Machine Learning Methods for Predicting Argania spinosa Crop Yield and Leaf Area Index: A Combined Drought Index Approach from Multisource Remote Sensing Data
In this study, we explored the efficacy of random forest algorithms in downscaling CHIRPS (Climate Hazards Group InfraRed Precipitation with Station data) precipitation data to predict Argane stand traits. Nonparametric regression integrated original CHIRPS data with environmental variables, demonst...
Saved in:
Published in: | AgriEngineering Vol. 6; no. 3; pp. 2283 - 2306 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Basel
MDPI AG
01-09-2024
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | In this study, we explored the efficacy of random forest algorithms in downscaling CHIRPS (Climate Hazards Group InfraRed Precipitation with Station data) precipitation data to predict Argane stand traits. Nonparametric regression integrated original CHIRPS data with environmental variables, demonstrating enhanced accuracy aligned with ground rain gauge observations after residual correction. Furthermore, we explored the performance of range machine learning algorithms, encompassing XGBoost, GBDT, RF, DT, SVR, LR and ANN, in predicting the Leaf Area Index (LAI) and crop yield of Argane trees using condition index-based drought indices such as PCI, VCI, TCI and ETCI derived from multi-sensor satellites. The results demonstrated the superiority of XGBoost in estimating these parameters, with drought indices used as input. XGBoost-based crop yield achieved a higher R2 value of 0.94 and a lower RMSE of 6.25 kg/ha. Similarly, the XGBoost-based LAI model showed the highest level of accuracy, with an R2 of 0.62 and an RMSE of 0.67. The XGBoost model demonstrated superior performance in predicting the crop yield and LAI estimation of Argania sinosa, followed by GBDT, RF and ANN. Additionally, the study employed the Combined Drought Index (CDI) to monitor agricultural and meteorological drought over two decades, by combining four key parameters, PCI, VCI, TCI and ETCI, validating its accuracy through comparison with other drought indices. CDI exhibited positive correlations with VHI, SPI and crop yield, with a particularly strong and statistically significant correlation observed with VHI (r = 0.83). Therefore, CDI was recommended as an effective method and index for assessing and monitoring drought across Argane forest stands area. The findings demonstrated the potential of advanced machine learning models for improving precipitation data resolution and enhancing agricultural drought monitoring, contributing to better land and hydrological management. |
---|---|
AbstractList | In this study, we explored the efficacy of random forest algorithms in downscaling CHIRPS (Climate Hazards Group InfraRed Precipitation with Station data) precipitation data to predict Argane stand traits. Nonparametric regression integrated original CHIRPS data with environmental variables, demonstrating enhanced accuracy aligned with ground rain gauge observations after residual correction. Furthermore, we explored the performance of range machine learning algorithms, encompassing XGBoost, GBDT, RF, DT, SVR, LR and ANN, in predicting the Leaf Area Index (LAI) and crop yield of Argane trees using condition index-based drought indices such as PCI, VCI, TCI and ETCI derived from multi-sensor satellites. The results demonstrated the superiority of XGBoost in estimating these parameters, with drought indices used as input. XGBoost-based crop yield achieved a higher R2 value of 0.94 and a lower RMSE of 6.25 kg/ha. Similarly, the XGBoost-based LAI model showed the highest level of accuracy, with an R2 of 0.62 and an RMSE of 0.67. The XGBoost model demonstrated superior performance