Low-cycle fatigue life assessment of SAC solder alloy through a FEM-data driven machine learning approach
Purpose This paper aims to present the novel stacked machine learning approach (SMLA) to estimate low-cycle fatigue (LCF) life of SAC305 solder across structural parts. Using the finite element simulation (FEM) and continuous damage mechanics (CDM) model, a fatigue life database is built. The stacke...
Saved in:
Published in: | Soldering & surface mount technology Vol. 36; no. 2; pp. 69 - 79 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Bradford
Emerald Publishing Limited
20-02-2024
Emerald Group Publishing Limited |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Purpose
This paper aims to present the novel stacked machine learning approach (SMLA) to estimate low-cycle fatigue (LCF) life of SAC305 solder across structural parts. Using the finite element simulation (FEM) and continuous damage mechanics (CDM) model, a fatigue life database is built. The stacked machine learning (ML) model's iterative optimization during training enables precise fatigue predictions (2.41% root mean square error [RMSE], R2 = 0.975) for diverse structural components. Outliers are found in regression analysis, indicating potential overestimation for thickness transition specimens with extended lifetimes and underestimation for open-hole specimens. Correlations between fatigue life, stress factors, nominal stress and temperature are unveiled, enriching comprehension of LCF, thus enhancing solder behavior predictions.
Design/methodology/approach
This paper introduces stacked ML as a novel approach for estimating LCF life of SAC305 solder in various structural parts. It builds a fatigue life database using FEM and CDM model. The stacked ML model iteratively optimizes its structure, yielding accurate fatigue predictions (2.41% RMSE, R2 = 0.975). Outliers are observed: overestimation for thickness transition specimens and underestimation for open-hole ones. Correlations between fatigue life, stress factors, nominal stress and temperature enhance predictions, deepening understanding of solder behavior.
Findings
The findings of this paper highlight the successful application of the SMLA in accurately estimating the LCF life of SAC305 solder across diverse structural components. The stacked ML model, trained iteratively, demonstrates its effectiveness by producing precise fatigue lifetime predictions with a RMSE of 2.41% and an “R2” value of 0.975. The study also identifies distinct outlier behaviors associated with different structural parts: overestimations for thickness transition specimens with extended fatigue lifetimes and underestimations for open-hole specimens. The research further establishes correlations between fatigue life, stress concentration factors, nominal stress and temperature, enriching the understanding of solder behavior prediction.
Originality/value
The authors confirm the originality of this paper. |
---|---|
AbstractList | Purpose
This paper aims to present the novel stacked machine learning approach (SMLA) to estimate low-cycle fatigue (LCF) life of SAC305 solder across structural parts. Using the finite element simulation (FEM) and continuous damage mechanics (CDM) model, a fatigue life database is built. The stacked machine learning (ML) model's iterative optimization during training enables precise fatigue predictions (2.41% root mean square error [RMSE], R2 = 0.975) for diverse structural components. Outliers are found in regression analysis, indicating potential overestimation for thickness transition specimens with extended lifetimes and underestimation for open-hole specimens. Correlations between fatigue life, stress factors, nominal stress and temperature are unveiled, enriching comprehension of LCF, thus enhancing solder behavior predictions.
Design/methodology/approach
This paper introduces stacked ML as a novel approach for estimating LCF life of SAC305 solder in various structural parts. It builds a fatigue life database using FEM and CDM model. The stacked ML model iteratively optimizes its structure, yielding accurate fatigue predictions (2.41% RMSE, R2 = 0.975). Outliers are observed: overestimation for thickness transition specimens and underestimation for open-hole ones. Correlations between fatigue life, stress factors, nominal stress and temperature enhance predictions, deepening understanding of solder behavior.
Findings
The findings of this paper highlight the successful application of the SMLA in accurately estimating the LCF life of SAC305 solder across diverse structural components. The stacked ML model, trained iteratively, demonstrates its effectiveness by producing precise fatigue lifetime predictions with a RMSE of 2.41% and an “R2” value of 0.975. The study also identifies distinct outlier behaviors associated with different structural parts: overestimations for thickness transition specimens with extended fatigue lifetimes and underestimations for open-hole specimens. The research further establishes correlations between fatigue life, stress concentration factors, nominal stress and temperature, enriching the understanding of solder behavior prediction.
