An Integrated RRTSMART-A Algorithm for solving the Global Path Planning Problem in a Static Environment

The use of sampling-based algorithms such as Rapidly-Exploring Random Tree Star (RRT*) has been widely applied in robot path planning. Although this variant of RRT offers asymptotic optimality, its use is increasingly limited because it suffers from convergence rates, mainly when applied to an envir...

Full description

Saved in:
Bibliographic Details
Published in:IIUM engineering journal Vol. 24; no. 1; pp. 269 - 284
Main Authors: Suwoyo, Heru, Adriansyah, Andi, Andika, Julpri, Ubaidillah, Abu, Zakaria, Mohamad Fauzi
Format: Journal Article
Language:English
Published: IIUM Press, International Islamic University Malaysia 01-01-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The use of sampling-based algorithms such as Rapidly-Exploring Random Tree Star (RRT*) has been widely applied in robot path planning. Although this variant of RRT offers asymptotic optimality, its use is increasingly limited because it suffers from convergence rates, mainly when applied to an environment with a poor level of obstacle neatness and a narrow area to the target. Thus, RRT*-Smart, a further development of RRT*, is considered ideal for solving RRT* problems. Unlike RRT*, RRT*-Smart applies a path optimization by removing the redundant nodes from the initial path when it is gained. Moreover, the path is also improved by identifying the beacon nodes used to steer the bias of intelligent sampling. Nevertheless, this initial path is found with termination criteria in terms of a region around the goal node. Consequently, it risks failing to generate a path on a narrow channel. Therefore, a novel algorithm achieved by combining RRT*-Smart and A* is proposed. This combination is intended to switch method-by-method for the exploration process when the new node reaches the region around the goal node. However, before RRT*-Smart is combined with A*, it is improved by replacing the random sampling method with Fast Sampling. In short, by involving A*, the exploration process for generating the Smart-RRT*’s initial path can be supported. It gives the optimal and feasible raw solution for any complex environment. It is logically realistic because A* searches and evaluates all neighbors of a current node when finding the node with low cost to the start and goal node for each iteration. Therefore, the risk of collision with an obstacle in the goal region is covered, and generating an initial path in the narrow channel can be handled. Furthermore, this proposed method's optimality and fast convergence rate are satisfied.  ABSTRAK: Penggunaan algoritma berasaskan pensampelan seperti Rapidly-Exploring Random Tree Star (RRT*) telah digunakan secara meluas dalam perancangan laluan robot. Walaupun varian RRT ini menawarkan keoptimuman tanpa gejala, penggunaannya semakin terhad kerana ia mengalami kadar penumpuan, terutamanya apabila digunakan pada persekitaran dengan tahap kekemasan halangan yang lemah dan kawasan yang sempit ke sasaran. Oleh itu, RRT*-Smart, pembangunan lanjut RRT*, dianggap sesuai untuk menyelesaikan masalah RRT*. Tidak seperti RRT*, RRT*-Smart menggunakan pengoptimuman laluan dengan mengalih keluar nod berlebihan daripada laluan awal apabila ia diperoleh. Selain itu, laluan juga dipertingkatkan dengan mengenal pasti nod suar yang digunakan untuk mengemudi bias pensampelan pintar. Namun begitu, laluan awal ini ditemui dengan kriteria penamatan dari segi rantau di sekeliling nod matlamat. Akibatnya, ia berisiko gagal menjana laluan pada saluran yang sempit. Oleh itu, algoritma baru yang dicapai dengan menggabungkan RRT*-Smart dan A* dicadangkan. Gabungan ini bertujuan untuk menukar kaedah demi kaedah untuk proses penerokaan apabila nod baharu sampai ke kawasan sekitar nod matlamat. Walau bagaimanapun, sebelum RRT*-Smart digabungkan dengan A*, ia diperbaiki dengan menggantikan kaedah persampelan rawak dengan Persampelan Pantas. Pendek kata, dengan melibatkan A*, proses penerokaan dalam menjana laluan awal yang Smart-RRT lakukan* boleh disokong. Ia memberikan penyelesaian mentah yang optimum dan boleh dilaksanakan untuk mana-mana persekitaran yang kompleks. Ia adalah realistik secara logik kerana A* mencari dan menilai semua jiran nod semasa apabila mencari nod dengan kos rendah ke nod permulaan dan matlamat untuk setiap lelaran. Oleh itu, risiko perlanggaran dengan halangan di kawasan matlamat dilindungi, dan menjana laluan awal dalam saluran sempit boleh dikendalikan. Tambahan pula, kaedah optimum yang dicadangkan dan kadar penumpuan yang cepat ini berpuas hati.
