An Integrated RRTSMART-A Algorithm for solving the Global Path Planning Problem in a Static Environment
The use of sampling-based algorithms such as Rapidly-Exploring Random Tree Star (RRT*) has been widely applied in robot path planning. Although this variant of RRT offers asymptotic optimality, its use is increasingly limited because it suffers from convergence rates, mainly when applied to an envir...
Saved in:
Published in: | IIUM engineering journal Vol. 24; no. 1; pp. 269 - 284 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
IIUM Press, International Islamic University Malaysia
01-01-2023
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The use of sampling-based algorithms such as Rapidly-Exploring Random Tree Star (RRT*) has been widely applied in robot path planning. Although this variant of RRT offers asymptotic optimality, its use is increasingly limited because it suffers from convergence rates, mainly when applied to an environment with a poor level of obstacle neatness and a narrow area to the target. Thus, RRT*-Smart, a further development of RRT*, is considered ideal for solving RRT* problems. Unlike RRT*, RRT*-Smart applies a path optimization by removing the redundant nodes from the initial path when it is gained. Moreover, the path is also improved by identifying the beacon nodes used to steer the bias of intelligent sampling. Nevertheless, this initial path is found with termination criteria in terms of a region around the goal node. Consequently, it risks failing to generate a path on a narrow channel. Therefore, a novel algorithm achieved by combining RRT*-Smart and A* is proposed. This combination is intended to switch method-by-method for the exploration process when the new node reaches the region around the goal node. However, before RRT*-Smart is combined with A*, it is improved by replacing the random sampling method with Fast Sampling. In short, by involving A*, the exploration process for generating the Smart-RRT*’s initial path can be supported. It gives the optimal and feasible raw solution for any complex environment. It is logically realistic because A* searches and evaluates all neighbors of a current node when finding the node with low cost to the start and goal node for each iteration. Therefore, the risk of collision with an obstacle in the goal region is covered, and generating an initial path in the narrow channel can be handled. Furthermore, this proposed method's optimality and fast convergence rate are satisfied.
ABSTRAK: Penggunaan algoritma berasaskan pensampelan seperti Rapidly-Exploring Random Tree Star (RRT*) telah digunakan secara meluas dalam perancangan laluan robot. Walaupun varian RRT ini menawarkan keoptimuman tanpa gejala, penggunaannya semakin terhad kerana ia mengalami kadar penumpuan, terutamanya apabila digunakan pada persekitaran dengan tahap kekemasan halangan yang lemah dan kawasan yang sempit ke sasaran. Oleh itu, RRT*-Smart, pembangunan lanjut RRT*, dianggap sesuai untuk menyelesaikan masalah RRT*. Tidak seperti RRT*, RRT*-Smart menggunakan pengoptimuman laluan dengan mengalih keluar nod berlebihan daripada laluan awal apabila ia diperoleh. Selain itu, laluan juga dipertingkatkan dengan mengenal pasti nod suar yang digunakan untuk mengemudi bias pensampelan pintar. Namun begitu, laluan awal ini ditemui dengan kriteria penamatan dari segi rantau di sekeliling nod matlamat. Akibatnya, ia berisiko gagal menjana laluan pada saluran yang sempit. Oleh itu, algoritma baru yang dicapai dengan menggabungkan RRT*-Smart dan A* dicadangkan. Gabungan ini bertujuan untuk menukar kaedah demi kaedah untuk proses penerokaan apabila nod baharu sampai ke kawasan sekitar nod matlamat. Walau bagaimanapun, sebelum