Low-cycle fatigue life assessment of SAC solder alloy through a FEM-data driven machine learning approach

Purpose This paper aims to present the novel stacked machine learning approach (SMLA) to estimate low-cycle fatigue (LCF) life of SAC305 solder across structural parts. Using the finite element simulation (FEM) and continuous damage mechanics (CDM) model, a fatigue life database is built. The stacke...

Full description

Saved in:
Bibliographic Details
Published in:Soldering & surface mount technology Vol. 36; no. 2; pp. 69 - 79
Main Authors: Ruiz-Jacinto, Vicente-Segundo, Gutiérrez-Valverde, Karina-Silvana, Aslla-Quispe, Abrahan-Pablo, Burga-Falla, José-Manuel, Alarcón-Sucasaca, Aldo, Huamán-Romaní, Yersi-Luis
Format: Journal Article
Language:English
Published: Bradford Emerald Publishing Limited 20-02-2024
Emerald Group Publishing Limited
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Purpose This paper aims to present the novel stacked machine learning approach (SMLA) to estimate low-cycle fatigue (LCF) life of SAC305 solder across structural parts. Using the finite element simulation (FEM) and continuous damage mechanics (CDM) model, a fatigue life database is built. The stacked machine learning (ML) model's iterative optimization during training enables precise fatigue predictions (2.41% root mean square error [RMSE], R2 = 0.975) for diverse structural components. Outliers are found in regression analysis, indicating potential overestimation for thickness transition specimens with extended lifetimes and underestimation for open-hole specimens. Correlations between fatigue life, stress factors, nominal stress and temperature are unveiled, enriching comprehension of LCF, thus enhancing solder behavior predictions. Design/methodology/approach This paper introduces stacked ML as a novel approach for estimating LCF life of SAC305 solder in various structural parts. It builds a fatigue life database using FEM and CDM model. The stacked ML model iteratively optimizes its structure, yielding accurate fatigue predictions (2.41% RMSE, R2 = 0.975). Outliers are observed: overestimation for thickness transition specimens and underestimation for open-hole ones. Correlations between fatigue life, stress factors, nominal stress and temperature enhance predictions, deepening understanding of solder behavior. Findings The findings of this paper highlight the successful application of the SMLA in accurately estimating the LCF life of SAC305 solder across diverse structural components. The stacked ML model, trained iteratively, demonstrates its effectiveness by producing precise fatigue lifetime predictions with a RMSE of 2.41% and an “R2” value of 0.975. The study also identifies distinct outlier behaviors associated with different structural parts: overestimations for thickness transition specimens with extended fatigue lifetimes and underestimations for open-hole specimens. The research further establishes correlations between fatigue life, stress concentration factors, nominal stress and temperature, enriching the understanding of solder behavior prediction. Originality/value The authors confirm the originality of this paper.
AbstractList Purpose This paper aims to present the novel stacked machine learning approach (SMLA) to estimate low-cycle fatigue (LCF) life of SAC305 solder across structural parts. Using the finite element simulation (FEM) and continuous damage mechanics (CDM) model, a fatigue life database is built. The stacked machine learning (ML) model's iterative optimization during training enables precise fatigue predictions (2.41% root mean square error [RMSE], R2 = 0.975) for diverse structural components. Outliers are found in regression analysis, indicating potential overestimation for thickness transition specimens with extended lifetimes and underestimation for open-hole specimens. Correlations between fatigue life, stress factors, nominal stress and temperature are unveiled, enriching comprehension of LCF, thus enhancing solder behavior predictions. Design/methodology/approach This paper introduces stacked ML as a novel approach for estimating LCF life of SAC305 solder in various structural parts. It builds a fatigue life database using FEM and CDM model. The stacked ML model iteratively optimizes its structure, yielding accurate fatigue predictions (2.41% RMSE, R2 = 0.975). Outliers are observed: overestimation for thickness transition specimens and underestimation for open-hole ones. Correlations between fatigue life, stress factors, nominal stress and temperature enhance predictions, deepening understanding of solder behavior. Findings The findings of this paper highlight the successful application of the SMLA in accurately estimating the LCF life of SAC305 solder across diverse structural components. The stacked ML model, trained iteratively, demonstrates its effectiveness by producing precise fatigue lifetime predictions with a RMSE of 2.41% and an “R2” value of 0.975. The study also identifies distinct outlier behaviors associated with different structural parts: overestimations for thickness transition specimens with extended fatigue lifetimes and underestimations for open-hole specimens. The research further establishes correlations between fatigue life, stress concentration factors, nominal stress and temperature, enriching the understanding of solder behavior prediction. Originality/value The authors confirm the originality of this paper.
