Machine Learning Methods for Predicting Argania spinosa Crop Yield and Leaf Area Index: A Combined Drought Index Approach from Multisource Remote Sensing Data

In this study, we explored the efficacy of random forest algorithms in downscaling CHIRPS (Climate Hazards Group InfraRed Precipitation with Station data) precipitation data to predict Argane stand traits. Nonparametric regression integrated original CHIRPS data with environmental variables, demonst...

Full description

Saved in:
Bibliographic Details
Published in:AgriEngineering Vol. 6; no. 3; pp. 2283 - 2306
Main Authors: Mouafik, Mohamed, Fouad, Mounir, El Aboudi, Ahmed
Format: Journal Article
Language:English
Published: Basel MDPI AG 01-09-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this study, we explored the efficacy of random forest algorithms in downscaling CHIRPS (Climate Hazards Group InfraRed Precipitation with Station data) precipitation data to predict Argane stand traits. Nonparametric regression integrated original CHIRPS data with environmental variables, demonstrating enhanced accuracy aligned with ground rain gauge observations after residual correction. Furthermore, we explored the performance of range machine learning algorithms, encompassing XGBoost, GBDT, RF, DT, SVR, LR and ANN, in predicting the Leaf Area Index (LAI) and crop yield of Argane trees using condition index-based drought indices such as PCI, VCI, TCI and ETCI derived from multi-sensor satellites. The results demonstrated the superiority of XGBoost in estimating these parameters, with drought indices used as input. XGBoost-based crop yield achieved a higher R2 value of 0.94 and a lower RMSE of 6.25 kg/ha. Similarly, the XGBoost-based LAI model showed the highest level of accuracy, with an R2 of 0.62 and an RMSE of 0.67. The XGBoost model demonstrated superior performance in predicting the crop yield and LAI estimation of Argania sinosa, followed by GBDT, RF and ANN. Additionally, the study employed the Combined Drought Index (CDI) to monitor agricultural and meteorological drought over two decades, by combining four key parameters, PCI, VCI, TCI and ETCI, validating its accuracy through comparison with other drought indices. CDI exhibited positive correlations with VHI, SPI and crop yield, with a particularly strong and statistically significant correlation observed with VHI (r = 0.83). Therefore, CDI was recommended as an effective method and index for assessing and monitoring drought across Argane forest stands area. The findings demonstrated the potential of advanced machine learning models for improving precipitation data resolution and enhancing agricultural drought monitoring, contributing to better land and hydrological management.
AbstractList In this study, we explored the efficacy of random forest algorithms in downscaling CHIRPS (Climate Hazards Group InfraRed Precipitation with Station data) precipitation data to predict Argane stand traits. Nonparametric regression integrated original CHIRPS data with environmental variables, demonstrating enhanced accuracy aligned with ground rain gauge observations after residual correction. Furthermore, we explored the performance of range machine learning algorithms, encompassing XGBoost, GBDT, RF, DT, SVR, LR and ANN, in predicting the Leaf Area Index (LAI) and crop yield of Argane trees using condition index-based drought indices such as PCI, VCI, TCI and ETCI derived from multi-sensor satellites. The results demonstrated the superiority of XGBoost in estimating these parameters, with drought indices used as input. XGBoost-based crop yield achieved a higher R2 value of 0.94 and a lower RMSE of 6.25 kg/ha. Similarly, the XGBoost-based LAI model showed the highest level of accuracy, with an R2 of 0.62 and an RMSE of 0.67. The XGBoost model demonstrated superior performance in predicting the crop yield and LAI estimation of Argania sinosa, followed by GBDT, RF and ANN. Additionally, the study employed the Combined Drought Index (CDI) to monitor agricultural and meteorological drought over two decades, by combining four key parameters, PCI, VCI, TCI and ETCI, validating its accuracy through comparison with other drought indices. CDI exhibited positive correlations with VHI, SPI and crop yield, with a particularly strong and statistically significant correlation observed with VHI (r = 0.83). Therefore, CDI was recommended as an effective method and index for assessing and monitoring drought across Argane forest stands area. The findings demonstrated the potential of advanced machine learning models for improving precipitation data resolution and enhancing agricultural drought monitoring, contributing to better land and hydrological management.
