Mater. Des.
  contributor:
    fullname: Edwards
– volume: 101
  start-page: 120
  year: 2015
  end-page: 126
  ident: b0045
  article-title: Design of medium carbon steels by computational intelligence techniques
  publication-title: Comput. Mater. Sci.
  contributor:
    fullname: Lee
– volume: 18
  start-page: 655
  year: 2002
  end-page: 663
  ident: b0075
  article-title: Neural network model of creep strength of austenitic stainless steels
  publication-title: Mater. Sci. Technol.
  contributor:
    fullname: MacKay
– volume: 158
  start-page: 170
  year: 2015
  end-page: 173
  ident: b0070
  article-title: Using of artificial neural network for the prediction of tribological properties of plasma nitrided 316L stainless steel
  publication-title: Mater. Lett.
  contributor:
    fullname: Yazici
– year: 2004
  ident: b0135
  article-title: Study of Some Complex Metallurgical Systems by Computational Intelligence Techniques
  contributor:
    fullname: Reddy
– volume: 159
  start-page: 249
  year: 2018
  end-page: 256
  ident: b0050
  article-title: Predicting glass transition temperatures using neural networks
  publication-title: Acta Mater.
  contributor:
    fullname: Zanotto
– start-page: 1154
  year: 1999
  end-page: 1157
  ident: b0125
  article-title: Analyzing weight distribution of neural networks, Neural Networks, 1999
  publication-title: IJCNN'99. International Joint Conference on, IEEE
  contributor:
    fullname: Lee
– year: 2005
  ident: b0120
  article-title: Artificial Neural Networks: An Introduction
  contributor:
    fullname: Keller
– volume: 66
  start-page: 634
  year: 2010
  end-page: 647
  ident: b0010
  article-title: Elevated temperature material properties of stainless steel alloys
  publication-title: J. Constr. Steel Res.
  contributor:
    fullname: Ashraf
– volume: 2
  start-page: 149
  year: 2013
  end-page: 153
  ident: b0020
  article-title: Microstructural evolution and mechanical properties of type 304 L stainless steel processed in semi-solid state
  publication-title: Int. J. Metallurgical Eng.
  contributor:
    fullname: Dutta
– volume: 38
  start-page: 3418
  year: 2012
  end-page: 3425
  ident: b0060
  article-title: Prediction of mechanical properties of low carbon steel in hot rolling process using artificial neural network model
  publication-title: Procedia Eng.
  contributor:
    fullname: Venkatakrishnan
– volume: 107
  start-page: 175
  year: 2015
  end-page: 183
  ident: b0110
  article-title: Artificial neural network modeling on the relative importance of alloying elements and heat treatment temperature to the stability of α and β phase in titanium alloys
  publication-title: Comput. Mater. Sci.
  contributor:
    fullname: Lee
– start-page: 40
  year: 2013
  end-page: 44
  ident: b0065
  article-title: Artificial Neural Network Model: Prediction of Mechanical Properties in Beta-titanium Biomaterial, Applied Mechanics and Materials
  contributor:
    fullname: Haque
– year: 1992
  ident: b0025
  article-title: Estimating and Costing for the Metal Manufacturing Industries
  contributor:
    fullname: Adithan
– year: 2017
  ident: b0155
  article-title: Steels: Microstructure and Properties
  contributor:
    fullname: Honeycombe
– volume: 39
  start-page: 966
  year: 1999
  end-page: 979
  ident: b0090
  article-title: Neural networks in materials science
  publication-title: ISIJ Int.
  contributor:
    fullname: Hkdh
– volume: 14
  start-page: 881
  year: 1983
  end-page: 888
  ident: b0160
  article-title: Hydrogen-induced cracking in 4340-type steel: effects of composition, yield strength, and H2 pressure
  publication-title: Metall. Trans. A
  contributor:
    fullname: McMahon
– volume: 5
  start-page: 13
  year: 2016
  end-page: 20
  ident: b0080
  article-title: Mechanical properties of Austenitic Stainless Steel 304L and 316L at elevated temperatures
  publication-title: J. Mater. Res. Technol.
  contributor:
    fullname: Singh
– volume: 23
  start-page: 788
  year: 2013
  end-page: 795
  ident: b0055
  article-title: Prediction of mechanical properties of A357 alloy using artificial neural network
  publication-title: Trans. Nonferrous Metals Soc. China
  contributor:
    fullname: Liu
– year: 2009
  ident: b0100
  article-title: Titanium Alloys: Modelling of Microstructure, Properties and Applications
  contributor:
    fullname: Malinov
– volume: 28
  start-page: 78
  year: 2007
  end-page: 84
  ident: b0105
  article-title: Artificial neural network application to the friction stir welding of aluminum plates
  publication-title: Mater. Des.