RRT*-Smart digabungkan dengan A*, ia diperbaiki dengan menggantikan kaedah persampelan rawak dengan Persampelan Pantas. Pendek kata, dengan melibatkan A*, proses penerokaan dalam menjana laluan awal yang Smart-RRT lakukan* boleh disokong. Ia memberikan penyelesaian mentah yang optimum dan boleh dilaksanakan untuk mana-mana persekitaran yang kompleks. Ia adalah realistik secara logik kerana A* mencari dan menilai semua jiran nod semasa apabila mencari nod dengan kos rendah ke nod permulaan dan matlamat untuk setiap lelaran. Oleh itu, risiko perlanggaran dengan halangan di kawasan matlamat dilindungi, dan menjana laluan awal dalam saluran sempit boleh dikendalikan. Tambahan pula, kaedah optimum yang dicadangkan dan kadar penumpuan yang cepat ini berpuas hati. |
---|---|
AbstractList | The use of sampling-based algorithms such as Rapidly-Exploring Random Tree Star (RRT*) has been widely applied in robot path planning. Although this variant of RRT offers asymptotic optimality, its use is increasingly limited because it suffers from convergence rates, mainly when applied to an environment with a poor level of obstacle neatness and a narrow area to the target. Thus, RRT*-Smart, a further development of RRT*, is considered ideal for solving RRT* problems. Unlike RRT*, RRT*-Smart applies a path optimization by removing the redundant nodes from the initial path when it is gained. Moreover, the path is also improved by identifying the beacon nodes used to steer the bias of intelligent sampling. Nevertheless, this initial path is found with termination criteria in terms of a region around the goal node. Consequently, it risks failing to generate a path on a narrow channel. Therefore, a novel algorithm achieved by combining RRT*-Smart and A* is proposed. This combination is intended to switch method-by-method for the exploration process when the new node reaches the region around the goal node. However, before RRT*-Smart is combined with A*, it is improved by replacing the random sampling method with Fast Sampling. In short, by involving A*, the exploration process for generating the Smart-RRT*’s initial path can be supported. It gives the optimal and feasible raw solution for any complex environment. It is logically realistic because A* searches and evaluates all neighbors of a current node when finding the node with low cost to the start and goal node for each iteration. Therefore, the risk of collision with an obstacle in the goal region is covered, and generating an initial path in the narrow channel can be handled. Furthermore, this proposed method's optimality and fast convergence rate are satisfied. ABSTRAK: Penggunaan algoritma berasaskan pensampelan seperti Rapidly-Exploring Random Tree Star (RRT*) telah digunakan secara meluas dalam perancangan laluan robot. Walaupun varian RRT ini menawarkan keoptimuman tanpa gejala, penggunaannya semakin terhad kerana ia mengalami kadar penumpuan, terutamanya apabila digunakan pada persekitaran dengan tahap kekemasan halangan yang lemah dan kawasan yang sempit ke sasaran. Oleh itu, RRT*-Smart, pembangunan lanjut RRT*, dianggap sesuai untuk menyelesaikan masalah RRT*. Tidak seperti RRT*, RRT*-Smart menggunakan pengoptimuman laluan dengan mengalih keluar nod berlebihan daripada laluan awal apabila ia diperoleh. Selain itu, laluan juga dipertingkatkan dengan mengenal pasti nod suar yang digunakan untuk mengemudi bias pensampelan pintar. Namun begitu, laluan awal ini ditemui dengan kriteria penamatan dari segi rantau di sekeliling nod matlamat. Akibatnya, ia berisiko gagal menjana laluan pada saluran yang sempit. Oleh itu, algoritma baru yang dicapai dengan menggabungkan RRT*-Smart dan A* dicadangkan. Gabungan ini bertujuan untuk