in predicting the crop yield and LAI estimation of Argania sinosa, followed by GBDT, RF and ANN. Additionally, the study employed the Combined Drought Index (CDI) to monitor agricultural and meteorological drought over two decades, by combining four key parameters, PCI, VCI, TCI and ETCI, validating its accuracy through comparison with other drought indices. CDI exhibited positive correlations with VHI, SPI and crop yield, with a particularly strong and statistically significant correlation observed with VHI (r = 0.83). Therefore, CDI was recommended as an effective method and index for assessing and monitoring drought across Argane forest stands area. The findings demonstrated the potential of advanced machine learning models for improving precipitation data resolution and enhancing agricultural drought monitoring, contributing to better land and hydrological management. |
Author | Mouafik, Mohamed Fouad, Mounir El Aboudi, Ahmed |
Author_xml | – sequence: 1 givenname: Mohamed orcidid: 0000-0003-4420-8068 surname: Mouafik fullname: Mouafik, Mohamed – sequence: 2 givenname: Mounir surname: Fouad fullname: Fouad, Mounir – sequence: 3 givenname: Ahmed surname: El Aboudi fullname: El Aboudi, Ahmed |
BookMark | eNptkdtuGyEQhlGUSknTvEKE1Gs3nHaX7Z3lnCzZatXDRa4QC8May4YNYKl9mT5rcVxVvegNg4Z_vp-ZeYvOQwyA0A0lHzjvya0ek4cw-gCQfBhbwgnl4gxdspaJWScIO__nfoGuc94SQlhDRNP3l-jXWptNrcYr0ClUAl5D2USbsYsJf05gvSnH9DyNOniN8-RDzBovUpzws4edxTrYY7mrGtB4GSz8-IjneBH3QyVbfJfiYdyU0wueT1OK1RS7FPd4fdgVn-MhGcBfYB8L4K8Q8tHxThf9Dr1xepfh-k-8Qt8f7r8tnmarT4_LxXw1M5zyMmP17KW0tJOuYQMD0QEVnA-26a00oqGsk2AGWocg2oE7La1hDQDvDVhq-RVanrg26q2akt_r9FNF7dVrIqZR6VS82YGSHQXuWFcBVMiBS8aga10z2BagWlXW-xOr9vlygFzUtvYX6vcVp5QwySXhVdWeVCbFnBO4v66UqONq1f9Xy38D81eeHg |
Cites_doi | 10.3390/environsciproc2022016025 10.3390/app9071459 10.1002/vzj2.20182 10.1080/00330124.2020.1730197 10.3390/agronomy10071046 10.1007/s41324-020-00346-6 10.1080/10106049.2019.1633423 10.1145/2939672.2939785 10.1023/A:1010933404324 10.3390/rs5115926 10.1109/ACCESS.2021.3075159 10.1016/j.rse.2012.12.002 10.1016/j.advwatres.2013.08.011 10.1007/s11356-020-12146-4 10.3390/agriculture13010225 10.1016/j.biosystemseng.2020.02.014 10.1111/j.2517-6161.1996.tb02080.x 10.1002/jsfa.10696 10.3390/su9101912 10.3390/rs11060605 10.1007/s11356-020-12124-w 10.3390/rs70505849 10.3390/rs10010119 10.1016/j.rse.2016.12.010 10.2139/ssrn.4463416 10.1038/sdata.2015.66 10.3389/fpls.2021.783615 10.3390/rs9040309 10.1007/s41748-018-0055-9 10.1109/JSTARS.2021.3052194 10.1080/08839514.2019.1592343 10.3390/s22030719 10.1016/j.asr.2024.02.031 10.1016/j.rse.2008.10.004 10.1007/BF00116251 10.1023/B:STCO.0000035301.49549.88 10.1016/j.scitotenv.2019.134585 10.1016/S1672-6308(11)60020-6 10.1175/1520-0477(2001)082<1949:OSTFGV>2.3.CO;2 10.3390/rs16010200 10.1016/0273-1177(95)00079-T 10.20944/preprints202206.0120.v1 10.3389/fncom.2017.00112 10.1080/01431161.2017.1312031 10.1214/aos/1013203451 10.1016/j.asr.2023.07.006 10.1659/MRD-JOURNAL-D-14-00119.1 10.1186/s13007-021-00750-5 10.3390/rs12233860 10.1126/science.aaa8415 |
ContentType | Journal Article |
Copyright | 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7X2 8FE 8FH 8FK ABUWG AFKRA ATCPS AZQEC BENPR BHPHI CCPQU DWQXO HCIFZ M0K PIMPY PQEST PQQKQ PQUKI DOA |
DOI | 10.3390/agriengineering6030134 |
DatabaseName | CrossRef ProQuest Central (Corporate) Agricultural Science Collection ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection Agriculture Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Directory of Open Access Journals |
DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database ProQuest Central Essentials ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest SciTech Collection ProQuest Central ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest One Academic ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Agricultural Science Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 2624-7402 |
