The Error in Spatial Truncation for Systems of Parabolic Conservation Laws
In this paper we investigate the behavior of the solution of \begin{equation*} \begin{split} u_t = Du_{xx} - f(u)_x, \\ u(0, x) = u_0(x) \in L^\infty, & u(t, \pm L) = u^\pm, \end{split} \end{equation*} where $t \geq 0$ and $x \in \lbrack -L, L \rbrack$. Solutions of this equation are considered...
Saved in:
Published in: | Transactions of the American Mathematical Society Vol. 311; no. 2; pp. 433 - 465 |
---|---|
Main Author: | |
Format: | Journal Article |
Language: | English |
Published: |
Providence, RI
American Mathematical Society
01-02-1989
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | In this paper we investigate the behavior of the solution of \begin{equation*} \begin{split} u_t = Du_{xx} - f(u)_x, \\ u(0, x) = u_0(x) \in L^\infty, & u(t, \pm L) = u^\pm, \end{split} \end{equation*} where $t \geq 0$ and $x \in \lbrack -L, L \rbrack$. Solutions of this equation are considered to be approximations to the solutions of the corresponding parabolic conservation laws. We obtain decay results on the norms of the difference between the solution for $L$ infinite and the solution when $L$ is finite. |
---|---|
AbstractList | In this paper we investigate the behavior of the solution of \begin{equation*} \begin{split} u_t = Du_{xx} - f(u)_x, \\ u(0, x) = u_0(x) \in L^\infty, & u(t, \pm L) = u^\pm, \end{split} \end{equation*} where $t \geq 0$ and $x \in \lbrack -L, L \rbrack$. Solutions of this equation are considered to be approximations to the solutions of the corresponding parabolic conservation laws. We obtain decay results on the norms of the difference between the solution for $L$ infinite and the solution when $L$ is finite. |
Author | Kuo, Hung-Ju |
Author_xml | – sequence: 1 givenname: Hung-Ju surname: Kuo fullname: Kuo, Hung-Ju |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=6570674$$DView record in Pascal Francis |
BookMark | eNpNkFtLAzEQhYNUsK3-hxV8jU4um8ujlHqjoNAKfQvZbIJbtpuSVKX_3q0t1aeZYc45cL4RGnSx8whdE7gloOFuDgAUa80lJlppDFoqJjhenqEhAaWwUCUM0PAku0CjnFf9CVyJIXpZfPhimlJMRdMV843dNrYtFumzc_0auyL0n_kub_06FzEUbzbZKraNKyaxyz59HVQz-50v0XmwbfZXxzlG7w_TxeQJz14fnyf3M-wY4VtMSQgBlKyJI4xVIJylroJSSEpoXetKek85FRYsqzkpeS0kozb4SlXaMc3GSB9yXYo5Jx_MJjVrm3aGgNlDMb9QzL6t2UMxRyhm2XtvDt6Nzc62IdnONfkUIEoJQvI_2SpvY_qfTxlIQwEIYYL9AFCVb6I |
CODEN | TAMTAM |
ContentType | Journal Article |
Copyright | Copyright 1989 American Mathematical Society 1990 INIST-CNRS |
Copyright_xml | – notice: Copyright 1989 American Mathematical Society – notice: 1990 INIST-CNRS |
DBID | IQODW AAYXX CITATION |
DOI | 10.1090/S0002-9947-1989-0978364-X |