Originality/value
The authors confirm the originality of this paper. PurposeThis paper aims to present the novel stacked machine learning approach (SMLA) to estimate low-cycle fatigue (LCF) life of SAC305 solder across structural parts. Using the finite element simulation (FEM) and continuous damage mechanics (CDM) model, a fatigue life database is built. The stacked machine learning (ML) model's iterative optimization during training enables precise fatigue predictions (2.41% root mean square error [RMSE], R2 = 0.975) for diverse structural components. Outliers are found in regression analysis, indicating potential overestimation for thickness transition specimens with extended lifetimes and underestimation for open-hole specimens. Correlations between fatigue life, stress factors, nominal stress and temperature are unveiled, enriching comprehension of LCF, thus enhancing solder behavior predictions.Design/methodology/approachThis paper introduces stacked ML as a novel approach for estimating LCF life of SAC305 solder in various structural parts. It builds a fatigue life database using FEM and CDM model. The stacked ML model iteratively optimizes its structure, yielding accurate fatigue predictions (2.41% RMSE, R2 = 0.975). Outliers are observed: overestimation for thickness transition specimens and underestimation for open-hole ones. Correlations between fatigue life, stress factors, nominal stress and temperature enhance predictions, deepening understanding of solder behavior.FindingsThe findings of this paper highlight the successful application of the SMLA in accurately estimating the LCF life of SAC305 solder across diverse structural components. The stacked ML model, trained iteratively, demonstrates its effectiveness by producing precise fatigue lifetime predictions with a RMSE of 2.41% and an “R2” value of 0.975. The study also identifies distinct outlier behaviors associated with different structural parts: overestimations for thickness transition specimens with extended fatigue lifetimes and underestimations for open-hole specimens. The research further establishes correlations between fatigue life, stress concentration factors, nominal stress and temperature, enriching the understanding of solder behavior prediction.Originality/valueThe authors confirm the originality of this paper. |
Author | Ruiz-Jacinto, Vicente-Segundo Aslla-Quispe, Abrahan-Pablo Alarcón-Sucasaca, Aldo Huamán-Romaní, Yersi-Luis Gutiérrez-Valverde, Karina-Silvana Burga-Falla, José-Manuel |
Author_xml | – sequence: 1 givenname: Vicente-Segundo surname: Ruiz-Jacinto fullname: Ruiz-Jacinto, Vicente-Segundo email: vruizj@unp.edu.pe – sequence: 2 givenname: Karina-Silvana surname: Gutiérrez-Valverde fullname: Gutiérrez-Valverde, Karina-Silvana email: kgutierrez@unf.edu.pe – sequence: 3 givenname: Abrahan-Pablo surname: Aslla-Quispe fullname: Aslla-Quispe, Abrahan-Pablo email: apaslla@gmail.com – sequence: 4 givenname: José-Manuel surname: Burga-Falla fullname: Burga-Falla, José-Manuel email: jose.burga@upn.edu.pe – sequence: 5 givenname: Aldo surname: Alarcón-Sucasaca fullname: Alarcón-Sucasaca, Aldo email: aldoalcon@gmail.com – sequence: 6 givenname: Yersi-Luis surname: Huamán-Romaní fullname: Huamán-Romaní, Yersi-Luis email: yersiluis51@gmail.com |
BookMark | eNptkc9LwzAUx4NMcFP_AG8Bz9GXps3S4xibChseNs_lLXndOrpmJp2y_96WeRE8feHx_QGfN2KDxjfE2IOEJynBPK9Wy7UAIxJIlABIsys2lOPMCG2UHrAh5FkqIJfyho1i3ENn0bkasmrhv4U925p4iW21PRGvq5I4xkgxHqhpuS_5ajLl0deOAse69mfe7oI_bXcc-Xy2FA5b5C5UX9TwA9pd1XQthKGpmi3H4zH47njHrkusI93_6i37mM_W01exeH95m04WwiqZtsJsaAza5s7pJBsrK8cIpEkqB2gTQJ2maWk2ylilgKB0BmWWoyshSax2ubplj5febvbzRLEt9v4Umm6ySPLEyFRqqTqXvLhs8DEGKotjqA4YzoWEoida9ESLTnuiRU-0y8AlQwcKWLt_I3-eoH4AuhJ5og |