PurposeThis paper aims to present the novel stacked machine learning approach (SMLA) to estimate low-cycle fatigue (LCF) life of SAC305 solder across structural parts. Using the finite element simulation (FEM) and continuous damage mechanics (CDM) model, a fatigue life database is built. The stacked machine learning (ML) model's iterative optimization during training enables precise fatigue predictions (2.41% root mean square error [RMSE], R2 = 0.975) for diverse structural components. Outliers are found in regression analysis, indicating potential overestimation for thickness transition specimens with extended lifetimes and underestimation for open-hole specimens. Correlations between fatigue life, stress factors, nominal stress and temperature are unveiled, enriching comprehension of LCF, thus enhancing solder behavior predictions.Design/methodology/approachThis paper introduces stacked ML as a novel approach for estimating LCF life of SAC305 solder in various structural parts. It builds a fatigue life database using FEM and CDM model. The stacked ML model iteratively optimizes its structure, yielding accurate fatigue predictions (2.41% RMSE, R2 = 0.975). Outliers are observed: overestimation for thickness transition specimens and underestimation for open-hole ones. Correlations between fatigue life, stress factors, nominal stress and temperature enhance predictions, deepening understanding of solder behavior.FindingsThe findings of this paper highlight the successful application of the SMLA in accurately estimating the LCF life of SAC305 solder across diverse structural components. The stacked ML model, trained iteratively, demonstrates its effectiveness by producing precise fatigue lifetime predictions with a RMSE of 2.41% and an “R2” value of 0.975. The study also identifies distinct outlier behaviors associated with different structural parts: overestimations for thickness transition specimens with extended fatigue lifetimes and underestimations for open-hole specimens. The research further establishes correlations between fatigue life, stress concentration factors, nominal stress and temperature, enriching the understanding of solder behavior prediction.Originality/valueThe authors confirm the originality of this paper.
Author Ruiz-Jacinto, Vicente-Segundo
Aslla-Quispe, Abrahan-Pablo
Alarcón-Sucasaca, Aldo
Huamán-Romaní, Yersi-Luis
Gutiérrez-Valverde, Karina-Silvana
Burga-Falla, José-Manuel
Author_xml – sequence: 1
  givenname: Vicente-Segundo
  surname: Ruiz-Jacinto
  fullname: Ruiz-Jacinto, Vicente-Segundo
  email: vruizj@unp.edu.pe
– sequence: 2
  givenname: Karina-Silvana
  surname: Gutiérrez-Valverde
  fullname: Gutiérrez-Valverde, Karina-Silvana
  email: kgutierrez@unf.edu.pe
– sequence: 3
  givenname: Abrahan-Pablo
  surname: Aslla-Quispe
  fullname: Aslla-Quispe, Abrahan-Pablo
  email: apaslla@gmail.com
– sequence: 4
  givenname: José-Manuel
  surname: Burga-Falla
  fullname: Burga-Falla, José-Manuel