menukar kaedah demi kaedah untuk proses penerokaan apabila nod baharu sampai ke kawasan sekitar nod matlamat. Walau bagaimanapun, sebelum RRT*-Smart digabungkan dengan A*, ia diperbaiki dengan menggantikan kaedah persampelan rawak dengan Persampelan Pantas. Pendek kata, dengan melibatkan A*, proses penerokaan dalam menjana laluan awal yang Smart-RRT lakukan* boleh disokong. Ia memberikan penyelesaian mentah yang optimum dan boleh dilaksanakan untuk mana-mana persekitaran yang kompleks. Ia adalah realistik secara logik kerana A* mencari dan menilai semua jiran nod semasa apabila mencari nod dengan kos rendah ke nod permulaan dan matlamat untuk setiap lelaran. Oleh itu, risiko perlanggaran dengan halangan di kawasan matlamat dilindungi, dan menjana laluan awal dalam saluran sempit boleh dikendalikan. Tambahan pula, kaedah optimum yang dicadangkan dan kadar penumpuan yang cepat ini berpuas hati. The use of sampling-based algorithms such as Rapidly-Exploring Random Tree Star (RRT*) has been widely applied in robot path planning. Although this variant of RRT offers asymptotic optimality, its use is increasingly limited because it suffers from convergence rates, mainly when applied to an environment with a poor level of obstacle neatness and a narrow area to the target. Thus, RRT*-Smart, a further development of RRT*, is considered ideal for solving RRT* problems. Unlike RRT*, RRT*-Smart applies a path optimization by removing the redundant nodes from the initial path when it is gained. Moreover, the path is also improved by identifying the beacon nodes used to steer the bias of intelligent sampling. Nevertheless, this initial path is found with termination criteria in terms of a region around the goal node. Consequently, it risks failing to generate a path on a narrow channel. Therefore, a novel algorithm achieved by combining RRT*-Smart and A* is proposed. This combination is intended to switch method-by-method for the exploration process when the new node reaches the region around the goal node. However, before RRT*-Smart is combined with A*, it is improved by replacing the random sampling method with Fast Sampling. In short, by involving A*, the exploration process for generating the Smart-RRT*’s initial path can be supported. It gives the optimal and feasible raw solution for any complex environment. It is logically realistic because A* searches and evaluates all neighbors of a current node when finding the node with low cost to the start and goal node for each iteration. Therefore, the risk of collision with an obstacle in the goal region is covered, and generating an initial path in the narrow channel can be handled. Furthermore, this proposed method's optimality and fast convergence rate are satisfied. ABSTRAK: Penggunaan algoritma berasaskan pensampelan seperti Rapidly-Exploring Random Tree Star (RRT*) telah digunakan secara meluas dalam perancangan laluan robot. Walaupun varian RRT ini menawarkan keoptimuman tanpa gejala, penggunaannya semakin terhad kerana ia mengalami kadar penumpuan, terutamanya apabila digunakan pada persekitaran dengan tahap kekemasan halangan yang lemah dan kawasan yang sempit ke sasaran. Oleh itu, RRT*-Smart, pembangunan lanjut RRT*, dianggap sesuai untuk menyelesaikan masalah RRT*. Tidak seperti RRT*, RRT*-Smart menggunakan pengoptimuman laluan dengan mengalih keluar nod berlebihan daripada laluan awal apabila ia diperoleh. Selain itu, laluan juga dipertingkatkan dengan mengenal pasti nod suar yang digunakan untuk mengemudi bias pensampelan pintar. Namun begitu, laluan awal ini ditemui dengan kriteria penamatan dari segi rantau di sekeliling nod matlamat. Akibatnya, ia berisiko gagal menjana laluan pada saluran yang sempit. Oleh