Author Mouafik, Mohamed
Fouad, Mounir
El Aboudi, Ahmed
Author_xml – sequence: 1
  givenname: Mohamed
  orcidid: 0000-0003-4420-8068
  surname: Mouafik
  fullname: Mouafik, Mohamed
– sequence: 2
  givenname: Mounir
  surname: Fouad
  fullname: Fouad, Mounir
– sequence: 3
  givenname: Ahmed
  surname: El Aboudi
  fullname: El Aboudi, Ahmed
BookMark eNptkdtuGyEQhlGUSknTvEKE1Gs3nHaX7Z3lnCzZatXDRa4QC8May4YNYKl9mT5rcVxVvegNg4Z_vp-ZeYvOQwyA0A0lHzjvya0ek4cw-gCQfBhbwgnl4gxdspaJWScIO__nfoGuc94SQlhDRNP3l-jXWptNrcYr0ClUAl5D2USbsYsJf05gvSnH9DyNOniN8-RDzBovUpzws4edxTrYY7mrGtB4GSz8-IjneBH3QyVbfJfiYdyU0wueT1OK1RS7FPd4fdgVn-MhGcBfYB8L4K8Q8tHxThf9Dr1xepfh-k-8Qt8f7r8tnmarT4_LxXw1M5zyMmP17KW0tJOuYQMD0QEVnA-26a00oqGsk2AGWocg2oE7La1hDQDvDVhq-RVanrg26q2akt_r9FNF7dVrIqZR6VS82YGSHQXuWFcBVMiBS8aga10z2BagWlXW-xOr9vlygFzUtvYX6vcVp5QwySXhVdWeVCbFnBO4v66UqONq1f9Xy38D81eeHg
Cites_doi 10.3390/environsciproc2022016025
10.3390/app9071459
10.1002/vzj2.20182
10.1080/00330124.2020.1730197
10.3390/agronomy10071046
10.1007/s41324-020-00346-6
10.1080/10106049.2019.1633423
10.1145/2939672.2939785
10.1023/A:1010933404324
10.3390/rs5115926
10.1109/ACCESS.2021.3075159
10.1016/j.rse.2012.12.002
10.1016/j.advwatres.2013.08.011
10.1007/s11356-020-12146-4
10.3390/agriculture13010225
10.1016/j.biosystemseng.2020.02.014
10.1111/j.2517-6161.1996.tb02080.x
10.1002/jsfa.10696
10.3390/su9101912
10.3390/rs11060605
10.1007/s11356-020-12124-w
10.3390/rs70505849
10.3390/rs10010119
10.1016/j.rse.2016.12.010
10.2139/ssrn.4463416
10.1038/sdata.2015.66
10.3389/fpls.2021.783615
10.3390/rs9040309
10.1007/s41748-018-0055-9
10.1109/JSTARS.2021.3052194
10.1080/08839514.2019.1592343
10.3390/s22030719
10.1016/j.asr.2024.02.031
10.1016/j.rse.2008.10.004
10.1007/BF00116251
10.1023/B:STCO.0000035301.49549.88
10.1016/j.scitotenv.2019.134585
10.1016/S1672-6308(11)60020-6
10.1175/1520-0477(2001)082<1949:OSTFGV>2.3.CO;2
10.3390/rs16010200
10.1016/0273-1177(95)00079-T
10.20944/preprints202206.0120.v1
10.3389/fncom.2017.00112
10.1080/01431161.2017.1312031
10.1214/aos/1013203451
10.1016/j.asr.2023.07.006
10.1659/MRD-JOURNAL-D-14-00119.1
10.1186/s13007-021-00750-5
10.3390/rs12233860
10.1126/science.aaa8415
ContentType Journal Article
Copyright 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7X2
8FE
8FH
8FK
ABUWG
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
CCPQU
DWQXO
HCIFZ
M0K
PIMPY
PQEST
PQQKQ
PQUKI
DOA
DOI 10.3390/agriengineering6030134
DatabaseName CrossRef
ProQuest Central (Corporate)
Agricultural Science Collection
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Agriculture Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Directory of Open Access Journals
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest SciTech Collection
ProQuest Central
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest One Academic
ProQuest Central (Alumni)
DatabaseTitleList CrossRef

Agricultural Science Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2624-7402
EndPage 2306
ExternalDocumentID oai_doaj_org_article_871e3f27dc2148b3822e76f5bd6eec45
10_3390_agriengineering6030134
GeographicLocations Morocco
GeographicLocations_xml – name: Morocco
GroupedDBID 7X2
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BENPR
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAG
IAO
ITC
M0K
MODMG
M~E
OK1
PIMPY
3V.