  email: jose.burga@upn.edu.pe
– sequence: 5
  givenname: Aldo
  surname: Alarcón-Sucasaca
  fullname: Alarcón-Sucasaca, Aldo
  email: aldoalcon@gmail.com
– sequence: 6
  givenname: Yersi-Luis
  surname: Huamán-Romaní
  fullname: Huamán-Romaní, Yersi-Luis
  email: yersiluis51@gmail.com
BookMark eNptkc9LwzAUx4NMcFP_AG8Bz9GXps3S4xibChseNs_lLXndOrpmJp2y_96WeRE8feHx_QGfN2KDxjfE2IOEJynBPK9Wy7UAIxJIlABIsys2lOPMCG2UHrAh5FkqIJfyho1i3ENn0bkasmrhv4U925p4iW21PRGvq5I4xkgxHqhpuS_5ajLl0deOAse69mfe7oI_bXcc-Xy2FA5b5C5UX9TwA9pd1XQthKGpmi3H4zH47njHrkusI93_6i37mM_W01exeH95m04WwiqZtsJsaAza5s7pJBsrK8cIpEkqB2gTQJ2maWk2ylilgKB0BmWWoyshSax2ubplj5febvbzRLEt9v4Umm6ySPLEyFRqqTqXvLhs8DEGKotjqA4YzoWEoida9ESLTnuiRU-0y8AlQwcKWLt_I3-eoH4AuhJ5og
CitedBy_id crossref_primary_10_1007_s10999_024_09713_9
Cites_doi 10.1109/ICEPT52650.2021.9568127
10.1007/s11664-022-09777-3
10.1016/j.neunet.2014.09.003
10.1016/j.asoc.2019.105524
10.1038/s41598-023-29636-3
10.1108/09540910710848527
10.1016/j.msea.2022.144257
10.1016/j.ijfatigue.2014.09.014
10.1016/j.ijfatigue.2022.107298
10.1016/j.mechmat.2008.11.001
10.1016/j.microrel.2020.113998
10.1016/j.ijplas.2014.01.002
10.2320/matertrans.MD201504
10.1038/s41598-020-71926-7
10.1016/j.ijfatigue.2018.01.021
10.1088/1361-648X/accdab
10.1080/15376494.2021.1951405
10.1115/DETC2022-89921
10.1007/s11664-022-09958-0
10.1115/1.4043405
10.1016/j.tafmec.2017.05.017
10.1016/j.jmgm.2023.108506
10.1109/TCPMT.2021.3136751
10.1007/s11664-023-10402-0
10.1016/j.engfailanal.2023.107228
10.1016/j.ijfatigue.2023.107609
10.1016/j.vacuum.2023.111905
10.1016/j.microrel.2022.114870
10.1016/j.microrel.2022.114824
10.1016/j.microrel.2023.115031
10.1038/s41598-023-32460-4
10.1111/ffe.13713
10.1016/j.ijfatigue.2018.09.009
10.1016/S0142-1123(02)00150-0
10.1115/1.4055318
10.1007/s11664-022-09635-2
10.1016/j.ijmecsci.2022.108087
10.1016/j.engfracmech.2021.108141
10.3390/app13020706
10.1109/TPEL.2020.2973312
ContentType Journal Article
Copyright Emerald Publishing Limited
Emerald Publishing Limited.
Copyright_xml – notice: Emerald Publishing Limited
– notice: Emerald Publishing Limited.
DBID AAYXX
CITATION
7SP
7TB
8BQ
8FD
FR3
JG9
KR7
L7M
DOI 10.1108/SSMT-08-2023-0045
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1758-6836
0954-0911
EndPage 79
ExternalDocumentID 10_1108_SSMT_08_2023_0045
10.1108/SSMT-08-2023-0045
GroupedDBID 0R~
123
4.4
5VS
70U
7RQ
7WY
9E0
AADTA
AADXL
AAGBP
AAMCF
AATHL
AAUDR
ABIJV
ABJCF
ABKQV
ABSDC
ACGFS
ACGOD
ACIWK
ADOMW
AEBVX
AEBZA
AENEX
AEUCW
AFYHH
AJEBP
ALMA_UNASSIGNED_HOLDINGS
ASMFL
AUCOK
BENPR
BPQFQ
CS3
DU5
EBS
ECCUG
FNNZZ
GEI
GEL
GQ.
GROUPED_ABI_INFORM_COMPLETE
HCIFZ
HZ~
IJT
IPNFZ
J1Y
JI-
JL0
K6~
KBGRL
M0F
MS~
O9-
P2P
RIG
V1G
490
8FE
8FG
8FW
8R4
8R5
AAYXX
ABYQI
ACZLT
AFKRA
AFZLO
AODMV
AZQEC
BEZIV
BGLVJ
BPHCQ
CCPQU
CITATION
D1I
DWQXO
GNUQQ
H13
KB.
M2P
M42
PDBOC
PQBIZ
PQQKQ
PROAC
Q2X
SBBZN
7SP
7TB
8BQ
8FD
FR3
JG9
KR7
L7M
ID FETCH-LOGICAL-c314t-8be706c9dd62573c17a0e6e13d0ac20a6444f8b38c330e0fd8a159adf022c6d93
IEDL.DBID GQ.
