Very high cycle fatigue of laser powder bed fused Al-Cu-Mg-Ag-TiB2 (A20X) Alloy: Stress relief and aging treatments
•Unveiling VHCF behavior of laser powder bed fused A20X, a novel Al-Cu-Mg-Ag-TiB2 alloy.•Experimental revelation of asymptotic trend at 109 cycles.•Insights into defect/microstructure influence on enhanced fatigue performance.•Fisheye morphology observed, revealing internal crack-initiating site. Th...
Saved in:
Published in: | International journal of fatigue Vol. 183; p. 108281 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier Ltd
01-06-2024
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | •Unveiling VHCF behavior of laser powder bed fused A20X, a novel Al-Cu-Mg-Ag-TiB2 alloy.•Experimental revelation of asymptotic trend at 109 cycles.•Insights into defect/microstructure influence on enhanced fatigue performance.•Fisheye morphology observed, revealing internal crack-initiating site.
This study presents a comprehensive exploration of the fatigue response in the very high cycle fatigue (VHCF) regime for an additively manufactured (i.e., laser powder bed fused) A20X aluminum alloy. Although the need for high-performance materials with exceptional fatigue qualities has increased dramatically, the VHCF behavior of Al-Cu-Mg-Ag-TiB2 (A20X) structures remains largely unknown. A series of ultrasonic fatigue tests were performed to assess the prolonged fatigue life of the A20X alloy (in the VHCF domain where the number of cycles to failure is beyond 10 million cycles). The VHCF response, assessed through ultrasonic fatigue testing, was investigated by examining the stress-life (S-N) curves in a statistical framework, the fatigue crack initiation and propagation behavior, and the fracture surfaces. An asymptotic trend was experimentally found at 109 cycles, with a stress amplitude of 110 MPa for stress-relieved (SR) and 125 MPa for artificially aged (T7) materials, indicating the presence of an endurance limit. Furthermore, fracture surfaces showed the typical fisheye morphology, with a fine granular area (FGA) containing an internal crack-initiating site. The findings of this paper can assist in optimizing fatigue and durability design allowable for applications for extended fatigue life in the VHCF domains. |
---|---|
AbstractList | •Unveiling VHCF behavior of laser powder bed fused A20X, a novel Al-Cu-Mg-Ag-TiB2 alloy.•Experimental revelation of asymptotic trend at 109 cycles.•Insights into defect/microstructure influence on enhanced fatigue performance.•Fisheye morphology observed, revealing internal crack-initiating site.
This study presents a comprehensive exploration of the fatigue response in the very high cycle fatigue (VHCF) regime for an additively manufactured (i.e., laser powder bed fused) A20X aluminum alloy. Although the need for high-performance materials with exceptional fatigue qualities has increased dramatically, the VHCF behavior of Al-Cu-Mg-Ag-TiB2 (A20X) structures remains largely unknown. A series of ultrasonic fatigue tests were performed to assess the prolonged fatigue life of the A20X alloy (in the VHCF domain where the number of cycles to failure is beyond 10 million cycles). The VHCF response, assessed through ultrasonic fatigue testing, was investigated by examining the stress-life (S-N) curves in a statistical framework, the fatigue crack initiation and propagation behavior, and the fracture surfaces. An asymptotic trend was experimentally found at 109 cycles, with a stress amplitude of 110 MPa for stress-relieved (SR) and 125 MPa for artificially aged (T7) materials, indicating the presence of an endurance limit. Furthermore, fracture surfaces showed the typical fisheye morphology, with a fine granular area (FGA) containing an internal crack-initiating site. The findings of this paper can assist in optimizing fatigue and durability design allowable for applications for extended fatigue life in the VHCF domains. |
ArticleNumber | 108281 |
Author | Behvar, Alireza Shakil, Shawkat I. Haghshenas, Meysam Simsiriwong, Jutima Attallah, Moataz M. Tridello, Andrea Paolino, Davide S. Avateffazeli, Maryam |
Author_xml | – sequence: 1 givenname: Maryam surname: Avateffazeli fullname: Avateffazeli, Maryam organization: Fatigue, Fracture, and Failure Laboratory (F3L), Department of Mechanical, Industrial, and Manufacturing Engineering (MIME), the University of Toledo, OH 43606, USA – sequence: 2 givenname: Shawkat I. orcidid: 0000-0002-7062-6151 surname: Shakil fullname: Shakil, Shawkat I. organization: Fatigue, Fracture, and Failure Laboratory (F3L), Department of Mechanical, Industrial, and Manufacturing Engineering (MIME), the University of Toledo, OH 43606, USA – sequence: 3 givenname: Alireza orcidid: 0009-0007-0336-0406 surname: Behvar fullname: Behvar, Alireza organization: Fatigue, Fracture, and Failure Laboratory (F3L), Department of Mechanical, Industrial, and Manufacturing Engineering (MIME), the University of Toledo, OH 43606, USA – sequence: 4 givenname: Moataz M. orcidid: 0000-0002-7074-9522 surname: Attallah fullname: Attallah, Moataz M. organization: School of Metallurgy and Materials, University of Birmingham, B15 2TT Birmingham, United Kingdom – sequence: 5 givenname: Jutima surname: Simsiriwong fullname: Simsiriwong, Jutima organization: School of Engineering, University of North Florida, Jacksonville, FL 32224, USA – sequence: 6 givenname: Andrea orcidid: 0000-0003-3007-3377 surname: Tridello fullname: Tridello, Andrea organization: Dipartimento di Ingegneria Meccanica e Aerospaziale, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy – sequence: 7 givenname: Davide S. orcidid: 0000-0002-4231-4580 surname: Paolino fullname: Paolino, Davide S. organization: Dipartimento di Ingegneria Meccanica e Aerospaziale, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy – sequence: 8 givenname: Meysam surname: Haghshenas fullname: Haghshenas, Meysam email: meysam.haghshenas@utoledo.edu organization: Fatigue, Fracture, and Failure Laboratory (F3L), Department of Mechanical, Industrial, and Manufacturing Engineering (MIME), the University of Toledo, OH 43606, USA |