8FE
8FH
8FK
ABUWG
AZQEC
DWQXO
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c313t-2313988d178f52b2e47e1433bd59d8c451278ecb174046b3fa8dc25ee39ced1d3
IEDL.DBID DOA
ISSN 2624-7402
IngestDate Tue Oct 22 15:01:47 EDT 2024
Tue Nov 05 13:25:42 EST 2024
Fri Nov 22 02:46:14 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c313t-2313988d178f52b2e47e1433bd59d8c451278ecb174046b3fa8dc25ee39ced1d3
ORCID 0000-0003-4420-8068
OpenAccessLink https://doaj.org/article/871e3f27dc2148b3822e76f5bd6eec45
PQID 3110283803
PQPubID 5046921
PageCount 24
ParticipantIDs doaj_primary_oai_doaj_org_article_871e3f27dc2148b3822e76f5bd6eec45
proquest_journals_3110283803
crossref_primary_10_3390_agriengineering6030134
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle AgriEngineering
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Shi (ref_42) 2015; 7
Zhang (ref_11) 2021; 28
ref_14
Pedregosa (ref_30) 2011; 12
Zhang (ref_55) 2021; 14
ref_51
Kogan (ref_15) 2001; 82
ref_17
ref_16
Li (ref_8) 2011; 18
Friedman (ref_31) 2001; 29
Shi (ref_41) 2015; 35
Funk (ref_21) 2015; 2
Kogan (ref_27) 1995; 15
ref_24
ref_23
ref_22
Du (ref_13) 2013; 23
Smola (ref_36) 2004; 14
Mouafik (ref_1) 2024; 73
Jordan (ref_45) 2015; 349
Immerzeel (ref_39) 2009; 113
Rashid (ref_19) 2021; 9
ref_26
Zhang (ref_20) 2021; 17
Prasad (ref_6) 2021; 29
Ali (ref_52) 2021; 28
Retalis (ref_43) 2017; 38
Bhargavi (ref_46) 2019; 33
Gidey (ref_53) 2018; 2
Duan (ref_40) 2013; 131
Quinlan (ref_35) 1986; 1
Breiman (ref_32) 2001; 45
ref_34
Feng (ref_10) 2020; 193
ref_33
Fang (ref_44) 2013; 61
Jhajharia (ref_18) 2023; 72
Gbetkom (ref_28) 2020; 72
ref_38
Zhang (ref_12) 2017; 190
Tibshiranit (ref_37) 1996; 58
Sharifi (ref_47) 2021; 101
Han (ref_29) 2021; 36
Liu (ref_54) 2020; 711
ref_3
ref_2
Xin (ref_9) 2013; 5
ref_49
ref_48
ref_5
Fang (ref_25) 2022; 21
ref_4
ref_7
References_xml – ident: ref_4
  doi: 10.3390/environsciproc2022016025
– ident: ref_49
  doi: 10.3390/app9071459
– volume: 21
  start-page: e20182
  year: 2022
  ident: ref_25
  article-title: A Global 1-Km Downscaled SMAP Soil Moisture Product Based on Thermal Inertia Theory
  publication-title: Vadose Zone J.