ISSN 0954-0911
IngestDate Sat Nov 16 20:52:56 EST 2024
Fri Nov 22 01:04:29 EST 2024
Thu Feb 22 06:09:59 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Fatigue lifetime
Finite element modeling
Solder alloy
Machine learning
Language English
License Licensed re-use rights only
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c314t-8be706c9dd62573c17a0e6e13d0ac20a6444f8b38c330e0fd8a159adf022c6d93
PQID 2928141613
PQPubID 26047
PageCount 11
ParticipantIDs crossref_primary_10_1108_SSMT_08_2023_0045
emerald_primary_10_1108_SSMT-08-2023-0045
proquest_journals_2928141613
PublicationCentury 2000
PublicationDate 2024-02-20
PublicationDateYYYYMMDD 2024-02-20
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-20
  day: 20
PublicationDecade 2020
PublicationPlace Bradford
PublicationPlace_xml – name: Bradford
PublicationTitle Soldering & surface mount technology
PublicationYear 2024
Publisher Emerald Publishing Limited
Emerald Group Publishing Limited
Publisher_xml – name: Emerald Publishing Limited
– name: Emerald Group Publishing Limited
References (key2023092611364375300_ref025) 2018; 110
(key2023092611364375300_ref030) 2019; 119
(key2023092611364375300_ref001) 2022; 144
(key2023092611364375300_ref015) 2009; 41
(key2023092611364375300_ref031) 2015; 61
(key2023092611364375300_ref004) 2023; 140
(key2023092611364375300_ref008) 2023; 123
(key2023092611364375300_ref021) 2023; 244
(key2023092611364375300_ref043) 2020; 32
(key2023092611364375300_ref041) 2011
(key2023092611364375300_ref026) 2020; 35
(key2023092611364375300_ref013) 2022
(key2023092611364375300_ref011) 2007; 19
(key2023092611364375300_ref042) 2023; 210
(key2023092611364375300_ref027) 2022; 51
(key2023092611364375300_ref032) 2020; 97
(key2023092611364375300_ref002) 2023; 13
(key2023092611364375300_ref033) 2019; 141
(key2023092611364375300_ref044) 2003; 25
(key2023092611364375300_ref020) 2021
(key2023092611364375300_ref040) 2023; 145
(key2023092611364375300_ref045) 2022; 45
(key2023092611364375300_ref016) 2022; 51
(key2023092611364375300_ref036) 2018
(key2023092611364375300_ref024) 2017; 90
(key2023092611364375300_ref006) 2022; 29
(key2023092611364375300_ref012) 2022; 139
(key2023092611364375300_ref022) 2014; 56
(key2023092611364375300_ref023) 2021; 116
(key2023092611364375300_ref017) 2015; 70
(key2023092611364375300_ref018) 2022; 259
(key2023092611364375300_ref029) 2022; 12
(key2023092611364375300_ref039) 2023; 146
(key2023092611364375300_ref034) 2016; 57
(key2023092611364375300_ref014) 2023; 52
(key2023092611364375300_ref019) 2023; 148
(key2023092611364375300_ref035) 2023; 167
(key2023092611364375300_ref028) 2020; 10
(key2023092611364375300_ref005) 2023; 35
(key2023092611364375300_ref037) 2023; 13
(key2023092611364375300_ref009) 2020
(key2023092611364375300_ref007) 2022; 51
(key2023092611364375300_ref003) 2023; 13
(key2023092611364375300_ref010) 2022; 861
(key2023092611364375300_ref038) 2023; 172
References_xml – start-page: 1
  volume-title: 2021 22nd Int. Conf. Electron. Packag. Technol
  year: 2021
  ident: key2023092611364375300_ref020
  article-title: Effect of temperature on the fatigue damage of SAC305 solder
  doi: 10.1109/ICEPT52650.2021.9568127
– volume: 51
  start-page: 5376
  issue: 9
  year: 2022
  ident: key2023092611364375300_ref027
  article-title: Thermomechanical fatigue damage model of a solder joint in electronic devices: an interval arithmetic based approach
  publication-title: Journal of Electronic Materials
  doi: 10.1007/s11664-022-09777-3
– volume: 61
  start-page: 85
  year: 2015
  ident: key2023092611364375300_ref031
  article-title: Deep learning in neural networks: an overview
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2014.09.003
– volume: 97
  start-page: 105524
  year: 2020
  ident: key2023092611364375300_ref032
  article-title: Investigating the impact of data normalization on classification performance
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2019.105524
– volume: 13
  start-page: 2493
  issue: 1
  year: 2023
  ident: key2023092611364375300_ref003