EndPage | 2306 |
ExternalDocumentID | oai_doaj_org_article_871e3f27dc2148b3822e76f5bd6eec45 10_3390_agriengineering6030134 |
GeographicLocations | Morocco |
GeographicLocations_xml | – name: Morocco |
GroupedDBID | 7X2 AADQD AAFWJ AAHBH AAYXX ABDBF AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ATCPS BENPR BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ IAG IAO ITC M0K MODMG M~E OK1 PIMPY 3V. 8FE 8FH 8FK ABUWG AZQEC DWQXO PQEST PQQKQ PQUKI |
ID | FETCH-LOGICAL-c313t-2313988d178f52b2e47e1433bd59d8c451278ecb174046b3fa8dc25ee39ced1d3 |
IEDL.DBID | DOA |
ISSN | 2624-7402 |
IngestDate | Tue Oct 22 15:01:47 EDT 2024 Tue Nov 05 13:25:42 EST 2024 Fri Nov 22 02:46:14 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c313t-2313988d178f52b2e47e1433bd59d8c451278ecb174046b3fa8dc25ee39ced1d3 |
ORCID | 0000-0003-4420-8068 |
OpenAccessLink | https://doaj.org/article/871e3f27dc2148b3822e76f5bd6eec45 |
PQID | 3110283803 |
PQPubID | 5046921 |
PageCount | 24 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_871e3f27dc2148b3822e76f5bd6eec45 proquest_journals_3110283803 crossref_primary_10_3390_agriengineering6030134 |
PublicationCentury | 2000 |
PublicationDate | 2024-09-01 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | AgriEngineering |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_50 Shi (ref_42) 2015; 7 Zhang (ref_11) 2021; 28 ref_14 Pedregosa (ref_30) 2011; 12 Zhang (ref_55) 2021; 14 ref_51 Kogan (ref_15) 2001; 82 ref_17 ref_16 Li (ref_8) 2011; 18 Friedman (ref_31) 2001; 29 Shi (ref_41) 2015; 35 Funk (ref_21) 2015; 2 Kogan (ref_27) 1995; 15 ref_24 ref_23 ref_22 Du (ref_13) 2013; 23 Smola (ref_36) 2004; 14 Mouafik (ref_1) 2024; 73 Jordan (ref_45) 2015; 349 Immerzeel (ref_39) 2009; 113 Rashid (ref_19) 2021; 9 ref_26 Zhang (ref_20) 2021; 17 Prasad (ref_6) 2021; 29 Ali (ref_52) 2021; 28 Retalis (ref_43) 2017; 38 Bhargavi (ref_46) 2019; 33 Gidey (ref_53) 2018; 2 Duan (ref_40) 2013; 131 Quinlan (ref_35) 1986; 1 Breiman (ref_32) 2001; 45 ref_34 Feng (ref_10) 2020; 193 ref_33 Fang (ref_44) 2013; 61 Jhajharia (ref_18) 2023; 72 Gbetkom (ref_28) 2020; 72 ref_38 Zhang (ref_12) 2017; 190 Tibshiranit (ref_37) 1996; 58 Sharifi (ref_47) 2021; 101 Han (ref_29) 2021; 36 Liu (ref_54) 2020; 711 ref_3 ref_2 Xin (ref_9) 2013; 5 ref_49 ref_48 ref_5 Fang (ref_25) 2022; 21 ref_4 ref_7 |
References_xml | – ident: ref_4 doi: 10.3390/environsciproc2022016025 – ident: ref_49 doi: 10.3390/app9071459 – volume: 21 start-page: e20182 year: 2022 ident: ref_25 article-title: A Global 1-Km Downscaled SMAP Soil Moisture Product Based on Thermal Inertia Theory publication-title: Vadose Zone J. doi: 10.1002/vzj2.20182 contributor: fullname: Fang – volume: 72 start-page: 421 year: 2020 ident: ref_28 article-title: A New Index to Better Detect and Monitor Agricultural Drought in Niger Using Multisensor Remote Sensing Data publication-title: Prof. Geogr. doi: 10.1080/00330124.2020.1730197 contributor: fullname: Gbetkom – ident: ref_48 doi: 10.3390/agronomy10071046 – volume: 29 start-page: 195 year: 2021 ident: ref_6 article-title: Crop Yield Prediction in Cotton for Regional Level Using Random Forest Approach publication-title: Spat. Inf. Res. doi: 10.1007/s41324-020-00346-6 contributor: fullname: Prasad – volume: 36 start-page: 1161 year: 2021 ident: ref_29 article-title: A Combined Drought Monitoring Index Based on Multi-Sensor Remote Sensing Data and Machine Learning publication-title: Geocarto Int. doi: 10.1080/10106049.2019.1633423 contributor: fullname: Han – ident: ref_34 doi: 10.1145/2939672.2939785 – volume: 45 start-page: 5 year: 2001 ident: ref_32 