CitedBy_id | crossref_primary_10_1007_s10999_024_09713_9 |
Cites_doi | 10.1109/ICEPT52650.2021.9568127 10.1007/s11664-022-09777-3 10.1016/j.neunet.2014.09.003 10.1016/j.asoc.2019.105524 10.1038/s41598-023-29636-3 10.1108/09540910710848527 10.1016/j.msea.2022.144257 10.1016/j.ijfatigue.2014.09.014 10.1016/j.ijfatigue.2022.107298 10.1016/j.mechmat.2008.11.001 10.1016/j.microrel.2020.113998 10.1016/j.ijplas.2014.01.002 10.2320/matertrans.MD201504 10.1038/s41598-020-71926-7 10.1016/j.ijfatigue.2018.01.021 10.1088/1361-648X/accdab 10.1080/15376494.2021.1951405 10.1115/DETC2022-89921 10.1007/s11664-022-09958-0 10.1115/1.4043405 10.1016/j.tafmec.2017.05.017 10.1016/j.jmgm.2023.108506 10.1109/TCPMT.2021.3136751 10.1007/s11664-023-10402-0 10.1016/j.engfailanal.2023.107228 10.1016/j.ijfatigue.2023.107609 10.1016/j.vacuum.2023.111905 10.1016/j.microrel.2022.114870 10.1016/j.microrel.2022.114824 10.1016/j.microrel.2023.115031 10.1038/s41598-023-32460-4 10.1111/ffe.13713 10.1016/j.ijfatigue.2018.09.009 10.1016/S0142-1123(02)00150-0 10.1115/1.4055318 10.1007/s11664-022-09635-2 10.1016/j.ijmecsci.2022.108087 10.1016/j.engfracmech.2021.108141 10.3390/app13020706 10.1109/TPEL.2020.2973312 |
ContentType | Journal Article |
Copyright | Emerald Publishing Limited Emerald Publishing Limited. |
Copyright_xml | – notice: Emerald Publishing Limited – notice: Emerald Publishing Limited. |
DBID | AAYXX CITATION 7SP 7TB 8BQ 8FD FR3 JG9 KR7 L7M |
DOI | 10.1108/SSMT-08-2023-0045 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1758-6836 0954-0911 |
EndPage | 79 |
ExternalDocumentID | 10_1108_SSMT_08_2023_0045 10.1108/SSMT-08-2023-0045 |
GroupedDBID | 0R~ 123 4.4 5VS 70U 7RQ 7WY 9E0 AADTA AADXL AAGBP AAMCF AATHL AAUDR ABIJV ABJCF ABKQV ABSDC ACGFS ACGOD ACIWK ADOMW AEBVX AEBZA AENEX AEUCW AFYHH AJEBP ALMA_UNASSIGNED_HOLDINGS ASMFL AUCOK BENPR BPQFQ CS3 DU5 EBS ECCUG FNNZZ GEI GEL GQ. GROUPED_ABI_INFORM_COMPLETE HCIFZ HZ~ IJT IPNFZ J1Y JI- JL0 K6~ KBGRL M0F MS~ O9- P2P RIG V1G 490 8FE 8FG 8FW 8R4 8R5 AAYXX ABYQI ACZLT AFKRA AFZLO AODMV AZQEC BEZIV BGLVJ BPHCQ CCPQU CITATION D1I DWQXO GNUQQ H13 KB. M2P M42 PDBOC PQBIZ PQQKQ PROAC Q2X SBBZN 7SP 7TB 8BQ 8FD FR3 JG9 KR7 L7M |
ID | FETCH-LOGICAL-c314t-8be706c9dd62573c17a0e6e13d0ac20a6444f8b38c330e0fd8a159adf022c6d93 |
IEDL.DBID | GQ. |
ISSN | 0954-0911 |
IngestDate | Sat Nov 16 20:52:56 EST 2024 Fri Nov 22 01:04:29 EST 2024 Thu Feb 22 06:09:59 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Fatigue lifetime Finite element modeling Solder alloy Machine learning |
Language | English |
License | Licensed re-use rights only |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c314t-8be706c9dd62573c17a0e6e13d0ac20a6444f8b38c330e0fd8a159adf022c6d93 |
PQID | 2928141613 |
PQPubID | 26047 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1108_SSMT_08_2023_0045 emerald_primary_10_1108_SSMT-08-2023-0045 proquest_journals_2928141613 |
PublicationCentury | 2000 |
PublicationDate | 2024-02-20 |
PublicationDateYYYYMMDD | 2024-02-20 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | Bradford |
PublicationPlace_xml | – name: Bradford |
PublicationTitle | Soldering & surface mount technology |
PublicationYear | 2024 |
Publisher | Emerald Publishing Limited Emerald Group Publishing Limited |