AbstractList The use of sampling-based algorithms such as Rapidly-Exploring Random Tree Star (RRT*) has been widely applied in robot path planning. Although this variant of RRT offers asymptotic optimality, its use is increasingly limited because it suffers from convergence rates, mainly when applied to an environment with a poor level of obstacle neatness and a narrow area to the target. Thus, RRT*-Smart, a further development of RRT*, is considered ideal for solving RRT* problems. Unlike RRT*, RRT*-Smart applies a path optimization by removing the redundant nodes from the initial path when it is gained. Moreover, the path is also improved by identifying the beacon nodes used to steer the bias of intelligent sampling. Nevertheless, this initial path is found with termination criteria in terms of a region around the goal node. Consequently, it risks failing to generate a path on a narrow channel. Therefore, a novel algorithm achieved by combining RRT*-Smart and A* is proposed. This combination is intended to switch method-by-method for the exploration process when the new node reaches the region around the goal node. However, before RRT*-Smart is combined with A*, it is improved by replacing the random sampling method with Fast Sampling. In short, by involving A*, the exploration process for generating the Smart-RRT*’s initial path can be supported. It gives the optimal and feasible raw solution for any complex environment. It is logically realistic because A* searches and evaluates all neighbors of a current node when finding the node with low cost to the start and goal node for each iteration. Therefore, the risk of collision with an obstacle in the goal region is covered, and generating an initial path in the narrow channel can be handled. Furthermore, this proposed method's optimality and fast convergence rate are satisfied.  ABSTRAK: Penggunaan algoritma berasaskan pensampelan seperti Rapidly-Exploring Random Tree Star (RRT*) telah digunakan secara meluas dalam perancangan laluan robot. Walaupun varian RRT ini menawarkan keoptimuman tanpa gejala, penggunaannya semakin terhad kerana ia mengalami kadar penumpuan, terutamanya apabila digunakan pada persekitaran dengan tahap kekemasan halangan yang lemah dan kawasan yang sempit ke sasaran. Oleh itu, RRT*-Smart, pembangunan lanjut RRT*, dianggap sesuai untuk menyelesaikan masalah RRT*. Tidak seperti RRT*, RRT*-Smart menggunakan pengoptimuman laluan dengan mengalih keluar nod berlebihan daripada laluan awal apabila ia diperoleh. Selain itu, laluan juga dipertingkatkan dengan mengenal pasti nod suar yang digunakan untuk mengemudi bias pensampelan pintar. Namun begitu, laluan awal ini ditemui dengan kriteria penamatan dari segi rantau di sekeliling nod matlamat. Akibatnya, ia berisiko gagal menjana laluan pada saluran yang sempit. Oleh itu, algoritma baru yang dicapai dengan menggabungkan RRT*-Smart dan A* dicadangkan. Gabungan ini bertujuan untuk menukar kaedah demi kaedah untuk proses penerokaan apabila nod baharu sampai ke kawasan sekitar nod matlamat. Walau bagaimanapun, sebelum RRT*-Smart digabungkan dengan A*, ia diperbaiki dengan menggantikan kaedah persampelan rawak dengan Persampelan Pantas. Pendek kata, dengan melibatkan A*, proses penerokaan dalam menjana laluan awal yang Smart-RRT lakukan* boleh disokong. Ia memberikan penyelesaian mentah yang optimum dan boleh dilaksanakan untuk mana-mana persekitaran yang kompleks. Ia adalah realistik secara logik kerana A* mencari dan menilai semua jiran nod semasa apabila mencari nod dengan kos rendah ke nod permulaan dan matlamat untuk setiap lelaran. Oleh itu, risiko perlanggaran dengan halangan di kawasan matlamat dilindungi, dan menjana laluan awal dalam saluran sempit boleh dikendalikan. Tambahan pula, kaedah optimum yang dicadangkan dan kadar penumpuan yang cepat ini berpuas hati.