BookMark | eNqFkEtLw0AUhQepYK3-Bmepi6nzSjJ1F4svqLiwirshnbmTTkiTMpMq-femtLh1cw8cOB-X7xyNmrYBhK4YnTLK0ttq6itXdL7cwZRTLodWccVO0JipbEaETPgIjSmTnDDGxRk6j7GilM5oloxR_ITQ47Uv19j0pgZ8ROHW4bqIEPC2_bFDrMBit4vDzWsy35HXkuQlWfp7jq9zTr9uhr5u-zv83gWIEQeoPThcNBYXpW9KPNRFt4Gmixfo1BV1hMtjTtDH48Ny_kwWb08v83xBjGBJRzhLhErlzFkFhgF3Thgj04wakUhuLZvJwlJr0zRVjjOpDGPOZpyuuFFiBWKCsgPXhDbGAE5vg98UodeM6r07Xek_d3rvTh_cDcv8sIThvW8PQUfjoTFgfQDTadv6fxm_k8V83g |
CitedBy_id | crossref_primary_10_1016_j_engfailanal_2024_108424 |
Cites_doi | 10.1016/j.addma.2020.101724 10.1016/j.ijfatigue.2020.105798 10.1016/j.ijfatigue.2010.05.009 10.1016/j.matpr.2016.07.004 10.1016/j.jallcom.2022.167209 10.1111/ffe.13567 10.1007/s11837-023-06233-3 10.1016/j.ijfatigue.2019.02.040 10.3390/ma16031084 10.1016/j.msea.2022.142989 10.1155/2022/8559402 10.1111/ffe.13467 10.1007/s10853-023-08163-6 10.1016/j.ijfatigue.2020.105976 10.1016/j.ijfatigue.2011.11.014 10.1016/j.matdes.2014.10.048 10.1016/j.msea.2018.01.008 10.1016/0956-7151(94)00405-7 10.1016/j.ijfatigue.2020.105811 10.1016/j.matdes.2017.09.046 10.1016/j.engfracmech.2015.01.010 10.1016/j.ijfatigue.2013.02.023 10.1016/j.micron.2022.103246 10.1016/j.matdes.2022.111566 10.1016/j.ijfatigue.2007.03.015 10.3390/ma16165639 10.1016/j.ijfatigue.2014.10.006 10.3390/app10238475 10.1016/S0142-1123(01)00167-0 10.3390/app10072210 10.1016/j.msea.2006.08.131 10.1016/j.ijfatigue.2016.06.003 10.3390/ma15072467 10.1016/0142-1123(89)90054-6 10.1016/j.matchar.2015.12.001 10.1016/j.ijfatigue.2018.07.020 10.1016/j.ijfatigue.2023.107775 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd |
Copyright_xml | – notice: 2024 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ijfatigue.2024.108281 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-3452 |
ExternalDocumentID | 10_1016_j_ijfatigue_2024_108281 S0142112324001397 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6OB 7-5 71M 8P~ 9JN AABCJ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABDEX ABEFU ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SST SSZ T5K T9H TN5 VH1 WUQ XPP ZMT ~G- AAXKI AAYXX AFJKZ CITATION |
ID | FETCH-LOGICAL-c315t-21538649fd8ec1e2ff3cc4670c3542dd194ad0dd6668f2148c11fd720b2c83be3 |
ISSN | 0142-1123 |
IngestDate | Thu Sep 26 18:35:08 EDT 2024 Sat Apr 06 16:24:18 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Very high cycle fatigue LEVD EBSD ANOVA EDS S-N DOF SR Al-Cu-Mg-Ag-TiB2 Laser powder bed fusion FGA T7 cdf MS A20X FCC USF HCF P-S-N LPBF AM Ultrasonic fatigue ICI LCF SIF PF SEM VHCF IPF |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c315t-21538649fd8ec1e2ff3cc4670c3542dd194ad0dd6668f2148c11fd720b2c83be3 |
ORCID | 0000-0003-3007-3377 0009-0007-0336-0406 0000-0002-7074-9522 0000-0002-7062-6151 0000-0002-4231-4580 |
ParticipantIDs | crossref_primary_10_1016_j_ijfatigue_2024_108281 elsevier_sciencedirect_doi_10_1016_j_ijfatigue_2024_108281 |
PublicationCentury | 2000 |
PublicationDate | June 2024 2024-06-00 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: June 2024 |
PublicationDecade | 2020 |
PublicationTitle | International journal of fatigue |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Akbari, Baharvandi, Shirvanimoghaddam (b0040) 2015; 66 Marines-Garcia, Paris, Tada, Bathias (b0205) 2007; 468 Nguyen, Gallimard, Bathias (b0215) 2015; 135 Avateffazeli, Shakil, Hadadzadeh, Shalchi-Amirkhiz, Pirgazi, Mohammadi (b0180) 2023; 35 Stanzl-Tschegg, Mayer (b0230) 2001; 23 Minasyan, Hussainova (b0020) 2022; 15 Geng, Li, Xiao, Li, Sun, Chen (b0100) 2021; 142 Awd, Siddique, Johannsen, Emmelmann, Walther (b0235) 2019; 124 Avateffazeli, Khan, Shamsaei, Haghshenas (b0055) 2022 Tridello, Paolino, Rossetto (b0225) 2020; 10 Caivano, Tridello, Chiandussi, Qian, Paolino, Berto (b0130) 2021; 44 Mohanavel, Kumar, Sathish, Velmurugan, Karthick, Ravichandran, Alfarraj, Almoallim, Sureshkumar, JoshuaRamesh Lalvani (b0015) 2022 Kotadia, Gibbons, Das, Howes (b0090) 2021; 46 Mohanty, Gruzleski (b0005) 1995; 43 Gao, Sun, Xue, Retraint (b0150) 2020; 139 Masuo, Tanaka, Morokoshi, Yagura, Uchida, Yamamoto (b0175) 2018; 117 Le, Pessard, Morel, Prigent (b0170) 2020; 140 Samuel, Samuel, Songmene, Samuel (b0010) 2023; 16 Guennec B., Ueno A., Sakai T., Takanashi M., Itabashi Y. Effect of loading frequency in fatigue properties and micro-plasticity behavior of JIS S15C low carbon steel. Int J Fatigue 2014; 70; 2015;328–341. Sippel, Kerscher (b0245) 2020; 10 Shakil, Zoeram, Avateffazeli, Roscher, Pirgazi, Shalchi-Amirkhiz (b0070) 2022; 156 S. Siddique, M. Imran, E. Wycisk, C. Emmelmann, F. Walther, Fatigue Assessment of Laser Additive Manufactured AlSi12 Eutectic Alloy in the Very High Cycle Fatigue (VHCF) Range up to 1E9 cycles, Materials Today: Proceedings 3(9, Part A) (2016) 2853-2860. Siddique, Imran, Walther (b0160) 2017; 94 