DatabaseName | Pascal-Francis CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1088-6850 |
EndPage | 465 |
ExternalDocumentID | 10_1090_S0002_9947_1989_0978364_X 6570674 2001136 |
GroupedDBID | -DZ -~X 123 2AX 4.4 85S 87J AAFVP AAFWJ AAHTB ABBHK ABCQX ABFAN ABPEJ ABPFR ABPPZ ABWJQ ABXSQ ABYAD ABYWD ABZEH ACCNN ACIPV ACMTB ACNCT ACTMH ACTWD ACUBG ADODI ADULT AELPN AENEX AEUPB AFVYC AFXHP AFXKK AIHXQ ALMA_UNASSIGNED_HOLDINGS AS~ CS3 D0L DQDLB DSRWC DU5 E3Z EBS ECEWR EFSUC EJD F20 FEDTE FVMVE HGD HQ6 HVGLF JAAYA JAS JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JSODD JST L7B LU7 MVM NHB OK1 P2P RMA RNS SA0 TN5 TR2 UQL VQA WH7 YNT 08R 2WC 30C 692 ABFSI ABPTK ABTAH AETEA CAG COF H~9 IQODW KQ8 RYL WHG XXG YXE ZCG ZY4 AAYXX ABPQH ACNUO ADACV CITATION IPSME |
ID | FETCH-LOGICAL-c314t-21fff087d1c133b06ca2cb0567212dd9b7ee2426a0a3d4154d6732afeb8b9c393 |
IEDL.DBID | JAS |
ISSN | 0002-9947 |
IngestDate | Thu Nov 21 22:29:08 EST 2024 Sun Oct 29 17:10:04 EDT 2023 Fri Feb 02 07:02:47 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Parabolic equation Conservation law Partial differential equation Truncation error |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c314t-21fff087d1c133b06ca2cb0567212dd9b7ee2426a0a3d4154d6732afeb8b9c393 |
OpenAccessLink | https://www.ams.org/tran/1989-311-02/S0002-9947-1989-0978364-X/S0002-9947-1989-0978364-X.pdf |
PageCount | 33 |
ParticipantIDs | crossref_primary_10_1090_S0002_9947_1989_0978364_X pascalfrancis_primary_6570674 jstor_primary_10_2307_2001136 |
PublicationCentury | 1900 |
PublicationDate | 1989-02-01 |
PublicationDateYYYYMMDD | 1989-02-01 |
PublicationDate_xml | – month: 02 year: 1989 text: 1989-02-01 day: 01 |
PublicationDecade | 1980 |
PublicationPlace | Providence, RI |
PublicationPlace_xml | – name: Providence, RI |
PublicationTitle | Transactions of the American Mathematical Society |
PublicationYear | 1989 |
Publisher | American Mathematical Society |
Publisher_xml | – name: American Mathematical Society |
SSID | ssj0000486 |
Score | 1.3506737 |
Snippet | In this paper we investigate the behavior of the solution of \begin{equation*} \begin{split} u_t = Du_{xx} - f(u)_x, \\ u(0, x) = u_0(x) \in L^\infty, & u(t,... |
SourceID | crossref pascalfrancis jstor |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 433 |
SubjectTerms | Boundary value problems Cauchy problem Chromatography Conservation laws Coordinate systems Exact sciences and technology Gas dynamics Mathematics Matrices Numerical analysis Numerical analysis. Scientific computation Partial differential equations, miscellaneous problems Perceptron convergence procedure Sciences and techniques of general use Truncation |