The use of sampling-based algorithms such as Rapidly-Exploring Random Tree Star (RRT*) has been widely applied in robot path planning. Although this variant of RRT offers asymptotic optimality, its use is increasingly limited because it suffers from convergence rates, mainly when applied to an environment with a poor level of obstacle neatness and a narrow area to the target. Thus, RRT*-Smart, a further development of RRT*, is considered ideal for solving RRT* problems. Unlike RRT*, RRT*-Smart applies a path optimization by removing the redundant nodes from the initial path when it is gained. Moreover, the path is also improved by identifying the beacon nodes used to steer the bias of intelligent sampling. Nevertheless, this initial path is found with termination criteria in terms of a region around the goal node. Consequently, it risks failing to generate a path on a narrow channel. Therefore, a novel algorithm achieved by combining RRT*-Smart and A* is proposed. This combination is intended to switch method-by-method for the exploration process when the new node reaches the region around the goal node. However, before RRT*-Smart is combined with A*, it is improved by replacing the random sampling method with Fast Sampling. In short, by involving A*, the exploration process for generating the Smart-RRT*’s initial path can be supported. It gives the optimal and feasible raw solution for any complex environment. It is logically realistic because A* searches and evaluates all neighbors of a current node when finding the node with low cost to the start and goal node for each iteration. Therefore, the risk of collision with an obstacle in the goal region is covered, and generating an initial path in the narrow channel can be handled. Furthermore, this proposed method's optimality and fast convergence rate are satisfied.  ABSTRAK: Penggunaan algoritma berasaskan pensampelan seperti Rapidly-Exploring Random Tree Star (RRT*) telah digunakan secara meluas dalam perancangan laluan robot. Walaupun varian RRT ini menawarkan keoptimuman tanpa gejala, penggunaannya semakin terhad kerana ia mengalami kadar penumpuan, terutamanya apabila digunakan pada persekitaran dengan tahap kekemasan halangan yang lemah dan kawasan yang sempit ke sasaran. Oleh itu, RRT*-Smart, pembangunan lanjut RRT*, dianggap sesuai untuk menyelesaikan masalah RRT*. Tidak seperti RRT*, RRT*-Smart menggunakan pengoptimuman laluan dengan mengalih keluar nod berlebihan daripada laluan awal apabila ia diperoleh. Selain itu, laluan juga dipertingkatkan dengan mengenal pasti nod suar yang digunakan untuk mengemudi bias pensampelan pintar. Namun begitu, laluan awal ini ditemui dengan kriteria penamatan dari segi rantau di sekeliling nod matlamat. Akibatnya, ia berisiko gagal menjana laluan pada saluran yang sempit. Oleh itu, algoritma baru yang dicapai dengan menggabungkan RRT*-Smart dan A* dicadangkan. Gabungan ini bertujuan untuk menukar kaedah demi kaedah untuk proses penerokaan apabila nod baharu sampai ke kawasan sekitar nod matlamat. Walau bagaimanapun, sebelum RRT*-Smart digabungkan dengan A*, ia diperbaiki dengan menggantikan kaedah persampelan rawak dengan Persampelan Pantas. Pendek kata, dengan melibatkan A*, proses penerokaan dalam menjana laluan awal yang Smart-RRT lakukan* boleh disokong. Ia memberikan penyelesaian mentah yang optimum dan boleh dilaksanakan untuk mana-mana persekitaran yang kompleks. Ia adalah realistik secara logik kerana A* mencari dan menilai semua jiran nod semasa apabila mencari nod dengan kos rendah ke nod permulaan dan matlamat untuk setiap lelaran. Oleh itu, risiko perlanggaran dengan halangan di kawasan matlamat dilindungi, dan menjana laluan awal dalam saluran sempit boleh dikendalikan. Tambahan pula, kaedah optimum yang dicadangkan dan kadar penumpuan yang cepat ini berpuas hati.