Avateffazeli, Carrion, Shachi-Amirkhiz, Pirgazi, Mohammadi, Shamsaei (b0050) 2022; 841 Ma, Dai, Zhang, Wang, Liu, Wang (b0030) 2023 Avateffazeli, Shakil, Khan, Pirgazi, Shamsaei, Haghshenas (b0060) 2023; 35 Avateffazeli, Shakil, Pirgazi, Shalchi-Amirkhiz, Mohammadi, Haghshenas (b0105) 2023; 36 Kulkarni, Srinivasan, Kumar, Kumar, Jayaram (b0135) 2023; 58 Karimialavijeh, Ghasri-Khouzani, Das, Pröebstle, Martin (b0110) 2023; 175 Tridello, Paolino (b0125) 2020; 2 Shakil, Beamer, Attallah, Haghshenas (b0085) 2023 Zhao, Xie, Sun, Lei, Hong (b0250) 2012; 38 Shakil, Beamer, Attallah, Haghshenas (b0065) 2024; 76 Hong, Lei, Sun, Zhao (b0195) 2014; 58 Wang, Berard, Rathery, Bathias (b0200) 1999; 22 Schneller, Leitner, Leuders, Sprauel, Grün, Pfeifer (b0165) 2021; 39 Marines-Garcia, Paris, Tada, Bathias (b0210) 2007; 29 Michi, Simpson, Bahl, Campbell, Brackman, Plotkowski (b0140) 2023; 66 Karthik, Nithesh, Sharma, Srinivas, Nambiar (b0025) 2021 Barode, Vayyala, Virgillito, Aversa, Mayer, Fino (b0075) 2023; 225 Murakami, Kodama, Konuma (b0190) 1989; 11 Martucci, Aversa, Lombardi (b0080) 2023; 16 Murakami (b0185) 1989; 32 Xue, Lou, Hao, Li, Yu, Zhang (b0035) 2022; 929 Tridello, Boursier Niutta, Berto, Qian, Paolino (b0220) 2021; 44 Xu, Wang, Zhou (b0145) 2018; 715 Geng, Liu, Wang, Hong, Dai, Wang (b0095) 2017; 135 Maskery, Aboulkhair, Corfield, Tuck, Clare, Leach (b0155) 2016; 111 Ghoncheh, Sanjari, Shojaei Zoeram, Cyr, Shalchi Amirkhiz, Lloyd, Haghshenas, Mohammadi (b0045) 2021; 37 Pyttel, Schwerdt, Berger (b0115) 2011; 33 Murakami (10.1016/j.ijfatigue.2024.108281_b0185) 1989; 32 Avateffazeli (10.1016/j.ijfatigue.2024.108281_b0060) 2023; 35 Akbari (10.1016/j.ijfatigue.2024.108281_b0040) 2015; 66 Siddique (10.1016/j.ijfatigue.2024.108281_b0160) 2017; 94 Minasyan (10.1016/j.ijfatigue.2024.108281_b0020) 2022; 15 Hong (10.1016/j.ijfatigue.2024.108281_b0195) 2014; 58 Samuel (10.1016/j.ijfatigue.2024.108281_b0010) 2023; 16 Michi (10.1016/j.ijfatigue.2024.108281_b0140) 2023; 66 Kotadia (10.1016/j.ijfatigue.2024.108281_b0090) 2021; 46 Geng (10.1016/j.ijfatigue.2024.108281_b0100) 2021; 142 Nguyen (10.1016/j.ijfatigue.2024.108281_b0215) 2015; 135 Xue (10.1016/j.ijfatigue.2024.108281_b0035) 2022; 929 Le (10.1016/j.ijfatigue.2024.108281_b0170) 2020; 140 Avateffazeli (10.1016/j.ijfatigue.2024.108281_b0055) 2022 Awd (10.1016/j.ijfatigue.2024.108281_b0235) 2019; 124 Geng (10.1016/j.ijfatigue.2024.108281_b0095) 2017; 135 Mohanty (10.1016/j.ijfatigue.2024.108281_b0005) 1995; 43 Sippel (10.1016/j.ijfatigue.2024.108281_b0245) 2020; 10 10.1016/j.ijfatigue.2024.108281_b0240 Barode (10.1016/j.ijfatigue.2024.108281_b0075) 2023; 225 10.1016/j.ijfatigue.2024.108281_b0120 Tridello (10.1016/j.ijfatigue.2024.108281_b0225) 2020; 10 Shakil (10.1016/j.ijfatigue.2024.108281_b0065) 2024; 76 Karthik (10.1016/j.ijfatigue.2024.108281_b0025) 2021 Avateffazeli (10.1016/j.ijfatigue.2024.108281_b0105) 2023; 36 Ma (10.1016/j.ijfatigue.2024.108281_b0030) 2023 Pyttel (10.1016/j.ijfatigue.2024.108281_b0115) 2011; 33 Tridello (10.1016/j.ijfatigue.2024.108281_b0125) 2020; 2 Schneller (10.1016/j.ijfatigue.2024.108281_b0165) 2021; 39 Caivano (10.1016/j.ijfatigue.2024.108281_b0130) 2021; 44 Ghoncheh (10.1016/j.ijfatigue.2024.108281_b0045) 2021; 37 Marines-Garcia (10.1016/j.ijfatigue.2024.108281_b0210) 2007; 29 Wang (10.1016/j.ijfatigue.2024.108281_b0200) 1999; 22 Karimialavijeh (10.1016/j.ijfatigue.2024.108281_b0110) 2023; 175 Gao (10.1016/j.ijfatigue.2024.108281_b0150) 2020; 139 Avateffazeli (10.1016/j.ijfatigue.2024.108281_b0180) 2023; 35 Masuo (10.1016/j.ijfatigue.2024.108281_b0175) 2018; 117 Martucci (10.1016/j.ijfatigue.2024.108281_b0080) 2023; 16 Marines-Garcia (10.1016/j.ijfatigue.2024.108281_b0205) 2007; 468 Kulkarni (10.1016/j.ijfatigue.2024.108281_b0135) 2023; 58 Murakami (10.1016/j.ijfatigue.2024.108281_b0190) 1989; 11 Tridello (10.1016/j.ijfatigue.2024.108281_b0220) 2021; 44 Xu (10.1016/j.ijfatigue.2024.108281_b0145) 2018; 715 Zhao (10.1016/j.ijfatigue.2024.108281_b0250) 2012; 38 Maskery (10.1016/j.ijfatigue.2024.108281_b0155) 2016; 111 Avateffazeli (10.1016/j.ijfatigue.2024.108281_b0050) 2022; 841 Shakil (10.1016/j.ijfatigue.2024.108281_b0085) 2023 Shakil (10.1016/j.ijfatigue.2024.108281_b0070) 2022; 156 Mohanavel (10.1016/j.ijfatigue.2024.108281_b0015) 2022 Stanzl-Tschegg (10.1016/j.ijfatigue.2024.108281_b0230) 2001; 23 |
References_xml | – volume: 139 year: 2020 ident: b0150 article-title: Effect of surface mechanical attrition treatment on high cycle and very high cycle fatigue of a 7075–T6 aluminium alloy publication-title: Int J Fatigue contributor: fullname: Retraint – volume: 22 start-page: 673 year: 1999 end-page: 677 ident: b0200 article-title: Technical note high-cycle fatigue crack initiation and propagation behaviour of high-strength sprin steel wires publication-title: Fatigue Fract Eng Mater Struct contributor: fullname: Bathias – volume: 124 start-page: 55 year: 2019 end-page: 69 ident: b0235 article-title: Very high-cycle fatigue properties and microstructural damage mechanisms of selective laser melted AlSi10Mg alloy publication-title: Int J Fatigue contributor: fullname: Walther – start-page: 1 year: 2023 end-page: 11 ident: b0085 article-title: The effect of heat treatment on local mechanical properties of laser powder bed fused and hot isostatically pressed Al-Cu-Mg-Ag-TiB2 (A20X) aluminum alloy publication-title: JOM contributor: fullname: Haghshenas – volume: 117 start-page: 163 year: 2018 end-page: 179 