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 contributor: fullname: Breiman – volume: 5 start-page: 5926 year: 2013 ident: ref_9 article-title: A Production Efficiency Model-Based Method for Satellite Estimates of Corn and Soybean Yields in the Midwestern US publication-title: Remote Sens. doi: 10.3390/rs5115926 contributor: fullname: Xin – volume: 9 start-page: 63406 year: 2021 ident: ref_19 article-title: A Comprehensive Review of Crop Yield Prediction Using Machine Learning Approaches with Special Emphasis on Palm Oil Yield Prediction publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3075159 contributor: fullname: Rashid – ident: ref_23 – volume: 131 start-page: 1 year: 2013 ident: ref_40 article-title: First Results from Version 7 TRMM 3B43 Precipitation Product in Combination with a New Downscaling-Calibration Procedure publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.12.002 contributor: fullname: Duan – volume: 61 start-page: 42 year: 2013 ident: ref_44 article-title: Spatial Downscaling of TRMM Precipitation Data Based on the Orographical Effect and Meteorological Conditions in a Mountainous Area publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2013.08.011 contributor: fullname: Fang – volume: 23 start-page: 245 year: 2013 ident: ref_13 article-title: A Comprehensive Drought Monitoring Method Integrating MODIS and TRMM Data publication-title: Int. J. Appl. Earth Obs. Geoinf. contributor: fullname: Du – volume: 28 start-page: 21910 year: 2021 ident: ref_52 article-title: Monitoring Drought Events and Vegetation Dynamics in Relation to Climate Change over Mainland China from 1983 to 2016 publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-020-12146-4 contributor: fullname: Ali – ident: ref_7 doi: 10.3390/agriculture13010225 – volume: 193 start-page: 101 year: 2020 ident: ref_10 article-title: Yield Estimation in Cotton Using UAV-Based Multi-Sensor Imagery publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2020.02.014 contributor: fullname: Feng – volume: 12 start-page: 2825 year: 2011 ident: ref_30 article-title: Scikit-Learn: Machine Learning in Python publication-title: J. Mach. Learn. Res. contributor: fullname: Pedregosa – volume: 58 start-page: 267 year: 1996 ident: ref_37 article-title: Regression Shrinkage and Selection Via the Lasso publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. doi: 10.1111/j.2517-6161.1996.tb02080.x contributor: fullname: Tibshiranit – volume: 101 start-page: 891 year: 2021 ident: ref_47 article-title: Yield Prediction with Machine Learning Algorithms and Satellite Images publication-title: J. Sci. Food Agric. doi: 10.1002/jsfa.10696 contributor: fullname: Sharifi – ident: ref_33 doi: 10.3390/su9101912 – ident: ref_51 doi: 10.3390/rs11060605 – volume: 28 start-page: 21085 year: 2021 ident: ref_11 article-title: Remote Sensing Strategies to Characterization of Drought, Vegetation Dynamics in Relation to Climate Change from 1983 to 2016 in Tibet and Xinjiang Province, China publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-020-12124-w contributor: fullname: Zhang – volume: 7 start-page: 5849 year: 2015 ident: ref_42 article-title: Mapping Annual Precipitation across Mainland China in the Period 2001–2010 from TRMM3B43 Product Using Spatial Downscaling Approach publication-title: Remote Sens. doi: 10.3390/rs70505849 contributor: fullname: Shi – ident: ref_26 doi: 10.3390/rs10010119 – volume: 190 start-page: 96 year: 2017 ident: ref_12 article-title: Studying Drought Phenomena in the Continental United States in 2011 and 2012 Using Various Drought Indices publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.12.010 contributor: fullname: Zhang – ident: ref_5 doi: 10.2139/ssrn.4463416 – volume: 2 