  contributor:
    fullname: Arcaklioglu
– year: 1997
  ident: 10.1016/j.commatsci.2020.109617_b0005
  contributor:
    fullname: Davis
– year: 1992
  ident: 10.1016/j.commatsci.2020.109617_b0025
  contributor:
    fullname: Creese
– year: 2004
  ident: 10.1016/j.commatsci.2020.109617_b0135
  contributor:
    fullname: Reddy
– volume: 34
  start-page: 764
  issue: 9
  year: 1994
  ident: 10.1016/j.commatsci.2020.109617_b0140
  article-title: Effect of alloying elements on the mechanical properties of the stable austenitic stainless steel
  publication-title: ISIJ Int.
  doi: 10.2355/isijinternational.34.764
  contributor:
    fullname: Ohkubo
– volume: 2
  start-page: 149
  issue: 2
  year: 2013
  ident: 10.1016/j.commatsci.2020.109617_b0020
  article-title: Microstructural evolution and mechanical properties of type 304 L stainless steel processed in semi-solid state
  publication-title: Int. J. Metallurgical Eng.
  contributor:
    fullname: Samantaray
– ident: 10.1016/j.commatsci.2020.109617_b0030
– ident: 10.1016/j.commatsci.2020.109617_b0085
– year: 2005
  ident: 10.1016/j.commatsci.2020.109617_b0120
  contributor:
    fullname: Priddy
– start-page: 95
  year: 2011
  ident: 10.1016/j.commatsci.2020.109617_b0145
  article-title: Influence of chemical composition on stainless steels mechanical properties
  contributor:
    fullname: Moisă
– year: 2017
  ident: 10.1016/j.commatsci.2020.109617_b0155
  contributor:
    fullname: Bhadeshia
– start-page: 40
  year: 2013
  ident: 10.1016/j.commatsci.2020.109617_b0065
  contributor:
    fullname: Sudhakar
– volume: 158
  start-page: 170
  year: 2015
  ident: 10.1016/j.commatsci.2020.109617_b0070
  article-title: Using of artificial neural network for the prediction of tribological properties of plasma nitrided 316L stainless steel
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2015.06.015
  contributor:
    fullname: Yetim
– ident: 10.1016/j.commatsci.2020.109617_b0150
– year: 2009
  ident: 10.1016/j.commatsci.2020.109617_b0100
  contributor:
    fullname: Sha
– volume: 38
  start-page: 3418
  year: 2012
  ident: 10.1016/j.commatsci.2020.109617_b0060
  article-title: Prediction of mechanical properties of low carbon steel in hot rolling process using artificial neural network model
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2012.06.395
  contributor:
    fullname: Saravanakumar
– ident: 10.1016/j.commatsci.2020.109617_b0130
– volume: 5
  start-page: 13
  issue: 1
  year: 2016
  ident: 10.1016/j.commatsci.2020.109617_b0080
  article-title: Mechanical properties of Austenitic Stainless Steel 304L and 316L at elevated temperatures
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2015.04.001
  contributor:
    fullname: Desu
– volume: 14
  start-page: 881
  issue: 4
  year: 1983
  ident: 10.1016/j.commatsci.2020.109617_b0160
  article-title: Hydrogen-induced cracking in 4340-type steel: effects of composition, yield strength, and H2 pressure
  publication-title: Metall. Trans. A
  doi: 10.1007/BF02644292
  contributor:
    fullname: Bandyopadhyay
– ident: 10.1016/j.commatsci.2020.109617_b0015
  doi: 10.1007/978-3-642-35167-9_3
– volume: 101
  start-page: 120
  year: 2015
  ident: 10.1016/j.commatsci.2020.109617_b0045
  article-title: Design of medium carbon steels by computational intelligence techniques
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2015.01.031
  contributor:
    fullname: Reddy
– volume: 18
  start-page: 655
  issue: 6
  year: 2002
  ident: 10.1016/j.commatsci.2020.109617_b0075
  article-title: Neural network model of creep strength of austenitic stainless steels
  publication-title: Mater. Sci. Technol.
  doi: 10.1179/026708302225002065
  contributor:
    fullname: Sourmail
– volume: 28
  start-page: 1747
  issue: 6
  year: 2007
  ident: 10.1016/j.commatsci.2020.109617_b0095
  article-title: The use of artificial neural networks in materials science based research
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2007.02.009
  contributor:
    fullname: Sha
– ident: 10.1016/j.commatsci.2020.109617_b0035
– ident: 10.1016/j.commatsci.2020.109617_b0115
  doi: 10.1016/j.msea.2008.12.022
– volume: 66
  start-page: 634
  issue: 5
  year: 2010
  ident: 10.1016/j.commatsci.2020.109617_b0010
  article-title: Elevated temperature material properties of stainless steel alloys
  publication-title: J. Constr. Steel Res.