  article-title: Reliability modeling of the fatigue life of lead-free solder joints at different testing temperatures and load levels using the Arrhenius model
  publication-title: Scientific Reports
  doi: 10.1038/s41598-023-29636-3
– volume: 19
  start-page: 25
  issue: 4
  year: 2007
  ident: key2023092611364375300_ref011
  article-title: Low cycle isothermal fatigue properties of lead-free solders
  publication-title: Soldering & Surface Mount Technology
  doi: 10.1108/09540910710848527
– volume: 861
  start-page: 144257
  year: 2022
  ident: key2023092611364375300_ref010
  article-title: Machine learning assisted design of high-strength Sn-3.8 Ag-0.7 Cu alloys with the co-additions of Bi and In
  publication-title: Materials Science and Engineering: A
  doi: 10.1016/j.msea.2022.144257
– volume: 70
  start-page: 223
  year: 2015
  ident: key2023092611364375300_ref017
  article-title: Entropic characterization of metal fatigue with stress concentration
  publication-title: International Journal of Fatigue
  doi: 10.1016/j.ijfatigue.2014.09.014
– volume: 167
  start-page: 107298
  year: 2023
  ident: key2023092611364375300_ref035
  article-title: Machine learning aided modelling of thermomechanical fatigue of solder joints in electronic component assemblies
  publication-title: International Journal of Fatigue
  doi: 10.1016/j.ijfatigue.2022.107298
– volume: 41
  start-page: 878
  issue: 7
  year: 2009
  ident: key2023092611364375300_ref015
  article-title: An anisotropic mechanical fatigue damage evolution model for Pb-free solder materials
  publication-title: Mechanics of Materials
  doi: 10.1016/j.mechmat.2008.11.001
– volume: 116
  start-page: 113998
  year: 2021
  ident: key2023092611364375300_ref023
  article-title: Accelerated mechanical low cycle fatigue in isothermal solder interconnects
  publication-title: Microelectronics Reliability
  doi: 10.1016/j.microrel.2020.113998
– volume: 56
  start-page: 232
  year: 2014
  ident: key2023092611364375300_ref022
  article-title: An improved damage evolution law based on continuum damage mechanics and its dependence on both stress triaxiality and the third invariant
  publication-title: International Journal of Plasticity
  doi: 10.1016/j.ijplas.2014.01.002
– start-page: 1024
  volume-title: 2020 19th IEEE Intersoc. Conf. Therm. Thermomechanical Phenom. Electron. Syst
  year: 2020
  ident: key2023092611364375300_ref009
  article-title: Effect of microscale heterogeneities and stress state on the mechanical behavior of solder joints
– volume: 57
  start-page: 853
  issue: 6
  year: 2016
  ident: key2023092611364375300_ref034
  article-title: Effect of strain rate and temperature on micro fatigue crack propagation of Bi-Sn eutectic alloy
  publication-title: Materials Transactions
  doi: 10.2320/matertrans.MD201504
– volume: 144
  start-page: 106986
  year: 2022
  ident: key2023092611364375300_ref001
  article-title: Wafer-level chip-scale package lead-free solder fatigue: a critical review
  publication-title: Engineering Failure Analysis
– volume: 10
  start-page: 14821
  year: 2020
  ident: key2023092611364375300_ref028
  article-title: Correlation-driven machine learning for accelerated reliability assessment of solder joints in electronics
  publication-title: Sci. Rep
  doi: 10.1038/s41598-020-71926-7
– volume: 110
  start-page: 215
  year: 2018
  ident: key2023092611364375300_ref025
  article-title: Evaluation of multiaxial low cycle fatigue cracks in Sn-8Zn-3Bi solder under non-proportional loading
  publication-title: International Journal of Fatigue
  doi: 10.1016/j.ijfatigue.2018.01.021
– volume: 35
  start-page: 305901
  issue: 30
  year: 2023
  ident: key2023092611364375300_ref005
  article-title: Expectation–maximization machine learning model for micromechanical evaluation of thermally-cycled solder joints in a semiconductor
  publication-title: Journal of Physics: Condensed Matter
  doi: 10.1088/1361-648X/accdab
– volume: 29
  start-page: 5225
  issue: 26
  year: 2022
  ident: key2023092611364375300_ref006