Publisher_xml | – name: Emerald Publishing Limited – name: Emerald Group Publishing Limited |
References | (key2023092611364375300_ref025) 2018; 110 (key2023092611364375300_ref030) 2019; 119 (key2023092611364375300_ref001) 2022; 144 (key2023092611364375300_ref015) 2009; 41 (key2023092611364375300_ref031) 2015; 61 (key2023092611364375300_ref004) 2023; 140 (key2023092611364375300_ref008) 2023; 123 (key2023092611364375300_ref021) 2023; 244 (key2023092611364375300_ref043) 2020; 32 (key2023092611364375300_ref041) 2011 (key2023092611364375300_ref026) 2020; 35 (key2023092611364375300_ref013) 2022 (key2023092611364375300_ref011) 2007; 19 (key2023092611364375300_ref042) 2023; 210 (key2023092611364375300_ref027) 2022; 51 (key2023092611364375300_ref032) 2020; 97 (key2023092611364375300_ref002) 2023; 13 (key2023092611364375300_ref033) 2019; 141 (key2023092611364375300_ref044) 2003; 25 (key2023092611364375300_ref020) 2021 (key2023092611364375300_ref040) 2023; 145 (key2023092611364375300_ref045) 2022; 45 (key2023092611364375300_ref016) 2022; 51 (key2023092611364375300_ref036) 2018 (key2023092611364375300_ref024) 2017; 90 (key2023092611364375300_ref006) 2022; 29 (key2023092611364375300_ref012) 2022; 139 (key2023092611364375300_ref022) 2014; 56 (key2023092611364375300_ref023) 2021; 116 (key2023092611364375300_ref017) 2015; 70 (key2023092611364375300_ref018) 2022; 259 (key2023092611364375300_ref029) 2022; 12 (key2023092611364375300_ref039) 2023; 146 (key2023092611364375300_ref034) 2016; 57 (key2023092611364375300_ref014) 2023; 52 (key2023092611364375300_ref019) 2023; 148 (key2023092611364375300_ref035) 2023; 167 (key2023092611364375300_ref028) 2020; 10 (key2023092611364375300_ref005) 2023; 35 (key2023092611364375300_ref037) 2023; 13 (key2023092611364375300_ref009) 2020 (key2023092611364375300_ref007) 2022; 51 (key2023092611364375300_ref003) 2023; 13 (key2023092611364375300_ref010) 2022; 861 (key2023092611364375300_ref038) 2023; 172 |
References_xml | – start-page: 1 volume-title: 2021 22nd Int. Conf. Electron. Packag. Technol year: 2021 ident: key2023092611364375300_ref020 article-title: Effect of temperature on the fatigue damage of SAC305 solder doi: 10.1109/ICEPT52650.2021.9568127 – volume: 51 start-page: 5376 issue: 9 year: 2022 ident: key2023092611364375300_ref027 article-title: Thermomechanical fatigue damage model of a solder joint in electronic devices: an interval arithmetic based approach publication-title: Journal of Electronic Materials doi: 10.1007/s11664-022-09777-3 – volume: 61 start-page: 85 year: 2015 ident: key2023092611364375300_ref031 article-title: Deep learning in neural networks: an overview publication-title: Neural Networks doi: 10.1016/j.neunet.2014.09.003 – volume: 97 start-page: 105524 year: 2020 ident: key2023092611364375300_ref032 article-title: Investigating the impact of data normalization on classification performance publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2019.105524 – volume: 13 start-page: 2493 issue: 1 year: 2023 ident: key2023092611364375300_ref003 article-title: Reliability modeling of the fatigue life of lead-free solder joints at different testing temperatures and load levels using the Arrhenius model publication-title: Scientific Reports doi: 10.1038/s41598-023-29636-3 – volume: 19 start-page: 25 issue: 4 year: 2007 ident: key2023092611364375300_ref011 article-title: Low cycle isothermal fatigue properties of lead-free solders publication-title: Soldering & Surface Mount Technology doi: 10.1108/09540910710848527 – volume: 861 start-page: 144257 year: 