Title | The Error in Spatial Truncation for Systems of Parabolic Conservation Laws |
URI | https://www.jstor.org/stable/2001136 |
Volume | 311 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5uB9GDv8Wpkwi7Bpuma9Oj6MYQFcEJu4UkTWAwOuk2_Pd9-THdTnptm7Z8L-17L_ne9xDqWc00h1CBMEVzSFBYn5SmnxJLE2W10RXzIq6j9-J1wh8HTiant66FcbRKzwv0u_gQIKmZuXO8H8ryFmpxGkVwf_-2me_m6L_sssyKXXQbRJISVwUcD5LIDHIlCxmZbPmgQEN0nEi5AFhs6Gex4WSGh_97vSN0EINIfB-sfox2TH2C9l9-FFgXp-gJ7I8HTTNv8LTGrvEwTDQ8blZ1WKPDEKziKFeO5xa_yQamw2yqsWvhuV6pxc_ya3GGPoaD8cOIxL4JRDOaLUlKrbUJLyqqIQNVSa5lqhVEOpDtpVVVqsIY55llIlkFDjyr8oKl0hrFValZyc5Ru57X5gJhiH4ML8FkHPImyiXXGu7b17lhCTzDdlC6RlJ8BnkMEba1E-HhFw5-4eAXEX4x6aCux3BzhOOjiwgknN-yxc91jqaTF9nlH-Ov0F6wtyOdXKP2slmZLmotqtWNnzvfTRK7dw |
link.rule.ids | 315,782,786,817,27933,27934,58023,58256 |
linkProvider | JSTOR |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwED_cBD8e_BanTiPsNdg2_UgfRTembkNwwt5CmyYwGJ20G_77Xppuzid9bZu2_O7au0t--R1AR0smOaYKlKVuiAUKC2isAo9q10m1VDJjlYhr_z0aTfhT18jkdFZ7YQytsuIFVqv4mCClM3VveD8uCxuwHRi9MiuD-_O_9at-jtW3Hcd-tAN3VibJMfuA64O05gaZTQs-nfyKQpaIaFiRSYnAaNvRYiPM9A7_94JHcFCnkeTB2v0YtlR-AvvDtQZreQov6AGkWxTzgkxzYloPo6uRcbHM7SwdwXSV1ILlZK7JW1KgQ8ymkpgmnqu5WjJIvsoz-Oh1x499WndOoJK5_oJ6rtba4VHmSqxBUyeUiSdTzHWw3vOyLE4jpUxsTpyEZRjC_SyMmJdolfI0lixm59DM57m6AIL5j-IxGo1j5eTyhEuJ9w1kqJiDz9At8FZIik8rkCHswrYjKviFgV8Y-EUNv5i0oF1huDnCMNJFDSSe_2WL9XWGqBNG_uUf429htz8eDsTgefR6BXvW9oaCcg3NRbFUbWiU2fKm8qNvUP2-xQ |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4IJkQPvo2o6Jp48NLQdvs8GoGgIiERE26bdh8JCSmkhfj3ne0WhJNe227bzDftzOx--w3Ao-KUR5gqWDR1AixQqG_F0nct5dip4pILWoq49j_D4STqdLVMztN6L4ymVZa8wHIVHxOkdCbbC6Hamvvj0KAG-z4WNYGRwv3953plT8fy-45jL2zAg5FKsvVe4OqgVfGD9MYFz5rsRCJDRtTMyKRA4yjT1WIr1PSO__-SJ3BUpZPk2eB_CnsyO4PDj40Wa3EOb-gJpJvn85xMM6JbEKPLkXG-ysxsHcG0lVTC5WSuyCjJ0TFmU050M8_1nC0ZJN_FBXz1uuOXvlV1ULA4dbyl5TpKKTsKhcOxFk3tgCcuTzHnwbrPFSJOQyl1jE7shAoM5Z4IQuomSqZRGnMa00uoZ_NMXgHBPEhGMYIXYQXlREnEOd7X54GkNj5DNcFdW5MtjFAGMwvcNishYBoCpiFgFQRs0oRWacftEZqZzipD4vkdPDbXacJOEHrXf4y_h8ao02OD1-H7DRwY-DUT5Rbqy3wlW1ArxOqudKUf1ZDBSw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Error+in+Spatial+Truncation+for+Systems+of+Parabolic+Conservation+Laws&rft.jtitle=Transactions+of+the+American+Mathematical+Society&rft.au=Kuo%2C+Hung-Ju&rft.date=1989-02-01&rft.pub=American+Mathematical+Society&rft.issn=0002-9947&rft.eissn=1088-6850&rft.volume=311&rft.issue=2&rft.spage=433&rft.epage=465&rft_id=info:doi/10.1090%2FS0002-9947-1989-0978364-X&rft.externalDocID=2001136 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-9947&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-9947&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-9947&client=summon |