ident: b0175 article-title: Influence of defects, surface roughness and HIP on the fatigue strength of Ti-6Al-4V manufactured by additive manufacturing publication-title: Int J Fatigue contributor: fullname: Yamamoto – volume: 841 year: 2022 ident: b0050 article-title: Correlation between tensile properties, microstructure, and processing routes of an Al–Cu–Mg–Ag–TiB2 (A205) alloy: additive manufacturing and casting publication-title: Mater Sci Eng A contributor: fullname: Shamsaei – volume: 32 start-page: 167 year: 1989 end-page: 180 ident: b0185 article-title: Effects of small defects and nonmetallic inclusions on the fatigue strength of metals publication-title: JSME Int J Ser. 1, Solid Mechanics, Strength of Mater contributor: fullname: Murakami – volume: 66 year: 2023 ident: b0140 article-title: Additively manufactured Al-Ce-Ni-Mn alloy with improved elevated-temperature fatigue resistance publication-title: Addit Manuf contributor: fullname: Plotkowski – volume: 38 start-page: 46 year: 2012 end-page: 56 ident: b0250 article-title: Effects of strength level and loading frequency on very-high-cycle fatigue behavior for a bearing steel publication-title: Int J Fatigue contributor: fullname: Hong – volume: 142 year: 2021 ident: b0100 article-title: Study fatigue crack initiation in TiB2/Al-Cu-Mg composite by in-situ SEM and X-ray microtomography publication-title: Int J Fatigue contributor: fullname: Chen – volume: 175 year: 2023 ident: b0110 article-title: Effect of laser contour scan parameters on fatigue performance of A20X fabricated by laser powder bed fusion publication-title: Int J Fatigue contributor: fullname: Martin – volume: 94 start-page: 246 year: 2017 end-page: 254 ident: b0160 article-title: Very high cycle fatigue and fatigue crack propagation behavior of selective laser melted AlSi12 alloy publication-title: Int J Fatigue contributor: fullname: Walther – volume: 29 start-page: 2072 year: 2007 end-page: 2078 ident: b0210 article-title: Fatigue crack growth from small to long cracks in VHCF with surface initiations publication-title: Int J Fatigue contributor: fullname: Bathias – volume: 66 start-page: 150 year: 2015 end-page: 161 ident: b0040 article-title: Tensile and fracture behavior of nano/micro TiB2 particle reinforced casting A356 aluminum alloy composites publication-title: Mater Des (1980–2015) contributor: fullname: Shirvanimoghaddam – volume: 44 start-page: 1944 year: 2021 end-page: 1960 ident: b0220 article-title: Fatigue failures from defects in additive manufactured components: a statistical methodology for the analysis of the experimental results publication-title: Fatigue Fract Eng Mater Struct contributor: fullname: Paolino – volume: 35 year: 2023 ident: b0180 article-title: On microstructure and work hardening behavior of laser powder bed fused Al-Cu-Mg-Ag-TiB2 and AlSi10Mg alloys publication-title: Mater Today Commun contributor: fullname: Mohammadi – volume: 715 start-page: 404 year: 2018 end-page: 413 ident: b0145 article-title: Micro-crack initiation and propagation in a high strength aluminum alloy during very high cycle fatigue publication-title: Mater Sci Eng A contributor: fullname: Zhou – volume: 35 year: 2023 ident: b0060 article-title: The effect of heat treatment on fatigue response of laser powder bed fused Al-Cu-Mg-Ag-TiB2 (A20X) alloy publication-title: Mater Today Commun contributor: fullname: Haghshenas – volume: 15 start-page: 2467 year: 2022 ident: b0020 article-title: Laser powder-bed fusion of ceramic particulate reinforced aluminum alloys: a review publication-title: Mater contributor: fullname: Hussainova – volume: 10 start-page: 2210 year: 2020 ident: b0225 article-title: Ultrasonic vhcf tests on very large specimens with risk-volume up to 5000 mm3 publication-title: Appl Sci contributor: fullname: Rossetto – volume: 43 start-page: 2001 year: 1995 end-page: 2012 ident: b0005 article-title: Mechanism of grain refinement in aluminium publication-title: Acta Metall Mater contributor: fullname: Gruzleski – volume: 111 start-page: 193 year: 2016 end-page: 204 ident: b0155 article-title: Quantification and characterisation of porosity in selectively laser melted Al–Si10–Mg using X-ray computed tomography publication-title: Mater Charact contributor: fullname: Leach – volume: 23 start-page: 231 year: 2001 end-page: 237 ident: b0230 article-title: Fatigue and fatigue crack growth of aluminium alloys at very high numbers of cycles publication-title: Int J Fatigue contributor: fullname: Mayer – volume: 36 year: 2023 ident: b0105 article-title: Fatigue response of a cast Al-Cu-Mg-Ag-TiB2 (A205) alloy: stress relieved and aged publication-title: Mater Today Commun contributor: fullname: Haghshenas – volume: 156 year: 2022 ident: b0070 article-title: Ambient-temperature time-dependent deformation of cast and additive manufactured Al-Cu-Mg-Ag-TiB2 (A205) publication-title: Micron contributor: fullname: Shalchi-Amirkhiz – year: 2022 ident: b0055 article-title: Microstructure, Mechanical, and Fatigue Properties of a Laser Powder Bed Fused Al-Cu-Mg-Ag-Ti-B (A205) Alloy, Solid Freeform Fabrication 2022 contributor: fullname: Haghshenas – start-page: 393 year: 2021 end-page: 401 ident: b0025 article-title: Study on mechanical characteristics of TiB2, WC, ZrB2 and B4C reinforced al 2XXX, 6XXX and 7XXX series alloys—a systematic review publication-title: Adv Modelling and Optimization of Manufacturing and Industrial Systems: Select Proc of CIMS contributor: fullname: Nambiar – volume: 11 start-page: 291 year: 1989 end-page: 298 ident: b0190 article-title: Quantitative evaluation of effects of non-metallic inclusions on fatigue strength of high strength steels. I: basic fatigue mechanism and evaluation of correlation between the fatigue fracture stress and the size and location of non-metallic inclusions publication-title: Int J Fatigue contributor: fullname: Konuma – volume: 58 start-page: 144 year: 2014 end-page: 151 ident: b0195 article-title: Propensities of crack interior initiation and early growth for very-high-cycle fatigue of high strength steels publication-title: Int J Fatigue contributor: fullname: Zhao – volume: 2 start-page: e121 year: 2020 ident: b0125 article-title: VHCF response of AM materials: a literature review publication-title: Mater Design & Proc Communications contributor: fullname: Paolino – volume: 135 start-page: 81 year: 2015 end-page: 93 ident: b0215 article-title: Numerical simulation of fish-eye fatigue crack growth in very high cycle fatigue publication-title: Eng Fract Mech contributor: fullname: Bathias – volume: 468 start-page: 120 year: 2007 end-page: 128 ident: b0205 article-title: Fatigue crack growth from small to long cracks in very-high-cycle fatigue with surface and internal “fish-eye” failures for ferrite-perlitic low carbon steel SAE 8620 publication-title: Mater Sci Eng A contributor: fullname: Bathias – volume: 10 start-page: 8475 year: 2020 ident: b0245 article-title: Properties of the fine granular area and postulated models for its formation during very high cycle fatigue—a review publication-title: Appl Sci contributor: fullname: Kerscher – volume: 39 year: 2021 ident: b0165 article-title: Fatigue strength estimation methodology of additively manufactured metallic bulk material publication-title: Addit Manuf contributor: fullname: Pfeifer – volume: 33 start-page: 49 year: 2011 end-page: 58 ident: b0115 article-title: Very high cycle fatigue – is there a fatigue limit? publication-title: Int J Fatigue contributor: fullname: Berger – volume: 76 start-page: 31 year: 2024 end-page: 41 ident: b0065 article-title: The effect of heat treatment on local mechanical properties of laser powder bed fused and hot isostatically pressed Al-Cu-Mg-Ag-TiB2 (A20X) aluminum alloy publication-title: JOM contributor: fullname: Haghshenas – volume: 46 year: 2021 ident: b0090 article-title: A review of laser powder bed fusion additive Manufacturing of aluminium alloys: microstructure and properties publication-title: Addit Manuf contributor: fullname: Howes – start-page: 1 year: 2023 end-page: 21 ident: b0030 article-title: Enhanced high temperature mechanical properties and heat resistance of an Al–Cu–Mg–Fe–Ni matrix composite reinforced with in-situ TiB2 particles publication-title: J Mater Sci contributor: fullname: Wang – volume: 44 start-page: 2919 year: 2021 end-page: 2943 ident: b0130 article-title: Very high cycle fatigue (VHCF) response of additively manufactured materials: a review publication-title: Fatigue Fract Eng Mater Struct contributor: fullname: Berto – year: 2022 ident: b0015 article-title: Investigation on inorganic salts K2TiF6 and KBF4 to develop nanoparticles based TiB2 reinforcement aluminium composites publication-title: Bioinorg Chem Appl contributor: fullname: JoshuaRamesh Lalvani – volume: 225 year: 2023 ident: b0075 article-title: Revisiting heat treatments for additive manufactured parts: a case study of A20X alloy publication-title: Mater Des contributor: fullname: Fino – volume: 16 start-page: 1084 year: 2023 ident: b0080 article-title: Ongoing challenges of laser-based powder bed fusion processing of Al alloys and potential solutions from the literature—a review publication-title: Mater contributor: fullname: Lombardi – volume: 140 year: 2020 ident: b0170 article-title: Fatigue behaviour of additively manufactured Ti-6Al-4V alloy: the role of defects on scatter and statistical size effect publication-title: Int J Fatigue contributor: fullname: Prigent – volume: 16 start-page: 5639 year: 2023 ident: b0010 article-title: A review on the analysis of thermal and thermodynamic aspects of grain refinement of aluminum-silicon-based alloys publication-title: Mater contributor: fullname: Samuel – volume: 135 start-page: 423 year: 2017 end-page: 438 ident: b0095 article-title: Microstructural correlated damage mechanisms of the high-cycle fatigued in-situ TiB2/Al-Cu-Mg composite publication-title: Mater Des contributor: fullname: Wang – volume: 37 year: 2021 ident: b0045 article-title: On the microstructure and solidification behavior of new generation additively manufactured Al-Cu-Mg-Ag-Ti-B alloys publication-title: Additive Manufacturing contributor: fullname: Mohammadi – volume: 58 start-page: 2310 year: 2023 end-page: 2333 ident: b0135 article-title: Precipitate evolution and thermal stability of A205 fabricated using laser powder bed fusion publication-title: J Mater Sci contributor: fullname: Jayaram – volume: 929 year: 2022 ident: b0035 article-title: Insight into the precipitation behavior and mechanical properties of Sc-Zr micro-alloying TiB2/Al-4.5 Cu composites publication-title: J Alloy Compd contributor: fullname: Zhang – volume: 37 year: 2021 ident: 10.1016/j.ijfatigue.2024.108281_b0045 article-title: On the microstructure and solidification behavior of new generation additively manufactured Al-Cu-Mg-Ag-Ti-B alloys