2022 ident: key2023092611364375300_ref010 article-title: Machine learning assisted design of high-strength Sn-3.8 Ag-0.7 Cu alloys with the co-additions of Bi and In publication-title: Materials Science and Engineering: A doi: 10.1016/j.msea.2022.144257 – volume: 70 start-page: 223 year: 2015 ident: key2023092611364375300_ref017 article-title: Entropic characterization of metal fatigue with stress concentration publication-title: International Journal of Fatigue doi: 10.1016/j.ijfatigue.2014.09.014 – volume: 167 start-page: 107298 year: 2023 ident: key2023092611364375300_ref035 article-title: Machine learning aided modelling of thermomechanical fatigue of solder joints in electronic component assemblies publication-title: International Journal of Fatigue doi: 10.1016/j.ijfatigue.2022.107298 – volume: 41 start-page: 878 issue: 7 year: 2009 ident: key2023092611364375300_ref015 article-title: An anisotropic mechanical fatigue damage evolution model for Pb-free solder materials publication-title: Mechanics of Materials doi: 10.1016/j.mechmat.2008.11.001 – volume: 116 start-page: 113998 year: 2021 ident: key2023092611364375300_ref023 article-title: Accelerated mechanical low cycle fatigue in isothermal solder interconnects publication-title: Microelectronics Reliability doi: 10.1016/j.microrel.2020.113998 – volume: 56 start-page: 232 year: 2014 ident: key2023092611364375300_ref022 article-title: An improved damage evolution law based on continuum damage mechanics and its dependence on both stress triaxiality and the third invariant publication-title: International Journal of Plasticity doi: 10.1016/j.ijplas.2014.01.002 – start-page: 1024 volume-title: 2020 19th IEEE Intersoc. Conf. Therm. Thermomechanical Phenom. Electron. Syst year: 2020 ident: key2023092611364375300_ref009 article-title: Effect of microscale heterogeneities and stress state on the mechanical behavior of solder joints – volume: 57 start-page: 853 issue: 6 year: 2016 ident: key2023092611364375300_ref034 article-title: Effect of strain rate and temperature on micro fatigue crack propagation of Bi-Sn eutectic alloy publication-title: Materials Transactions doi: 10.2320/matertrans.MD201504 – volume: 144 start-page: 106986 year: 2022 ident: key2023092611364375300_ref001 article-title: Wafer-level chip-scale package lead-free solder fatigue: a critical review publication-title: Engineering Failure Analysis – volume: 10 start-page: 14821 year: 2020 ident: key2023092611364375300_ref028 article-title: Correlation-driven machine learning for accelerated reliability assessment of solder joints in electronics publication-title: Sci. Rep doi: 10.1038/s41598-020-71926-7 – volume: 110 start-page: 215 year: 2018 ident: key2023092611364375300_ref025 article-title: Evaluation of multiaxial low cycle fatigue cracks in Sn-8Zn-3Bi solder under non-proportional loading publication-title: International Journal of Fatigue doi: 10.1016/j.ijfatigue.2018.01.021 – volume: 35 start-page: 305901 issue: 30 year: 2023 ident: key2023092611364375300_ref005 article-title: Expectation–maximization machine learning model for micromechanical evaluation of thermally-cycled solder joints in a semiconductor publication-title: Journal of Physics: Condensed Matter doi: 10.1088/1361-648X/accdab – volume: 29 start-page: 5225 issue: 26 year: 2022 ident: key2023092611364375300_ref006 article-title: Creep–fatigue lifetime estimation of SnAgCu solder joints using an artificial neural network approach publication-title: Mechanics of Advanced