start-page: 150066 year: 2015 ident: ref_21 article-title: The Climate Hazards Infrared Precipitation with Stations—A New Environmental Record for Monitoring Extremes publication-title: Sci. Data doi: 10.1038/sdata.2015.66 contributor: fullname: Funk – ident: ref_3 – ident: ref_2 doi: 10.3389/fpls.2021.783615 – ident: ref_50 doi: 10.3390/rs9040309 – volume: 2 start-page: 265 year: 2018 ident: ref_53 article-title: Using Drought Indices to Model the Statistical Relationships Between Meteorological and Agricultural Drought in Raya and Its Environs, Northern Ethiopia publication-title: Earth Syst. Environ. doi: 10.1007/s41748-018-0055-9 contributor: fullname: Gidey – volume: 14 start-page: 2113 year: 2021 ident: ref_55 article-title: Establishment of a Comprehensive Drought Monitoring Index Based on Multisource Remote Sensing Data and Agricultural Drought Monitoring publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2021.3052194 contributor: fullname: Zhang – volume: 33 start-page: 621 year: 2019 ident: ref_46 article-title: Performance Evaluation of Best Feature Subsets for Crop Yield Prediction Using Machine Learning Algorithms publication-title: Appl. Artif. Intell. doi: 10.1080/08839514.2019.1592343 contributor: fullname: Bhargavi – ident: ref_14 doi: 10.3390/s22030719 – volume: 73 start-page: 4976 year: 2024 ident: ref_1 article-title: Comparative Analysis of Multi-Source Data for Machine Learning-Based LAI Estimation in Argania Spinosa publication-title: Adv. Space Res. doi: 10.1016/j.asr.2024.02.031 contributor: fullname: Mouafik – volume: 113 start-page: 362 year: 2009 ident: ref_39 article-title: Spatial Downscaling of TRMM Precipitation Using Vegetative Response on the Iberian Peninsula publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2008.10.004 contributor: fullname: Immerzeel – volume: 1 start-page: 81 year: 1986 ident: ref_35 article-title: Induction of decision trees publication-title: Mach. Learn. doi: 10.1007/BF00116251 contributor: fullname: Quinlan – volume: 14 start-page: 199 year: 2004 ident: ref_36 article-title: A Tutorial on Support Vector Regression publication-title: Stat. Comput. doi: 10.1023/B:STCO.0000035301.49549.88 contributor: fullname: Smola – volume: 711 start-page: 134585 year: 2020 ident: ref_54 article-title: Monitoring Drought Using Composite Drought Indices Based on Remote Sensing publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.134585 contributor: fullname: Liu – volume: 18 start-page: 142 year: 2011 ident: ref_8 article-title: Estimating Rice Yield by HJ-1A Satellite Images publication-title: Rice Sci. doi: 10.1016/S1672-6308(11)60020-6 contributor: fullname: Li – volume: 82 start-page: 1949 year: 2001 ident: ref_15 article-title: Operational space technology for global vegetation assessment publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/1520-0477(2001)082<1949:OSTFGV>2.3.CO;2 contributor: fullname: Kogan – ident: ref_24 doi: 10.3390/rs16010200 – volume: 15 start-page: 91 year: 1995 ident: ref_27 article-title: Application of Vegetation Index and Brightness Temperature for Drought Detection publication-title: Adv. Space Res. doi: 10.1016/0273-1177(95)00079-T contributor: fullname: Kogan – ident: ref_17 doi: 10.20944/preprints202206.0120.v1 – ident: ref_38 doi: 10.3389/fncom.2017.00112 – volume: 38 start-page: 3943 year: 2017 ident: ref_43 article-title: Downscaling CHIRPS Precipitation Data: An Artificial Neural Network Modelling Approach publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2017.1312031 contributor: fullname: Retalis – volume: 29 start-page: 1189 year: 2001 ident: ref_31 article-title: Greedy function approximation: A gradient boosting machine publication-title: Ann. Stat. doi: 10.1214/aos/1013203451 