itu, algoritma baru yang dicapai dengan menggabungkan RRT*-Smart dan A* dicadangkan. Gabungan ini bertujuan untuk menukar kaedah demi kaedah untuk proses penerokaan apabila nod baharu sampai ke kawasan sekitar nod matlamat. Walau bagaimanapun, sebelum RRT*-Smart digabungkan dengan A*, ia diperbaiki dengan menggantikan kaedah persampelan rawak dengan Persampelan Pantas. Pendek kata, dengan melibatkan A*, proses penerokaan dalam menjana laluan awal yang Smart-RRT lakukan* boleh disokong. Ia memberikan penyelesaian mentah yang optimum dan boleh dilaksanakan untuk mana-mana persekitaran yang kompleks. Ia adalah realistik secara logik kerana A* mencari dan menilai semua jiran nod semasa apabila mencari nod dengan kos rendah ke nod permulaan dan matlamat untuk setiap lelaran. Oleh itu, risiko perlanggaran dengan halangan di kawasan matlamat dilindungi, dan menjana laluan awal dalam saluran sempit boleh dikendalikan. Tambahan pula, kaedah optimum yang dicadangkan dan kadar penumpuan yang cepat ini berpuas hati. |
Author | Ubaidillah, Abu Zakaria, Mohamad Fauzi Adriansyah, Andi Andika, Julpri Suwoyo, Heru |
Author_xml | – sequence: 1 givenname: Heru orcidid: 0000-0002-8762-4996 surname: Suwoyo fullname: Suwoyo, Heru – sequence: 2 givenname: Andi orcidid: 0000-0002-3911-7455 surname: Adriansyah fullname: Adriansyah, Andi – sequence: 3 givenname: Julpri orcidid: 0000-0002-0272-3865 surname: Andika fullname: Andika, Julpri – sequence: 4 givenname: Abu orcidid: 0000-0002-7917-5967 surname: Ubaidillah fullname: Ubaidillah, Abu – sequence: 5 givenname: Mohamad Fauzi orcidid: 0000-0003-0710-346X surname: Zakaria fullname: Zakaria, Mohamad Fauzi |
BookMark | eNo9kF1LwzAUhoMoOD_-gFf5A505SZM2l2XMOZg45gTvQtomXUabSBoH_nvnJl6dwznw8L7PDbr0wRuEHoBMGeRMPDr3NZj99EBzB1PKqbxAE0pLmRWlIJdoAhzguJcf1-h-HF1NqJAFKQmboK7yeOmT6aJOpsWbzfbtpdpsswpXfReiS7sB2xDxGPqD8x1OO4MXfah1j9c67fC6197_PtYx1L0ZsPNY47ekk2vw3B9cDH4wPt2hK6v70dz_zVv0_jTfzp6z1etiOatWWcOApYxzXVAgvDaWcF0XrbaMELBFYZsaJDS8odLKkjPbAhxLADNtzmojBFBeCnaLlmduG_RefUY36PitgnbqdAixUzoes_VGCSKYIUISyooccqN1XpoylzYXDUjGjyx6ZjUxjGM09p8HRJ3Mq7N5dTKvfs2zHxDbeU0 |
CitedBy_id | crossref_primary_10_2478_cait_2024_0011 |
Cites_doi | 10.1109/IROS.2011.6094994 10.1007/978-3-319-21021-6 10.1109/ISGT-Asia.2014.6873777 10.1016/j.eswa.2021.115457 10.1007/s10514-015-9518-0 10.3390/math9040395 10.1155/2019/2765731 10.1109/ACCESS.2020.2968471 10.4018/978-1-4666-2104-6 10.1155/2019/4160847 10.1109/IS.2008.4670429 10.1109/FSKD.2016.7603165 10.1023/B:MIND.0000035501.55990.99 10.3390/sym11070945 10.1109/ROMA.2016.7847817 10.5772/56718 10.1109/ICMA.2012.6284384 10.1109/ACCESS.2020.2969316 10.1016/j.eswa.2019.01.032 10.1017/9781316671528 10.1109/ACCESS.2021.3123622 10.1007/978-3-319-11933-5 10.1109/WCICA.2011.5970564 10.1088/1742-6596/1566/1/012061 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.31436/iiumej.v24i1.2529 |
DatabaseName | CrossRef Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2289-7860 |
EndPage | 284 |
ExternalDocumentID | oai_doaj_org_article_6063e0690237414eaa48e849f46c1935 10_31436_iiumej_v24i1_2529 |
GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ KQ8 OK1 |
ID | FETCH-LOGICAL-c313t-55a72105bef05ab7daf3001f77fcb191c5c29f9853fd1197013ed43be66125863 |
IEDL.DBID | DOA |
ISSN | 1511-788X |
IngestDate | Tue Oct 22 14:48:43 EDT 2024 Fri Aug 23 03:07:02 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c313t-55a72105bef05ab7daf3001f77fcb191c5c29f9853fd1197013ed43be66125863 |
ORCID | 0000-0003-0710-346X 0000-0002-3911-7455 0000-0002-7917-5967 0000-0002-8762-4996 0000-0002-0272-3865 |
OpenAccessLink | https://doaj.org/article/6063e0690237414eaa48e849f46c1935 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6063e0690237414eaa48e849f46c1935 crossref_primary_10_31436_iiumej_v24i1_2529 |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | IIUM engineering journal |