Materials and Structures doi: 10.1080/15376494.2021.1951405 – start-page: V002T02A042 volume-title: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference year: 2022 ident: key2023092611364375300_ref013 article-title: Normalization and dimension reduction for machine learning in advanced manufacturing doi: 10.1115/DETC2022-89921 – volume: 51 start-page: 7313 issue: 12 year: 2022 ident: key2023092611364375300_ref016 article-title: Low-cycle fatigue behavior of Sn-0.3Ag-0.7Cu-0.5CeO composite solder alloy publication-title: Journal of Electronic Materials doi: 10.1007/s11664-022-09958-0 – volume: 141 start-page: 40802 year: 2019 ident: key2023092611364375300_ref033 article-title: A state-of-the-art review of fatigue life prediction models for solder joint publication-title: J. Electron. Packag doi: 10.1115/1.4043405 – volume: 90 start-page: 218 year: 2017 ident: key2023092611364375300_ref024 article-title: Relationship between strain rate concentration factor and stress concentration factor publication-title: Theoretical and Applied Fracture Mechanics doi: 10.1016/j.tafmec.2017.05.017 – volume: 123 start-page: 108506 year: 2023 ident: key2023092611364375300_ref008 article-title: MD-GNN: a mechanism-data-driven graph neural network for molecular properties prediction and new material discovery publication-title: Journal of Molecular Graphics and Modelling doi: 10.1016/j.jmgm.2023.108506 – volume: 12 start-page: 349 issue: 2 year: 2022 ident: key2023092611364375300_ref029 article-title: Iterative machine learning-aided framework bridges between fatigue and creep damages in solder interconnections publication-title: IEEE Transactions on Components, Packaging and Manufacturing Technology doi: 10.1109/TCPMT.2021.3136751 – volume: 52 start-page: 4614 issue: 7 year: 2023 ident: key2023092611364375300_ref014 article-title: A micromechanical data-driven machine-learning approach for microstructural characterization of solder balls in electronic packages subjected to thermomechanical fatigue publication-title: Journal of Electronic Materials doi: 10.1007/s11664-023-10402-0 – volume: 32 start-page: 42 issue: 1 year: 2020 ident: key2023092611364375300_ref043 article-title: Stress analysis and structural optimization of 3-D IC package based on the Taguchi method publication-title: Soldering & Surface Mount Technology – volume: 148 start-page: 107228 year: 2023 ident: key2023092611364375300_ref019 article-title: Machine learning framework for predicting the low cycle fatigue life of lead-free solders publication-title: Engineering Failure Analysis doi: 10.1016/j.engfailanal.2023.107228 – volume: 172 start-page: 107609 year: 2023 ident: key2023092611364375300_ref038 article-title: Low cycle fatigue life prediction of titanium alloy using genetic algorithm-optimized BP artificial neural network publication-title: International Journal of Fatigue doi: 10.1016/j.ijfatigue.2023.107609 – start-page: 1 volume-title: 2011 12th Int. Conf. Electron. Packag. Technol. High Density Packag year: 2011 ident: key2023092611364375300_ref041 article-title: A damage model for SnAgCu solder under thermal cycling – volume: 210 start-page: 111905 year: 2023 ident: key2023092611364375300_ref042 article-title: Effects of Au/Ni coating thickness on enhancing the properties of InPb/MoCu solder joints in microwave modules publication-title: Vacuum doi: 10.1016/j.vacuum.2023.111905 – volume: 140 start-page: 114870 year: 2023 ident: key2023092611364375300_ref004 article-title: Influence