contributor: fullname: Friedman – volume: 72 start-page: 3998 year: 2023 ident: ref_18 article-title: Prediction of Crop Yield Using Satellite Vegetation Indices Combined with Machine Learning Approaches publication-title: Adv. Space Res. doi: 10.1016/j.asr.2023.07.006 contributor: fullname: Jhajharia – ident: ref_22 – volume: 35 start-page: 180 year: 2015 ident: ref_41 article-title: Spatial Downscaling of Monthly TRMM Precipitation Based on EVI and Other Geospatial Variables over the Tibetan Plateau from 2001 to 2012 publication-title: Mt. Res. Dev. doi: 10.1659/MRD-JOURNAL-D-14-00119.1 contributor: fullname: Shi – volume: 17 start-page: 49 year: 2021 ident: ref_20 article-title: Leaf Area Index Estimation Model for UAV Image Hyperspectral Data Based on Wavelength Variable Selection and Machine Learning Methods publication-title: Plant Methods doi: 10.1186/s13007-021-00750-5 contributor: fullname: Zhang – ident: ref_16 doi: 10.3390/rs12233860 – volume: 349 start-page: 255 year: 2015 ident: ref_45 article-title: Machine Learning: Trends, Perspectives, and Prospects publication-title: Science doi: 10.1126/science.aaa8415 contributor: fullname: Jordan |
SSID | ssj0002504599 |
Score | 2.325056 |
Snippet | In this study, we explored the efficacy of random forest algorithms in downscaling CHIRPS (Climate Hazards Group InfraRed Precipitation with Station data)... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database |
StartPage | 2283 |
SubjectTerms | Accuracy Agricultural drought Agricultural production Algorithms Argania spinosa (L.) Skeels Artificial neural networks Climate change Climate prediction Crop yield crop yield prediction Crops Decision making Decision trees Drought Drought index Effectiveness Environmental hazards Environmental monitoring Hydrologic data Hydrology Leaf area Leaf area index Learning algorithms Leaves Machine learning Meteorological satellites Observational learning Parameter estimation Performance prediction Precipitation Productivity Rain gauges Random variables Remote sensing spatial downscaling Statistical analysis Sustainable agriculture Vegetation |
Title | Machine Learning Methods for Predicting Argania spinosa Crop Yield and Leaf Area Index: A Combined Drought Index Approach from Multisource Remote Sensing Data |
URI | https://www.proquest.com/docview/3110283803 https://doaj.org/article/871e3f27dc2148b3822e76f5bd6eec45 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T-QwELU4KihOfIo9PjQFbbTEdhKHbmFBUIAQcNJRRXY8WdFkV5vl79xvZcYOKxBINLSOE0eeif2eM_NGiGMvfaNs2iQGnU50iphYJCDnjNel8057xwduVw_F7T8zvmCZnGWpL44Ji_LAceKGBOhRNbLwtSTk7hRtaFjkTeZ8jljrqF56kr8jU7wGszBXVpYxJVgRrx_aCesGLyX-cqYCSn_YjYJo_6c1OWw0lxvid48QYRTfbFOsYLsl1keTea-Sgdvi_00IgUTo1VEncBMKQXdAEBTu5vzzhcOZ6SGcaWmhmz23087C-Xw6gycOWgPber69oT5o4ZpFE09hBLQ-EFdGD-NQv2cRr8Colx4HTkeBkLUbj_3hHsnYCA8cCE8jju3C7oi_lxeP51dJX2ghqVWqFglhPFUa49PCNJl0EnWBhKOU81npDU1yKguDtSP2QnTaqcYaMkeGqMoaferVrlhtpy3uCUBJGET5WmvMdC6dq20pTaOLnBqKzA7E8G3Cq1nU06iIh7CJqq9NNBBnbJdlb9bDDg3kJVXvJdV3XjIQB29WrfqPtKtUGtCVOVF_fmKMfbEmCfHEALQDsbqYv-Ch-NX5l6PgnK9wKe2H |
link.rule.ids | 315,782,786,866,2106,27933,27934 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning+Methods+for+Predicting+Argania+spinosa+Crop+Yield+and+Leaf+Area+Index%3A+A+Combined+Drought+Index+Approach+from+Multisource+Remote+Sensing+Data&rft.jtitle=AgriEngineering&rft.au=Mouafik%2C+Mohamed&rft.au=Fouad%2C+Mounir&rft.au=Ahmed+El+Aboudi&rft.date=2024-09-01&rft.pub=MDPI+AG&rft.eissn=2624-7402&rft.volume=6&rft.issue=3&rft.spage=2283&rft_id=info:doi/10.3390%2Fagriengineering6030134&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2624-7402&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2624-7402&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2624-7402&client=summon |