Author Ubaidillah, Abu
Zakaria, Mohamad Fauzi
Adriansyah, Andi
Andika, Julpri
Suwoyo, Heru
Author_xml – sequence: 1
  givenname: Heru
  orcidid: 0000-0002-8762-4996
  surname: Suwoyo
  fullname: Suwoyo, Heru
– sequence: 2
  givenname: Andi
  orcidid: 0000-0002-3911-7455
  surname: Adriansyah
  fullname: Adriansyah, Andi
– sequence: 3
  givenname: Julpri
  orcidid: 0000-0002-0272-3865
  surname: Andika
  fullname: Andika, Julpri
– sequence: 4
  givenname: Abu
  orcidid: 0000-0002-7917-5967
  surname: Ubaidillah
  fullname: Ubaidillah, Abu
– sequence: 5
  givenname: Mohamad Fauzi
  orcidid: 0000-0003-0710-346X
  surname: Zakaria
  fullname: Zakaria, Mohamad Fauzi
BookMark eNo9kF1LwzAUhoMoOD_-gFf5A505SZM2l2XMOZg45gTvQtomXUabSBoH_nvnJl6dwznw8L7PDbr0wRuEHoBMGeRMPDr3NZj99EBzB1PKqbxAE0pLmRWlIJdoAhzguJcf1-h-HF1NqJAFKQmboK7yeOmT6aJOpsWbzfbtpdpsswpXfReiS7sB2xDxGPqD8x1OO4MXfah1j9c67fC6197_PtYx1L0ZsPNY47ekk2vw3B9cDH4wPt2hK6v70dz_zVv0_jTfzp6z1etiOatWWcOApYxzXVAgvDaWcF0XrbaMELBFYZsaJDS8odLKkjPbAhxLADNtzmojBFBeCnaLlmduG_RefUY36PitgnbqdAixUzoes_VGCSKYIUISyooccqN1XpoylzYXDUjGjyx6ZjUxjGM09p8HRJ3Mq7N5dTKvfs2zHxDbeU0
CitedBy_id crossref_primary_10_2478_cait_2024_0011
Cites_doi 10.1109/IROS.2011.6094994
10.1007/978-3-319-21021-6
10.1109/ISGT-Asia.2014.6873777
10.1016/j.eswa.2021.115457
10.1007/s10514-015-9518-0
10.3390/math9040395
10.1155/2019/2765731
10.1109/ACCESS.2020.2968471
10.4018/978-1-4666-2104-6
10.1155/2019/4160847
10.1109/IS.2008.4670429
10.1109/FSKD.2016.7603165
10.1023/B:MIND.0000035501.55990.99
10.3390/sym11070945
10.1109/ROMA.2016.7847817
10.5772/56718
10.1109/ICMA.2012.6284384
10.1109/ACCESS.2020.2969316
10.1016/j.eswa.2019.01.032
10.1017/9781316671528
10.1109/ACCESS.2021.3123622
10.1007/978-3-319-11933-5
10.1109/WCICA.2011.5970564
10.1088/1742-6596/1566/1/012061
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.31436/iiumej.v24i1.2529
DatabaseName CrossRef
Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2289-7860
EndPage 284
ExternalDocumentID oai_doaj_org_article_6063e0690237414eaa48e849f46c1935
10_31436_iiumej_v24i1_2529
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
KQ8
OK1
ID FETCH-LOGICAL-c313t-55a72105bef05ab7daf3001f77fcb191c5c29f9853fd1197013ed43be66125863
IEDL.DBID DOA
ISSN 1511-788X
IngestDate Tue Oct 22 14:48:43 EDT 2024
Fri Aug 23 03:07:02 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c313t-55a72105bef05ab7daf3001f77fcb191c5c29f9853fd1197013ed43be66125863
ORCID 0000-0003-0710-346X
0000-0002-3911-7455
0000-0002-7917-5967
0000-0002-8762-4996
0000-0002-0272-3865
OpenAccessLink https://doaj.org/article/6063e0690237414eaa48e849f46c1935
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_6063e0690237414eaa48e849f46c1935
crossref_primary_10_31436_iiumej_v24i1_2529
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationTitle IIUM engineering journal
PublicationYear 2023
Publisher IIUM Press, International Islamic University Malaysia
Publisher_xml – name: IIUM Press, International Islamic University Malaysia
References 31030
31014
31013
31016
31015
31010
31032
31031
31012
31011
31018
31017
31019
31003
31025
31024
31005
31027
31004
31026
31021
31020
31023
31022
31007
31029
31006
31028
31009
31008
References_xml – ident: 31004