  doi: 10.1002/vzj2.20182
  contributor:
    fullname: Fang
– volume: 72
  start-page: 421
  year: 2020
  ident: ref_28
  article-title: A New Index to Better Detect and Monitor Agricultural Drought in Niger Using Multisensor Remote Sensing Data
  publication-title: Prof. Geogr.
  doi: 10.1080/00330124.2020.1730197
  contributor:
    fullname: Gbetkom
– ident: ref_48
  doi: 10.3390/agronomy10071046
– volume: 29
  start-page: 195
  year: 2021
  ident: ref_6
  article-title: Crop Yield Prediction in Cotton for Regional Level Using Random Forest Approach
  publication-title: Spat. Inf. Res.
  doi: 10.1007/s41324-020-00346-6
  contributor:
    fullname: Prasad
– volume: 36
  start-page: 1161
  year: 2021
  ident: ref_29
  article-title: A Combined Drought Monitoring Index Based on Multi-Sensor Remote Sensing Data and Machine Learning
  publication-title: Geocarto Int.
  doi: 10.1080/10106049.2019.1633423
  contributor:
    fullname: Han
– ident: ref_34
  doi: 10.1145/2939672.2939785
– volume: 45
  start-page: 5
  year: 2001
  ident: ref_32
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
  contributor:
    fullname: Breiman
– volume: 5
  start-page: 5926
  year: 2013
  ident: ref_9
  article-title: A Production Efficiency Model-Based Method for Satellite Estimates of Corn and Soybean Yields in the Midwestern US
  publication-title: Remote Sens.
  doi: 10.3390/rs5115926
  contributor:
    fullname: Xin
– volume: 9
  start-page: 63406
  year: 2021
  ident: ref_19
  article-title: A Comprehensive Review of Crop Yield Prediction Using Machine Learning Approaches with Special Emphasis on Palm Oil Yield Prediction
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3075159
  contributor:
    fullname: Rashid
– ident: ref_23
– volume: 131
  start-page: 1
  year: 2013
  ident: ref_40
  article-title: First Results from Version 7 TRMM 3B43 Precipitation Product in Combination with a New Downscaling-Calibration Procedure
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.12.002
  contributor:
    fullname: Duan
– volume: 61
  start-page: 42
  year: 2013
  ident: ref_44
  article-title: Spatial Downscaling of TRMM Precipitation Data Based on the Orographical Effect and Meteorological Conditions in a Mountainous Area
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2013.08.011
  contributor:
    fullname: Fang
– volume: 23
  start-page: 245
  year: 2013
  ident: ref_13
  article-title: A Comprehensive Drought Monitoring Method Integrating MODIS and TRMM Data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  contributor:
    fullname: Du
– volume: 28
  start-page: 21910
  year: 2021
  ident: ref_52
  article-title: Monitoring Drought Events and Vegetation Dynamics in Relation to Climate Change over Mainland China from 1983 to 2016
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-020-12146-4
  contributor:
    fullname: Ali
– ident: ref_7
  doi: 10.3390/agriculture13010225
– volume: 193
  start-page: 101
  year: 2020
  ident: ref_10
  article-title: Yield Estimation in Cotton Using UAV-Based Multi-Sensor Imagery
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2020.02.014
  contributor:
    fullname: Feng
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref_30
  article-title: Scikit-Learn: Machine Learning in Python
  publication-title: J. Mach. Learn. Res.
  contributor:
    fullname: Pedregosa
– volume: 58
  start-page: 267
  year: 1996
  ident: ref_37
  article-title: Regression Shrinkage and Selection Via the Lasso
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
  doi: 10.1111/j.2517-6161.1996.tb02080.x
  contributor:
    fullname: Tibshiranit
– volume: 101
  start-page: 891
  year: 2021
  ident: ref_47
  article-title: Yield Prediction with Machine Learning Algorithms and Satellite Images
  publication-title: J. Sci. Food Agric.