publication-title: Additive Manufacturing doi: 10.1016/j.addma.2020.101724 contributor: fullname: Ghoncheh – volume: 139 year: 2020 ident: 10.1016/j.ijfatigue.2024.108281_b0150 article-title: Effect of surface mechanical attrition treatment on high cycle and very high cycle fatigue of a 7075–T6 aluminium alloy publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2020.105798 contributor: fullname: Gao – volume: 39 year: 2021 ident: 10.1016/j.ijfatigue.2024.108281_b0165 article-title: Fatigue strength estimation methodology of additively manufactured metallic bulk material publication-title: Addit Manuf contributor: fullname: Schneller – volume: 33 start-page: 49 issue: 1 year: 2011 ident: 10.1016/j.ijfatigue.2024.108281_b0115 article-title: Very high cycle fatigue – is there a fatigue limit? publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2010.05.009 contributor: fullname: Pyttel – ident: 10.1016/j.ijfatigue.2024.108281_b0120 doi: 10.1016/j.matpr.2016.07.004 – volume: 929 year: 2022 ident: 10.1016/j.ijfatigue.2024.108281_b0035 article-title: Insight into the precipitation behavior and mechanical properties of Sc-Zr micro-alloying TiB2/Al-4.5 Cu composites publication-title: J Alloy Compd doi: 10.1016/j.jallcom.2022.167209 contributor: fullname: Xue – volume: 44 start-page: 2919 issue: 11 year: 2021 ident: 10.1016/j.ijfatigue.2024.108281_b0130 article-title: Very high cycle fatigue (VHCF) response of additively manufactured materials: a review publication-title: Fatigue Fract Eng Mater Struct doi: 10.1111/ffe.13567 contributor: fullname: Caivano – volume: 76 start-page: 31 issue: 1 year: 2024 ident: 10.1016/j.ijfatigue.2024.108281_b0065 article-title: The effect of heat treatment on local mechanical properties of laser powder bed fused and hot isostatically pressed Al-Cu-Mg-Ag-TiB2 (A20X) aluminum alloy publication-title: JOM doi: 10.1007/s11837-023-06233-3 contributor: fullname: Shakil – volume: 124 start-page: 55 year: 2019 ident: 10.1016/j.ijfatigue.2024.108281_b0235 article-title: Very high-cycle fatigue properties and microstructural damage mechanisms of selective laser melted AlSi10Mg alloy publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2019.02.040 contributor: fullname: Awd – volume: 16 start-page: 1084 issue: 3 year: 2023 ident: 10.1016/j.ijfatigue.2024.108281_b0080 article-title: Ongoing challenges of laser-based powder bed fusion processing of Al alloys and potential solutions from the literature—a review publication-title: Mater doi: 10.3390/ma16031084 contributor: fullname: Martucci – volume: 841 year: 2022 ident: 10.1016/j.ijfatigue.2024.108281_b0050 article-title: Correlation between tensile properties, microstructure, and processing routes of an Al–Cu–Mg–Ag–TiB2 (A205) alloy: additive manufacturing and casting publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2022.142989 contributor: fullname: Avateffazeli – year: 2022 ident: 10.1016/j.ijfatigue.2024.108281_b0015 article-title: Investigation on inorganic salts K2TiF6 and KBF4 to develop nanoparticles based TiB2 reinforcement aluminium composites publication-title: Bioinorg Chem Appl doi: 10.1155/2022/8559402 contributor: fullname: Mohanavel – volume: 36 year: 2023 ident: 10.1016/j.ijfatigue.2024.108281_b0105 article-title: Fatigue response of a cast Al-Cu-Mg-Ag-TiB2 (A205) alloy: stress relieved and aged publication-title: Mater Today Commun contributor: fullname: Avateffazeli – volume: 44 start-page: 1944 issue: 7 year: 2021 ident: 10.1016/j.ijfatigue.2024.108281_b0220 article-title: Fatigue failures from defects in additive manufactured components: a statistical methodology for the analysis of the experimental results publication-title: Fatigue Fract Eng Mater Struct doi: 10.1111/ffe.13467 contributor: fullname: Tridello – volume: 58 start-page: 2310 issue: 5 year: 2023 ident: 10.1016/j.ijfatigue.2024.108281_b0135 article-title: Precipitate evolution and thermal stability of A205 fabricated using laser powder bed fusion publication-title: J Mater Sci doi: 10.1007/s10853-023-08163-6 contributor: fullname: Kulkarni – start-page: 1 year: 2023 ident: 10.1016/j.ijfatigue.2024.108281_b0030 article-title: Enhanced high temperature mechanical properties and heat resistance of an Al–Cu–Mg–Fe–Ni matrix composite reinforced with in-situ TiB2 particles publication-title: J Mater Sci contributor: fullname: Ma – volume: 142 year: 2021 ident: 10.1016/j.ijfatigue.2024.108281_b0100 article-title: Study fatigue crack initiation in TiB2/Al-Cu-Mg composite by in-situ SEM and X-ray microtomography publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2020.105976 contributor: fullname: Geng – volume: 38 start-page: 46 year: 2012 ident: 10.1016/j.ijfatigue.2024.108281_b0250 article-title: Effects of strength level and loading frequency on very-high-cycle fatigue behavior for a bearing steel publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2011.11.014 contributor: fullname: Zhao – volume: 66 start-page: 150 year: 2015 ident: 10.1016/j.ijfatigue.2024.108281_b0040 article-title: Tensile and fracture behavior of nano/micro TiB2 particle reinforced casting A356 aluminum alloy composites publication-title: Mater Des (1980–2015) doi: 10.1016/j.matdes.2014.10.048 contributor: fullname: Akbari – volume: 715 start-page: 404 year: 2018 ident: 10.1016/j.ijfatigue.2024.108281_b0145 article-title: Micro-crack initiation and propagation in a high strength aluminum alloy during very high cycle fatigue publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2018.01.008 contributor: fullname: Xu – volume: 35 year: 2023 ident: 10.1016/j.ijfatigue.2024.108281_b0060 article-title: The effect of heat treatment on fatigue response of laser powder bed fused Al-Cu-Mg-Ag-TiB2 (A20X) alloy publication-title: Mater Today Commun contributor: fullname: Avateffazeli – volume: 35 year: 2023 ident: 10.1016/j.ijfatigue.2024.108281_b0180 article-title: On microstructure and work hardening behavior of laser powder bed fused Al-Cu-Mg-Ag-TiB2 and AlSi10Mg alloys publication-title: Mater Today Commun contributor: fullname: Avateffazeli – volume: 43 start-page: 2001 issue: 5 year: 1995 ident: 10.1016/j.ijfatigue.2024.108281_b0005 article-title: Mechanism of grain refinement in aluminium publication-title: Acta Metall Mater doi: 10.1016/0956-7151(94)00405-7 contributor: fullname: Mohanty – volume: 140 year: 2020 ident: 10.1016/j.ijfatigue.2024.108281_b0170 article-title: Fatigue behaviour of additively manufactured Ti-6Al-4V alloy: the role of defects on scatter and statistical size effect publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2020.105811 contributor: fullname: Le – volume: 135 start-page: 423 year: 2017 ident: 10.1016/j.ijfatigue.2024.108281_b0095 article-title: Microstructural correlated damage mechanisms of the high-cycle fatigued in-situ TiB2/Al-Cu-Mg composite publication-title: Mater Des doi: 10.1016/j.matdes.2017.09.046 contributor: fullname: Geng – volume: 2 start-page: e121 issue: 1 year: 2020 ident: 10.1016/j.ijfatigue.2024.108281_b0125 article-title: VHCF response of AM materials: a literature review publication-title: Mater Design & Proc Communications contributor: fullname: Tridello – volume: 135 start-page: 81 year: 2015 ident: 10.1016/j.ijfatigue.2024.108281_b0215 article-title: Numerical simulation of fish-eye fatigue crack growth in very high cycle fatigue publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2015.01.010 contributor: fullname: Nguyen – volume: 58 start-page: 144 year: 2014 ident: 10.1016/j.ijfatigue.2024.108281_b0195 article-title: Propensities of crack interior initiation and early growth for very-high-cycle fatigue of high strength steels publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2013.02.023 contributor: fullname: Hong – volume: 156 year: 2022 ident: 10.1016/j.ijfatigue.2024.108281_b0070 article-title: Ambient-temperature time-dependent deformation of cast and additive manufactured Al-Cu-Mg-Ag-TiB2 (A205) publication-title: Micron doi: 10.1016/j.micron.2022.103246 contributor: fullname: Shakil – volume: 225 year: 2023 ident: 10.1016/j.ijfatigue.2024.108281_b0075 article-title: Revisiting heat treatments for additive manufactured parts: a case study of A20X alloy publication-title: Mater Des doi: 10.1016/j.matdes.2022.111566 contributor: fullname: Barode – start-page: 393 year: 2021 ident: 10.1016/j.ijfatigue.2024.108281_b0025 article-title: Study on mechanical characteristics of TiB2, WC, ZrB2 and B4C reinforced al 2XXX, 6XXX and 7XXX series alloys—a systematic review publication-title: Adv Modelling and Optimization of Manufacturing and Industrial Systems: Select Proc of CIMS contributor: fullname: Karthik – volume: 29 start-page: 2072 issue: 9–11 year: 2007 ident: 10.1016/j.ijfatigue.2024.108281_b0210 article-title: Fatigue crack growth from small to long cracks in VHCF with surface initiations publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2007.03.015 contributor: fullname: Marines-Garcia – volume: 16 start-page: 5639 issue: 16 year: 2023 ident: 10.1016/j.ijfatigue.2024.108281_b0010 article-title: A review on the analysis of thermal and thermodynamic aspects of grain refinement of aluminum-silicon-based alloys publication-title: Mater doi: 10.3390/ma16165639 contributor: fullname: Samuel – ident: 10.1016/j.ijfatigue.2024.108281_b0240 doi: 10.1016/j.ijfatigue.2014.10.006 – volume: 10 start-page: 8475 issue: 23 year: 2020 ident: 10.1016/j.ijfatigue.2024.108281_b0245 article-title: Properties of the fine granular area and postulated models for its formation during very high cycle fatigue—a review publication-title: Appl Sci doi: 10.3390/app10238475 contributor: fullname: Sippel – volume: 23 start-page: 231 year: 2001 ident: 10.1016/j.ijfatigue.2024.108281_b0230 article-title: Fatigue and fatigue crack growth of aluminium alloys at very high numbers of cycles publication-title: Int J Fatigue doi: 10.1016/S0142-1123(01)00167-0 contributor: fullname: Stanzl-Tschegg – volume: 10 start-page: 2210 issue: 7 year: 2020 ident: 10.1016/j.ijfatigue.2024.108281_b0225 article-title: Ultrasonic vhcf tests on very large specimens with risk-volume up to 5000 mm3 publication-title: Appl Sci doi: 10.3390/app10072210 contributor: fullname: Tridello – volume: 468 start-page: 120 year: 2007 ident: 10.1016/j.ijfatigue.2024.108281_b0205 article-title: Fatigue crack growth from small to long cracks in very-high-cycle fatigue with surface and internal “fish-eye” failures for ferrite-perlitic low carbon steel SAE 8620 publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2006.08.131 contributor: fullname: Marines-Garcia – volume: 66 year: 2023 ident: 10.1016/j.ijfatigue.2024.108281_b0140 article-title: Additively manufactured Al-Ce-Ni-Mn alloy with improved elevated-temperature fatigue resistance publication-title: Addit Manuf contributor: fullname: Michi – volume: 94 start-page: 246 year: 2017 ident: 