  article-title: Creep–fatigue lifetime estimation of SnAgCu solder joints using an artificial neural network approach
  publication-title: Mechanics of Advanced Materials and Structures
  doi: 10.1080/15376494.2021.1951405
– start-page: V002T02A042
  volume-title: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  year: 2022
  ident: key2023092611364375300_ref013
  article-title: Normalization and dimension reduction for machine learning in advanced manufacturing
  doi: 10.1115/DETC2022-89921
– volume: 51
  start-page: 7313
  issue: 12
  year: 2022
  ident: key2023092611364375300_ref016
  article-title: Low-cycle fatigue behavior of Sn-0.3Ag-0.7Cu-0.5CeO composite solder alloy
  publication-title: Journal of Electronic Materials
  doi: 10.1007/s11664-022-09958-0
– volume: 141
  start-page: 40802
  year: 2019
  ident: key2023092611364375300_ref033
  article-title: A state-of-the-art review of fatigue life prediction models for solder joint
  publication-title: J. Electron. Packag
  doi: 10.1115/1.4043405
– volume: 90
  start-page: 218
  year: 2017
  ident: key2023092611364375300_ref024
  article-title: Relationship between strain rate concentration factor and stress concentration factor
  publication-title: Theoretical and Applied Fracture Mechanics
  doi: 10.1016/j.tafmec.2017.05.017
– volume: 123
  start-page: 108506
  year: 2023
  ident: key2023092611364375300_ref008
  article-title: MD-GNN: a mechanism-data-driven graph neural network for molecular properties prediction and new material discovery
  publication-title: Journal of Molecular Graphics and Modelling
  doi: 10.1016/j.jmgm.2023.108506
– volume: 12
  start-page: 349
  issue: 2
  year: 2022
  ident: key2023092611364375300_ref029
  article-title: Iterative machine learning-aided framework bridges between fatigue and creep damages in solder interconnections
  publication-title: IEEE Transactions on Components, Packaging and Manufacturing Technology
  doi: 10.1109/TCPMT.2021.3136751
– volume: 52
  start-page: 4614
  issue: 7
  year: 2023
  ident: key2023092611364375300_ref014
  article-title: A micromechanical data-driven machine-learning approach for microstructural characterization of solder balls in electronic packages subjected to thermomechanical fatigue
  publication-title: Journal of Electronic Materials
  doi: 10.1007/s11664-023-10402-0
– volume: 32
  start-page: 42
  issue: 1
  year: 2020
  ident: key2023092611364375300_ref043
  article-title: Stress analysis and structural optimization of 3-D IC package based on the Taguchi method
  publication-title: Soldering & Surface Mount Technology
– volume: 148
  start-page: 107228
  year: 2023
  ident: key2023092611364375300_ref019
  article-title: Machine learning framework for predicting the low cycle fatigue life of lead-free solders
  publication-title: Engineering Failure Analysis
  doi: 10.1016/j.engfailanal.2023.107228
– volume: 172
  start-page: 107609
  year: 2023
  ident: key2023092611364375300_ref038
  article-title: Low cycle fatigue life prediction of titanium alloy using genetic algorithm-optimized BP artificial neural network
  publication-title: International Journal of Fatigue
  doi: 10.1016/j.ijfatigue.2023.107609
– start-page: 1
  volume-title: 2011 12th Int. Conf. Electron. Packag. Technol. High Density Packag
  year: 2011
  ident: key2023092611364375300_ref041
  article-title: A damage model for SnAgCu solder under thermal cycling
– volume: 210
  start-page: 111905
  year: 2023
  ident: key2023092611364375300_ref042
  article-title: Effects of Au/Ni coating thickness on enhancing the properties of InPb/MoCu solder joints in microwave modules
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2023.111905
– volume: 140
  start-page: 114870
  year: 2023
  ident: key2023092611364375300_ref004
  article-title: Influence analysis of joint attributes on the fatigue progress of SnAgCu solder joints under thermomechanical loading
  publication-title: Microelectronics Reliability
  doi: 10.1016/j.microrel.2022.114870