  doi: 10.1002/jsfa.10696
  contributor:
    fullname: Sharifi
– ident: ref_33
  doi: 10.3390/su9101912
– ident: ref_51
  doi: 10.3390/rs11060605
– volume: 28
  start-page: 21085
  year: 2021
  ident: ref_11
  article-title: Remote Sensing Strategies to Characterization of Drought, Vegetation Dynamics in Relation to Climate Change from 1983 to 2016 in Tibet and Xinjiang Province, China
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-020-12124-w
  contributor:
    fullname: Zhang
– volume: 7
  start-page: 5849
  year: 2015
  ident: ref_42
  article-title: Mapping Annual Precipitation across Mainland China in the Period 2001–2010 from TRMM3B43 Product Using Spatial Downscaling Approach
  publication-title: Remote Sens.
  doi: 10.3390/rs70505849
  contributor:
    fullname: Shi
– ident: ref_26
  doi: 10.3390/rs10010119
– volume: 190
  start-page: 96
  year: 2017
  ident: ref_12
  article-title: Studying Drought Phenomena in the Continental United States in 2011 and 2012 Using Various Drought Indices
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.12.010
  contributor:
    fullname: Zhang
– ident: ref_5
  doi: 10.2139/ssrn.4463416
– volume: 2
  start-page: 150066
  year: 2015
  ident: ref_21
  article-title: The Climate Hazards Infrared Precipitation with Stations—A New Environmental Record for Monitoring Extremes
  publication-title: Sci. Data
  doi: 10.1038/sdata.2015.66
  contributor:
    fullname: Funk
– ident: ref_3
– ident: ref_2
  doi: 10.3389/fpls.2021.783615
– ident: ref_50
  doi: 10.3390/rs9040309
– volume: 2
  start-page: 265
  year: 2018
  ident: ref_53
  article-title: Using Drought Indices to Model the Statistical Relationships Between Meteorological and Agricultural Drought in Raya and Its Environs, Northern Ethiopia
  publication-title: Earth Syst. Environ.
  doi: 10.1007/s41748-018-0055-9
  contributor:
    fullname: Gidey
– volume: 14
  start-page: 2113
  year: 2021
  ident: ref_55
  article-title: Establishment of a Comprehensive Drought Monitoring Index Based on Multisource Remote Sensing Data and Agricultural Drought Monitoring
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2021.3052194
  contributor:
    fullname: Zhang
– volume: 33
  start-page: 621
  year: 2019
  ident: ref_46
  article-title: Performance Evaluation of Best Feature Subsets for Crop Yield Prediction Using Machine Learning Algorithms
  publication-title: Appl. Artif. Intell.
  doi: 10.1080/08839514.2019.1592343
  contributor:
    fullname: Bhargavi
– ident: ref_14
  doi: 10.3390/s22030719
– volume: 73
  start-page: 4976
  year: 2024
  ident: ref_1
  article-title: Comparative Analysis of Multi-Source Data for Machine Learning-Based LAI Estimation in Argania Spinosa
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2024.02.031
  contributor:
    fullname: Mouafik
– volume: 113
  start-page: 362
  year: 2009
  ident: ref_39
  article-title: Spatial Downscaling of TRMM Precipitation Using Vegetative Response on the Iberian Peninsula
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.10.004
  contributor:
    fullname: Immerzeel
– volume: 1
  start-page: 81
  year: 1986
  ident: ref_35
  article-title: Induction of decision trees
  publication-title: Mach. Learn.
  doi: 10.1007/BF00116251
  contributor:
    fullname: Quinlan
– volume: 14
  start-page: 199
  year: 2004
  ident: ref_36
  article-title: A Tutorial on Support Vector Regression
  publication-title: Stat. Comput.
  doi: 10.1023/B:STCO.0000035301.49549.88
  contributor:
    fullname: Smola
– volume: 711
  start-page: 134585
  year: 2020
  ident: ref_54
  article-title: Monitoring Drought Using Composite Drought Indices Based on Remote Sensing
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.134585
  contributor:
    fullname: Liu
– volume: 18
  start-page: 142
  year: 2011
  ident: ref_8
  article-title: Estimating Rice Yield by HJ-1A Satellite Images
  publication-title: Rice Sci.