PublicationYear | 2023 |
Publisher | IIUM Press, International Islamic University Malaysia |
Publisher_xml | – name: IIUM Press, International Islamic University Malaysia |
References | 31030 31014 31013 31016 31015 31010 31032 31031 31012 31011 31018 31017 31019 31003 31025 31024 31005 31027 31004 31026 31021 31020 31023 31022 31007 31029 31006 31028 31009 31008 |
References_xml | – ident: 31004 – ident: 31016 doi: 10.1109/IROS.2011.6094994 – ident: 31031 – ident: 31029 doi: 10.1007/978-3-319-21021-6 – ident: 31012 doi: 10.1109/ISGT-Asia.2014.6873777 – ident: 31020 doi: 10.1016/j.eswa.2021.115457 – ident: 31014 doi: 10.1007/s10514-015-9518-0 – ident: 31017 doi: 10.3390/math9040395 – ident: 31005 doi: 10.1155/2019/2765731 – ident: 31021 doi: 10.1109/ACCESS.2020.2968471 – ident: 31027 doi: 10.4018/978-1-4666-2104-6 – ident: 31028 doi: 10.1155/2019/4160847 – ident: 31010 doi: 10.1109/IS.2008.4670429 – ident: 31030 doi: 10.1109/FSKD.2016.7603165 – ident: 31025 doi: 10.1023/B:MIND.0000035501.55990.99 – ident: 31022 – ident: 31024 doi: 10.3390/sym11070945 – ident: 31006 doi: 10.1109/ROMA.2016.7847817 – ident: 31007 – ident: 31019 doi: 10.5772/56718 – ident: 31023 doi: 10.1109/ICMA.2012.6284384 – ident: 31013 doi: 10.1109/ACCESS.2020.2969316 – ident: 31009 doi: 10.1016/j.eswa.2019.01.032 – ident: 31026 doi: 10.1017/9781316671528 – ident: 31018 doi: 10.1109/ACCESS.2021.3123622 – ident: 31003 doi: 10.1007/978-3-319-11933-5 – ident: 31011 doi: 10.1109/WCICA.2011.5970564 – ident: 31015 doi: 10.1007/s10514-015-9518-0 – ident: 31032 doi: 10.1088/1742-6596/1566/1/012061 – ident: 31008 |
SSID | ssib026970803 ssj0001595987 |
Score | 2.2650826 |
Snippet | The use of sampling-based algorithms such as Rapidly-Exploring Random Tree Star (RRT*) has been widely applied in robot path planning. Although this variant of... |
SourceID | doaj crossref |
SourceType | Open Website Aggregation Database |
StartPage | 269 |
SubjectTerms | A Algorithm Path Planning RRT-Smart Algorithm |
Title | An Integrated RRTSMART-A Algorithm for solving the Global Path Planning Problem in a Static Environment |
URI | https://doaj.org/article/6063e0690237414eaa48e849f46c1935 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27TsMwFLWgEwyIpygveWBDpkn8SDwGaFUGUNUWqVtkJ3YJghRBy_dzHaePjYU1iqLo2Mo958b3HISutQkEEBFFgAzHhElhCUiwggBTTmweapXkbhq5P4qfJ8lD19nkrKK-3Jkwbw_sgesAwabG2elGFIofM0qxxCRMWiZyIB_evTQQG2IKdlIkZBw0sUu-28Ill3VaHlS40B2hm_gJGgp8QXTKEj4Eb7c_EStBM_Kab66r1IaZf111evtor6GLOPWveYC2THWIdjdMBI_QNK3w49L0ocDD4Xj0BCyVpDh9n85A-79-YGCmGDaZax5gYHzYO_3jAdA_vIwtwgOfLYPLCivsSGiZ4-56Du4YvfS64_s-aeITSE5DOiecK5B3AdfGBlzpuFCWAhI2jm2uQablPI-klVCvbeF-JrqGaMGoNsKxnkTQE9SqZpU5RTiJI6FpoCwzIQu1UaGQmiupoLhpW4g2ulnClX16l4wM1EUNbubBzWpwMwduG905RFd3Oofr-gKse9ase_bXup_9x0PO0Y6Lj_ctlQvUmn8tzCXa_i4WV_V--gX3UMkk |
link.rule.ids | 315,782,786,866,2106,27933,27934 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Integrated+RRTSMART-A+Algorithm+for+solving+the+Global+Path+Planning+Problem+in+a+Static+Environment&rft.jtitle=IIUM+engineering+journal&rft.au=Heru+Suwoyo&rft.au=Andi+Adriansyah&rft.au=Julpri+Andika&rft.au=Abu+Ubaidillah&rft.date=2023-01-01&rft.pub=IIUM+Press%2C+International+Islamic+University+Malaysia&rft.issn=1511-788X&rft.eissn=2289-7860&rft.volume=24&rft.issue=1&rft_id=info:doi/10.31436%2Fiiumej.v24i1.2529&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6063e0690237414eaa48e849f46c1935 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1511-788X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1511-788X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1511-788X&client=summon |