  doi: 10.1016/j.jcsr.2009.12.016
  contributor:
    fullname: Gardner
– volume: 23
  start-page: 788
  issue: 3
  year: 2013
  ident: 10.1016/j.commatsci.2020.109617_b0055
  article-title: Prediction of mechanical properties of A357 alloy using artificial neural network
  publication-title: Trans. Nonferrous Metals Soc. China
  doi: 10.1016/S1003-6326(13)62530-3
  contributor:
    fullname: Yang
– volume: 28
  start-page: 78
  issue: 1
  year: 2007
  ident: 10.1016/j.commatsci.2020.109617_b0105
  article-title: Artificial neural network application to the friction stir welding of aluminum plates
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2005.06.003
  contributor:
    fullname: Okuyucu
– volume: 159
  start-page: 249
  year: 2018
  ident: 10.1016/j.commatsci.2020.109617_b0050
  article-title: Predicting glass transition temperatures using neural networks
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2018.08.022
  contributor:
    fullname: Cassar
– start-page: 1154
  year: 1999
  ident: 10.1016/j.commatsci.2020.109617_b0125
  article-title: Analyzing weight distribution of neural networks, Neural Networks, 1999
  contributor:
    fullname: Go
– volume: 39
  start-page: 966
  issue: 10
  year: 1999
  ident: 10.1016/j.commatsci.2020.109617_b0090
  article-title: Neural networks in materials science
  publication-title: ISIJ Int.
  doi: 10.2355/isijinternational.39.966
  contributor:
    fullname: Hkdh
– volume: 107
  start-page: 175
  year: 2015
  ident: 10.1016/j.commatsci.2020.109617_b0110
  article-title: Artificial neural network modeling on the relative importance of alloying elements and heat treatment temperature to the stability of α and β phase in titanium alloys
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2015.05.026
  contributor:
    fullname: Reddy
– ident: 10.1016/j.commatsci.2020.109617_b0040
SSID ssj0016982
Score 2.475511
Snippet [Display omitted] •Tensile properties of 18Cr-12Ni-Mo steels were modeled using neural networks.•Graphical user interface (GUI) was developed for easy use.•The...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 109617
SubjectTerms Artificial neural networks
Austenitic stainless steels
Graphical user interface
Index of the relative importance
Property prediction
Title Modeling high-temperature mechanical properties of austenitic stainless steels by neural networks
URI https://dx.doi.org/10.1016/j.commatsci.2020.109617
Volume 179
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBab5NIeStMHTdMUHXpbtNhe25J6C8mWpJQS2C1NT0YvF0KyGzbZQ_59ZzyyvdkE2lJ6MbZAljXzMZoZz4OxD6AipNZaLVxqCjBQlBWqCFKY3IQwrovCNT2WTqby67k6nuSTwaB1pfdj_5XTMAa8xszZv-B291IYgHvgOVyB63D9I75jc7MmxRwLEQusPBXLJg-vAmb5Nky5Rhf8EmupNnEAK2A1BhG5YZNNdYnSD4bg2ETtFEtewpw5BYzfrKuz1BOi9SeC8ks7HMZztfM0m6W5M5R9djb6MtqIApoa-NzvfTzAWYzfxswHOBe71_wIi6vo8f8pZiaWGY4uiww72whK2iQ_2oNcGnJIZlKgBkYnE4ljJbUAnTa9J6-p-8wD2U9uiAvkHewXNjrCtbFeVknpoRuFtae4Ii6YoVmYKLnFdjIQVyAtdw5PJ-efu79RpW6ajnVfeC9O8NHlHtdy1jSX2XP2LJoc_JCwsssGYf6CPV0rRPmSmRY1fBM1vEcN71HDFzXvUcM71HBCDbd3nFDDW9S8Yt8-TWZHJyI23xBunBa3wunSw360rHUdQKjbstAmc4VJvJUy1TIN3qe5D_BkUpNnMreqDEDN2mY28-PXbHu-mIc3jGuw6ROXa6U8GK9Gqdxp5ZJQ-9z5LCR7LGmJVV1TjZWqDT68qDr6Vkjfiui7xz62RK0ipEkFrAANv5v89l8m77MnPaTfse3b5SocsK0bv3ofYfMLm9-UfQ
link.rule.ids 315,782,786,27933,27934
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+high-temperature+mechanical+properties+of+austenitic+stainless+steels+by+neural+networks&rft.jtitle=Computational+materials+science&rft.au=Narayana%2C+P.L.&rft.au=Lee%2C+Sang+Won&rft.au=Park%2C+Chan+Hee&rft.au=Yeom%2C+Jong-Taek&rft.date=2020-06-15&rft.pub=Elsevier+B.V&rft.issn=0927-0256&rft.eissn=1879-0801&rft.volume=179&rft_id=info:doi/10.1016%2Fj.commatsci.2020.109617&rft.externalDocID=S0927025620301087
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-0256&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-0256&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-0256&client=summon