– start-page: 12049
  volume-title: IOP Conf. Ser. Mater. Sci. Eng
  year: 2018
  ident: key2023092611364375300_ref036
  article-title: Analysis of the mean absolute error (MAE) and the root mean square error (RMSE) in assessing rounding model
– volume: 139
  start-page: 114824
  year: 2022
  ident: key2023092611364375300_ref012
  article-title: Effect of temperature on vibration durability of lead-free solder joints
  publication-title: Microelectronics Reliability
  doi: 10.1016/j.microrel.2022.114824
– volume: 146
  start-page: 115031
  year: 2023
  ident: key2023092611364375300_ref039
  article-title: Effect of temperature on the low cycle fatigue properties of BGA solder joints
  publication-title: Microelectronics Reliability
  doi: 10.1016/j.microrel.2023.115031
– volume: 13
  start-page: 8585
  issue: 1
  year: 2023
  ident: key2023092611364375300_ref002
  article-title: Neural-fuzzy machine learning approach for the fatigue-creep reliability modeling of SAC305 solder joints
  publication-title: Scientific Reports
  doi: 10.1038/s41598-023-32460-4
– volume: 45
  start-page: 1953
  issue: 7
  year: 2022
  ident: key2023092611364375300_ref045
  article-title: A thermomechanical constitutive model for investigating the fatigue behavior of Sn-rich solder under thermal cycle loading, fatigue
  publication-title: Fatigue & Fracture of Engineering Materials & Structures
  doi: 10.1111/ffe.13713
– volume: 119
  start-page: 11
  year: 2019
  ident: key2023092611364375300_ref030
  article-title: New proposal to express notch stress approach results by equivalent SCFs
  publication-title: International Journal of Fatigue
  doi: 10.1016/j.ijfatigue.2018.09.009
– volume: 25
  start-page: 533
  issue: 6
  year: 2003
  ident: key2023092611364375300_ref044
  article-title: Time-dependent cyclic deformation and failure of 63Sn/37Pb solder alloy
  publication-title: International Journal of Fatigue
  doi: 10.1016/S0142-1123(02)00150-0
– volume: 145
  start-page: 21007
  year: 2023
  ident: key2023092611364375300_ref040
  article-title: Shear and fatigue properties of lead-free solder joints: modeling and microstructure analysis
  publication-title: J. Electron. Packag
  doi: 10.1115/1.4055318
– volume: 51
  start-page: 3495
  issue: 7
  year: 2022
  ident: key2023092611364375300_ref007
  article-title: Estimation of thermomechanical fatigue lifetime of ball grid solder joints in electronic devices using a machine learning approach
  publication-title: Journal of Electronic Materials
  doi: 10.1007/s11664-022-09635-2
– volume: 244
  start-page: 108087
  year: 2023
  ident: key2023092611364375300_ref021
  article-title: Unveiling the damage evolution of SAC305 during fatigue by entropy generation
  publication-title: International Journal of Mechanical Sciences
  doi: 10.1016/j.ijmecsci.2022.108087
– volume: 259
  start-page: 108141
  year: 2022
  ident: key2023092611364375300_ref018
  article-title: Fatigue cracking growth of SAC305 solder ball under rapid thermal shock
  publication-title: Engineering Fracture Mechanics
  doi: 10.1016/j.engfracmech.2021.108141
– volume: 13
  start-page: 706
  issue: 2
  year: 2023
  ident: key2023092611364375300_ref037
  article-title: Crystal plasticity finite element modeling on high temperature low cycle fatigue of Ti2AlNb alloy
  publication-title: Applied Sciences
  doi: 10.3390/app13020706
– volume: 35
  start-page: 8956
  issue: 9
  year: 2020
  ident: key2023092611364375300_ref026
  article-title: Effects of creep failure mechanisms on thermomechanical reliability of solder joints in power semiconductors
  publication-title: IEEE Transactions on Power Electronics
  doi: 10.1109/TPEL.2020.2973312
SSID ssj0004693
Score 2.3615513
Snippet Purpose This paper aims to present the novel stacked machine learning approach (SMLA) to estimate low-cycle fatigue (LCF) life of SAC305 solder across...
PurposeThis paper aims to present the novel stacked machine learning approach (SMLA) to estimate low-cycle fatigue (LCF) life of SAC305 solder across...