10.1016/j.ijfatigue.2024.108281_b0160 article-title: Very high cycle fatigue and fatigue crack propagation behavior of selective laser melted AlSi12 alloy publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2016.06.003 contributor: fullname: Siddique – volume: 15 start-page: 2467 issue: 7 year: 2022 ident: 10.1016/j.ijfatigue.2024.108281_b0020 article-title: Laser powder-bed fusion of ceramic particulate reinforced aluminum alloys: a review publication-title: Mater doi: 10.3390/ma15072467 contributor: fullname: Minasyan – volume: 32 start-page: 167 issue: 2 year: 1989 ident: 10.1016/j.ijfatigue.2024.108281_b0185 article-title: Effects of small defects and nonmetallic inclusions on the fatigue strength of metals publication-title: JSME Int J Ser. 1, Solid Mechanics, Strength of Mater contributor: fullname: Murakami – year: 2022 ident: 10.1016/j.ijfatigue.2024.108281_b0055 article-title: Microstructure, Mechanical, and Fatigue Properties of a Laser Powder Bed Fused Al-Cu-Mg-Ag-Ti-B (A205) Alloy, Solid Freeform Fabrication 2022 contributor: fullname: Avateffazeli – start-page: 1 year: 2023 ident: 10.1016/j.ijfatigue.2024.108281_b0085 article-title: The effect of heat treatment on local mechanical properties of laser powder bed fused and hot isostatically pressed Al-Cu-Mg-Ag-TiB2 (A20X) aluminum alloy publication-title: JOM contributor: fullname: Shakil – volume: 11 start-page: 291 issue: 5 year: 1989 ident: 10.1016/j.ijfatigue.2024.108281_b0190 article-title: Quantitative evaluation of effects of non-metallic inclusions on fatigue strength of high strength steels. I: basic fatigue mechanism and evaluation of correlation between the fatigue fracture stress and the size and location of non-metallic inclusions publication-title: Int J Fatigue doi: 10.1016/0142-1123(89)90054-6 contributor: fullname: Murakami – volume: 111 start-page: 193 year: 2016 ident: 10.1016/j.ijfatigue.2024.108281_b0155 article-title: Quantification and characterisation of porosity in selectively laser melted Al–Si10–Mg using X-ray computed tomography publication-title: Mater Charact doi: 10.1016/j.matchar.2015.12.001 contributor: fullname: Maskery – volume: 117 start-page: 163 year: 2018 ident: 10.1016/j.ijfatigue.2024.108281_b0175 article-title: Influence of defects, surface roughness and HIP on the fatigue strength of Ti-6Al-4V manufactured by additive manufacturing publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2018.07.020 contributor: fullname: Masuo – volume: 46 year: 2021 ident: 10.1016/j.ijfatigue.2024.108281_b0090 article-title: A review of laser powder bed fusion additive Manufacturing of aluminium alloys: microstructure and properties publication-title: Addit Manuf contributor: fullname: Kotadia – volume: 175 year: 2023 ident: 10.1016/j.ijfatigue.2024.108281_b0110 article-title: Effect of laser contour scan parameters on fatigue performance of A20X fabricated by laser powder bed fusion publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2023.107775 contributor: fullname: Karimialavijeh – volume: 22 start-page: 673 issue: 8 year: 1999 ident: 10.1016/j.ijfatigue.2024.108281_b0200 article-title: Technical note high-cycle fatigue crack initiation and propagation behaviour of high-strength sprin steel wires publication-title: Fatigue Fract Eng Mater Struct contributor: fullname: Wang |
SSID | ssj0009075 |
Score | 2.4769518 |
Snippet | •Unveiling VHCF behavior of laser powder bed fused A20X, a novel Al-Cu-Mg-Ag-TiB2 alloy.•Experimental revelation of asymptotic trend at 109 cycles.•Insights... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 108281 |
SubjectTerms | A20X Al-Cu-Mg-Ag-TiB2 Laser powder bed fusion Ultrasonic fatigue Very high cycle fatigue |
Title | Very high cycle fatigue of laser powder bed fused Al-Cu-Mg-Ag-TiB2 (A20X) Alloy: Stress relief and aging treatments |
URI | https://dx.doi.org/10.1016/j.ijfatigue.2024.108281 |
Volume | 183 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLe67QIHxKcYA-QDB1DkKnGSNtktjKINqVxWUG-R649upTRTmmxq_3qe7XytqgQIcbEit6lTv1-ff_71-T2E3gFwufLkkMzARZJg4AsSSQ5XHhVSl8lkUp93Pr8cfp1Gn0bBqNera--1ff_V0tAHttYnZ__C2s2HQgdcg82hBatD-0d2_y7zjaOTEDt8Ay85CvrnpVEGgCjL3LnJ7nT-iBkwTVWuoU2W5Kwk4zlJ5mRy_ZFq0plQd6oFg2S5zExOqEt7piSXwFmVzfA6tyUmqkD1dZfm3tcZO9kpqqdpYHYLVFcptpX2lPaY5Rv2s1F9roDeGolaF3j_wQrnot_IB_Lq1saGJ0vw2ttmdUmKQv83YNSiccYKtnXG_a62QYM2BssKbvWhmzbCyWqglABNtH5RWr8dDWPiB-GOY_f3LhJWr1j0rxfVl-7rsXW0JbXlY3YycOsAOOoZ7mkZ8wE6ouDXwK0eJRej6Zc2y7PN7Nw84b2Awr3D7adDHYozeYweVXsTnFhQPUE9uXqKHnYyVj5Daw0vrOGFDbxwNRjOFDbwwhZeGOCFDbzwLrzwew2uD9hA6xRbYGELLAzAwgZYuAXWc_Tt82hydk6quh2E-15YEKpX0UEQK6F_9pIq5XMOC7LL_TCgQnhxwIQrBOycI0VhP849T4khdWeUR_5M-i_Q4SpbyZcIsyASER94KvY5vG8Wx9ylMpQxj1gkWHiM3Hr60hubniWt4xYXaTPjqZ7x1M74MTqtpzmtWKZljyng43c3v_qXm0_Qgxbkr9FhkZfyDTpYi_JtBaRfy1yiJg |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Very+high+cycle+fatigue+of+laser+powder+bed+fused+Al-Cu-Mg-Ag-TiB2+%28A20X%29+Alloy%3A+Stress+relief+and+aging+treatments&rft.jtitle=International+journal+of+fatigue&rft.au=Avateffazeli%2C+Maryam&rft.au=Shakil%2C+Shawkat+I.&rft.au=Behvar%2C+Alireza&rft.au=Attallah%2C+Moataz+M.&rft.date=2024-06-01&rft.pub=Elsevier+Ltd&rft.issn=0142-1123&rft.eissn=1879-3452&rft.volume=183&rft_id=info:doi/10.1016%2Fj.ijfatigue.2024.108281&rft.externalDocID=S0142112324001397 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-1123&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-1123&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-1123&client=summon |