analysis of joint attributes on the fatigue progress of SnAgCu solder joints under thermomechanical loading publication-title: Microelectronics Reliability doi: 10.1016/j.microrel.2022.114870 – start-page: 12049 volume-title: IOP Conf. Ser. Mater. Sci. Eng year: 2018 ident: key2023092611364375300_ref036 article-title: Analysis of the mean absolute error (MAE) and the root mean square error (RMSE) in assessing rounding model – volume: 139 start-page: 114824 year: 2022 ident: key2023092611364375300_ref012 article-title: Effect of temperature on vibration durability of lead-free solder joints publication-title: Microelectronics Reliability doi: 10.1016/j.microrel.2022.114824 – volume: 146 start-page: 115031 year: 2023 ident: key2023092611364375300_ref039 article-title: Effect of temperature on the low cycle fatigue properties of BGA solder joints publication-title: Microelectronics Reliability doi: 10.1016/j.microrel.2023.115031 – volume: 13 start-page: 8585 issue: 1 year: 2023 ident: key2023092611364375300_ref002 article-title: Neural-fuzzy machine learning approach for the fatigue-creep reliability modeling of SAC305 solder joints publication-title: Scientific Reports doi: 10.1038/s41598-023-32460-4 – volume: 45 start-page: 1953 issue: 7 year: 2022 ident: key2023092611364375300_ref045 article-title: A thermomechanical constitutive model for investigating the fatigue behavior of Sn-rich solder under thermal cycle loading, fatigue publication-title: Fatigue & Fracture of Engineering Materials & Structures doi: 10.1111/ffe.13713 – volume: 119 start-page: 11 year: 2019 ident: key2023092611364375300_ref030 article-title: New proposal to express notch stress approach results by equivalent SCFs publication-title: International Journal of Fatigue doi: 10.1016/j.ijfatigue.2018.09.009 – volume: 25 start-page: 533 issue: 6 year: 2003 ident: key2023092611364375300_ref044 article-title: Time-dependent cyclic deformation and failure of 63Sn/37Pb solder alloy publication-title: International Journal of Fatigue doi: 10.1016/S0142-1123(02)00150-0 – volume: 145 start-page: 21007 year: 2023 ident: key2023092611364375300_ref040 article-title: Shear and fatigue properties of lead-free solder joints: modeling and microstructure analysis publication-title: J. Electron. Packag doi: 10.1115/1.4055318 – volume: 51 start-page: 3495 issue: 7 year: 2022 ident: key2023092611364375300_ref007 article-title: Estimation of thermomechanical fatigue lifetime of ball grid solder joints in electronic devices using a machine learning approach publication-title: Journal of Electronic Materials doi: 10.1007/s11664-022-09635-2 – volume: 244 start-page: 108087 year: 2023 ident: key2023092611364375300_ref021 article-title: Unveiling the damage evolution of SAC305 during fatigue by entropy generation publication-title: International Journal of Mechanical Sciences doi: 10.1016/j.ijmecsci.2022.108087 – volume: 259 start-page: 108141 year: 2022 ident: key2023092611364375300_ref018 article-title: Fatigue cracking growth of SAC305 solder ball under rapid thermal shock publication-title: Engineering Fracture Mechanics doi: 10.1016/j.engfracmech.2021.108141 – volume: 13 start-page: 706 issue: 2 year: 2023 ident: key2023092611364375300_ref037 article-title: Crystal plasticity finite element modeling on high temperature low cycle fatigue of Ti2AlNb alloy publication-title: Applied Sciences doi: 10.3390/app13020706 – volume: 35 start-page: 8956 issue: 9 year: 2020 ident: key2023092611364375300_ref026 article-title: Effects of creep failure mechanisms on thermomechanical reliability of solder joints in power semiconductors publication-title: IEEE Transactions on Power Electronics doi: 10.1109/TPEL.2020.2973312 |