SourceID proquest
crossref
emerald
SourceType Aggregation Database
Publisher
StartPage 69
SubjectTerms Alloys
Continuum damage mechanics
Correlation
Data analysis
Data collection
Ductility
Fatigue life assessment
Finite element method
Heat treating
Investigations
Iterative methods
Life assessment
Low cycle fatigue
Machine learning
Mathematical models
Metal fatigue
Outliers (statistics)
Regression analysis
Root-mean-square errors
Simulation
Solders
Stress concentration
Temperature
Thickness
Tin base alloys
Title Low-cycle fatigue life assessment of SAC solder alloy through a FEM-data driven machine learning approach
URI https://www.emerald.com/insight/content/doi/10.1108/SSMT-08-2023-0045/full/html
https://www.proquest.com/docview/2928141613
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI7YuMCBN2IwUA5cQApLl9K0x2ls7MBAqEPiVqVJCpO2Du0htH-P3bVjQ1yQOLVSq0i1U9ufY38m5NK9NYnRnmCxB0jHDbiCf04GzPUt-C8ljKewObkTysdX_66FNDlPRS9MVla5SMdkdrqfThCk1rBwG6zwknAAp9eEYbeH6T2cAM4wNqlhyrr2Ph0OSmQTYm2OZPr3zzcrjZJBPlveZeAonfyY89fF1hzVj27db4uduaH27r9_wB7ZySNS2lhsoX2yYdMDsr3CU3hI-g-jT6bn8JgmoMm3maWDfmKpWtJ60lFCw0aTwk42dkzxNH9O8xlAVNF2q8uwFpWaMVpXOsxKOGGVPDFDC2rzI_LSbvWaHZbPaGBaOO6U-bGV3NOBMQCkpNCOVNx61hGGI_mjgnDLTfxY-FoIbnlifAUBlDIJxA7aM4E4JuV0lNoT7B43gKaMgggKYaYXQ6gjFeA1k2gpnbhCrguFRB8LKo4ogzDcj1CSEVxRkhFKskKuci38-u6a1CukWig1yv_gSVQP6r6D6E-c_mGpM7IF927W886rpDwdz-w5KU3M7CLbiV8X6eHZ
link.rule.ids 315,782,786,21704,27933,27934,53253
linkProvider Emerald
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8JAEN4IHtSDbyOKugcvmqy0bGm3R4IQjIAxxcRbs-1ulQSK4RHDv3dmKQjGi4mnJm2zSWe2M_PNzjdDyLVTUYmKXc4iF5CO41sS_jnPZ47Q4L8kV65EcnIz8Dqv4r6ObXKeFlwYU1Y5T8cYO91LxwhSS1i4DVZ42XAAp9cEQbuL6T2cAM4wNilhyrr0Phn0c2SzwssVw_59vlshSvrZbHmHgaO0s2POXxdbc1Q_2LrfFtu4ocbev3_APtnNIlJanW-hA7Kh00Oys9Kn8Ij0WsNPFs_gMU1Ak29TTfu9RFO5bOtJhwkNqjUKO1npEcXT_BnNZgBRSRv1NsNaVKpGaF3pwJRwwipZYoYuWpsfk5dGvVtrsmxGA4u57UyYiLRnubGvFAApj8e2Jy3tapsrC5s_Sgi3nEREXMScW9pKlJAQQEmVQOwQu8rnJySfDlN9iuxxBWhKSYigEGa6EYQ6ngS8ppLY8-yoQG4XCgk_5q04QgNhLBGiJEO4oiRDlGSB3GRa-PXdNakXSHGh1DD7g8dh2S8LG9EfP_vDUldkq9ltt8LWQ-fxnGzDfcfw360iyU9GU31BcmM1vTS78gvbKuTH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-cycle+fatigue+life+assessment+of+SAC+solder+alloy+through+a+FEM-data+driven+machine+learning+approach&rft.jtitle=Soldering+%26+surface+mount+technology&rft.au=Ruiz-Jacinto%2C+Vicente-Segundo&rft.au=Guti%C3%A9rrez-Valverde%2C+Karina-Silvana&rft.au=Aslla-Quispe%2C+Abrahan-Pablo&rft.au=Burga-Falla%2C+Jos%C3%A9-Manuel&rft.date=2024-02-20&rft.pub=Emerald+Publishing+Limited&rft.issn=0954-0911&rft.eissn=1758-6836&rft.volume=36&rft.issue=2&rft.spage=69&rft.epage=79&rft_id=info:doi/10.1108%2FSSMT-08-2023-0045&rft.externalDocID=10.1108%2FSSMT-08-2023-0045
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0954-0911&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0954-0911&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0954-0911&client=summon