– ident: 31016
  doi: 10.1109/IROS.2011.6094994
– ident: 31031
– ident: 31029
  doi: 10.1007/978-3-319-21021-6
– ident: 31012
  doi: 10.1109/ISGT-Asia.2014.6873777
– ident: 31020
  doi: 10.1016/j.eswa.2021.115457
– ident: 31014
  doi: 10.1007/s10514-015-9518-0
– ident: 31017
  doi: 10.3390/math9040395
– ident: 31005
  doi: 10.1155/2019/2765731
– ident: 31021
  doi: 10.1109/ACCESS.2020.2968471
– ident: 31027
  doi: 10.4018/978-1-4666-2104-6
– ident: 31028
  doi: 10.1155/2019/4160847
– ident: 31010
  doi: 10.1109/IS.2008.4670429
– ident: 31030
  doi: 10.1109/FSKD.2016.7603165
– ident: 31025
  doi: 10.1023/B:MIND.0000035501.55990.99
– ident: 31022
– ident: 31024
  doi: 10.3390/sym11070945
– ident: 31006
  doi: 10.1109/ROMA.2016.7847817
– ident: 31007
– ident: 31019
  doi: 10.5772/56718
– ident: 31023
  doi: 10.1109/ICMA.2012.6284384
– ident: 31013
  doi: 10.1109/ACCESS.2020.2969316
– ident: 31009
  doi: 10.1016/j.eswa.2019.01.032
– ident: 31026
  doi: 10.1017/9781316671528
– ident: 31018
  doi: 10.1109/ACCESS.2021.3123622
– ident: 31003
  doi: 10.1007/978-3-319-11933-5
– ident: 31011
  doi: 10.1109/WCICA.2011.5970564
– ident: 31015
  doi: 10.1007/s10514-015-9518-0
– ident: 31032
  doi: 10.1088/1742-6596/1566/1/012061
– ident: 31008
SSID ssib026970803
ssj0001595987
Score 2.2650826
Snippet The use of sampling-based algorithms such as Rapidly-Exploring Random Tree Star (RRT*) has been widely applied in robot path planning. Although this variant of...
SourceID doaj
crossref
SourceType Open Website
Aggregation Database
StartPage 269
SubjectTerms A Algorithm
Path Planning
RRT-Smart Algorithm
Title An Integrated RRTSMART-A Algorithm for solving the Global Path Planning Problem in a Static Environment
URI https://doaj.org/article/6063e0690237414eaa48e849f46c1935
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27TsMwFLWgEwyIpygveWBDpkn8SDwGaFUGUNUWqVtkJ3YJghRBy_dzHaePjYU1iqLo2Mo958b3HISutQkEEBFFgAzHhElhCUiwggBTTmweapXkbhq5P4qfJ8lD19nkrKK-3Jkwbw_sgesAwabG2elGFIofM0qxxCRMWiZyIB_evTQQG2IKdlIkZBw0sUu-28Ill3VaHlS40B2hm_gJGgp8QXTKEj4Eb7c_EStBM_Kab66r1IaZf111evtor6GLOPWveYC2THWIdjdMBI_QNK3w49L0ocDD4Xj0BCyVpDh9n85A-79-YGCmGDaZax5gYHzYO_3jAdA_vIwtwgOfLYPLCivsSGiZ4-56Du4YvfS64_s-aeITSE5DOiecK5B3AdfGBlzpuFCWAhI2jm2uQablPI-klVCvbeF-JrqGaMGoNsKxnkTQE9SqZpU5RTiJI6FpoCwzIQu1UaGQmiupoLhpW4g2ulnClX16l4wM1EUNbubBzWpwMwduG905RFd3Oofr-gKse9ase_bXup_9x0PO0Y6Lj_ctlQvUmn8tzCXa_i4WV_V--gX3UMkk
link.rule.ids 315,782,786,866,2106,27933,27934
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Integrated+RRTSMART-A+Algorithm+for+solving+the+Global+Path+Planning+Problem+in+a+Static+Environment&rft.jtitle=IIUM+engineering+journal&rft.au=Heru+Suwoyo&rft.au=Andi+Adriansyah&rft.au=Julpri+Andika&rft.au=Abu+Ubaidillah&rft.date=2023-01-01&rft.pub=IIUM+Press%2C+International+Islamic+University+Malaysia&rft.issn=1511-788X&rft.eissn=2289-7860&rft.volume=24&rft.issue=1&rft_id=info:doi/10.31436%2Fiiumej.v24i1.2529&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6063e0690237414eaa48e849f46c1935
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1511-788X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1511-788X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1511-788X&client=summon