SSID | ssj0004693 |
Score | 2.3615513 |
Snippet | Purpose
This paper aims to present the novel stacked machine learning approach (SMLA) to estimate low-cycle fatigue (LCF) life of SAC305 solder across... PurposeThis paper aims to present the novel stacked machine learning approach (SMLA) to estimate low-cycle fatigue (LCF) life of SAC305 solder across... |
SourceID | proquest crossref emerald |
SourceType | Aggregation Database Publisher |
StartPage | 69 |
SubjectTerms | Alloys Continuum damage mechanics Correlation Data analysis Data collection Ductility Fatigue life assessment Finite element method Heat treating Investigations Iterative methods Life assessment Low cycle fatigue Machine learning Mathematical models Metal fatigue Outliers (statistics) Regression analysis Root-mean-square errors Simulation Solders Stress concentration Temperature Thickness Tin base alloys |
Title | Low-cycle fatigue life assessment of SAC solder alloy through a FEM-data driven machine learning approach |
URI | https://www.emerald.com/insight/content/doi/10.1108/SSMT-08-2023-0045/full/html https://www.proquest.com/docview/2928141613 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI7YuMCBN2IwUA5cQApLl9K0x2ls7MBAqEPiVqVJCpO2Du0htH-P3bVjQ1yQOLVSq0i1U9ufY38m5NK9NYnRnmCxB0jHDbiCf04GzPUt-C8ljKewObkTysdX_66FNDlPRS9MVla5SMdkdrqfThCk1rBwG6zwknAAp9eEYbeH6T2cAM4wNqlhyrr2Ph0OSmQTYm2OZPr3zzcrjZJBPlveZeAonfyY89fF1hzVj27db4uduaH27r9_wB7ZySNS2lhsoX2yYdMDsr3CU3hI-g-jT6bn8JgmoMm3maWDfmKpWtJ60lFCw0aTwk42dkzxNH9O8xlAVNF2q8uwFpWaMVpXOsxKOGGVPDFDC2rzI_LSbvWaHZbPaGBaOO6U-bGV3NOBMQCkpNCOVNx61hGGI_mjgnDLTfxY-FoIbnlifAUBlDIJxA7aM4E4JuV0lNoT7B43gKaMgggKYaYXQ6gjFeA1k2gpnbhCrguFRB8LKo4ogzDcj1CSEVxRkhFKskKuci38-u6a1CukWig1yv_gSVQP6r6D6E-c_mGpM7IF927W886rpDwdz-w5KU3M7CLbiV8X6eHZ |
link.rule.ids | 315,782,786,21704,27933,27934,53253 |
linkProvider | Emerald |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8JAEN4IHtSDbyOKugcvmqy0bGm3R4IQjIAxxcRbs-1ulQSK4RHDv3dmKQjGi4mnJm2zSWe2M_PNzjdDyLVTUYmKXc4iF5CO41sS_jnPZ47Q4L8kV65EcnIz8Dqv4r6ObXKeFlwYU1Y5T8cYO91LxwhSS1i4DVZ42XAAp9cEQbuL6T2cAM4wNilhyrr0Phn0c2SzwssVw_59vlshSvrZbHmHgaO0s2POXxdbc1Q_2LrfFtu4ocbev3_APtnNIlJanW-hA7Kh00Oys9Kn8Ij0WsNPFs_gMU1Ak29TTfu9RFO5bOtJhwkNqjUKO1npEcXT_BnNZgBRSRv1NsNaVKpGaF3pwJRwwipZYoYuWpsfk5dGvVtrsmxGA4u57UyYiLRnubGvFAApj8e2Jy3tapsrC5s_Sgi3nEREXMScW9pKlJAQQEmVQOwQu8rnJySfDlN9iuxxBWhKSYigEGa6EYQ6ngS8ppLY8-yoQG4XCgk_5q04QgNhLBGiJEO4oiRDlGSB3GRa-PXdNakXSHGh1DD7g8dh2S8LG9EfP_vDUldkq9ltt8LWQ-fxnGzDfcfw360iyU9GU31BcmM1vTS78gvbKuTH |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-cycle+fatigue+life+assessment+of+SAC+solder+alloy+through+a+FEM-data+driven+machine+learning+approach&rft.jtitle=Soldering+%26+surface+mount+technology&rft.au=Ruiz-Jacinto%2C+Vicente-Segundo&rft.au=Guti%C3%A9rrez-Valverde%2C+Karina-Silvana&rft.au=Aslla-Quispe%2C+Abrahan-Pablo&rft.au=Burga-Falla%2C+Jos%C3%A9-Manuel&rft.date=2024-02-20&rft.pub=Emerald+Publishing+Limited&rft.issn=0954-0911&rft.eissn=1758-6836&rft.volume=36&rft.issue=2&rft.spage=69&rft.epage=79&rft_id=info:doi/10.1108%2FSSMT-08-2023-0045&rft.externalDocID=10.1108%2FSSMT-08-2023-0045 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0954-0911&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0954-0911&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0954-0911&client=summon |