  doi: 10.1016/S1672-6308(11)60020-6
  contributor:
    fullname: Li
– volume: 82
  start-page: 1949
  year: 2001
  ident: ref_15
  article-title: Operational space technology for global vegetation assessment
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/1520-0477(2001)082<1949:OSTFGV>2.3.CO;2
  contributor:
    fullname: Kogan
– ident: ref_24
  doi: 10.3390/rs16010200
– volume: 15
  start-page: 91
  year: 1995
  ident: ref_27
  article-title: Application of Vegetation Index and Brightness Temperature for Drought Detection
  publication-title: Adv. Space Res.
  doi: 10.1016/0273-1177(95)00079-T
  contributor:
    fullname: Kogan
– ident: ref_17
  doi: 10.20944/preprints202206.0120.v1
– ident: ref_38
  doi: 10.3389/fncom.2017.00112
– volume: 38
  start-page: 3943
  year: 2017
  ident: ref_43
  article-title: Downscaling CHIRPS Precipitation Data: An Artificial Neural Network Modelling Approach
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2017.1312031
  contributor:
    fullname: Retalis
– volume: 29
  start-page: 1189
  year: 2001
  ident: ref_31
  article-title: Greedy function approximation: A gradient boosting machine
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1013203451
  contributor:
    fullname: Friedman
– volume: 72
  start-page: 3998
  year: 2023
  ident: ref_18
  article-title: Prediction of Crop Yield Using Satellite Vegetation Indices Combined with Machine Learning Approaches
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2023.07.006
  contributor:
    fullname: Jhajharia
– ident: ref_22
– volume: 35
  start-page: 180
  year: 2015
  ident: ref_41
  article-title: Spatial Downscaling of Monthly TRMM Precipitation Based on EVI and Other Geospatial Variables over the Tibetan Plateau from 2001 to 2012
  publication-title: Mt. Res. Dev.
  doi: 10.1659/MRD-JOURNAL-D-14-00119.1
  contributor:
    fullname: Shi
– volume: 17
  start-page: 49
  year: 2021
  ident: ref_20
  article-title: Leaf Area Index Estimation Model for UAV Image Hyperspectral Data Based on Wavelength Variable Selection and Machine Learning Methods
  publication-title: Plant Methods
  doi: 10.1186/s13007-021-00750-5
  contributor:
    fullname: Zhang
– ident: ref_16
  doi: 10.3390/rs12233860
– volume: 349
  start-page: 255
  year: 2015
  ident: ref_45
  article-title: Machine Learning: Trends, Perspectives, and Prospects
  publication-title: Science
  doi: 10.1126/science.aaa8415
  contributor:
    fullname: Jordan
SSID ssj0002504599
Score 2.325056
Snippet In this study, we explored the efficacy of random forest algorithms in downscaling CHIRPS (Climate Hazards Group InfraRed Precipitation with Station data)...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
StartPage 2283
SubjectTerms Accuracy
Agricultural drought
Agricultural production
Algorithms
Argania spinosa (L.) Skeels
Artificial neural networks
Climate change
Climate prediction
Crop yield
crop yield prediction
Crops
Decision making
Decision trees
Drought
Drought index
Effectiveness
Environmental hazards
Environmental monitoring
Hydrologic data
Hydrology
Leaf area
Leaf area index
Learning algorithms
Leaves
Machine learning
Meteorological satellites
Observational learning
Parameter estimation
Performance prediction
Precipitation
Productivity
Rain gauges
Random variables
Remote sensing
spatial downscaling
Statistical analysis
Sustainable agriculture
Vegetation
Title Machine Learning Methods for Predicting Argania spinosa Crop Yield and Leaf Area Index: A Combined Drought Index Approach from Multisource Remote Sensing Data
URI https://www.proquest.com/docview/3110283803
https://doaj.org/article/871e3f27dc2148b3822e76f5bd6eec45
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T-QwELU4KihOfIo9PjQFbbTEdhKHbmFBUIAQcNJRRXY8WdFkV5vl79xvZcYOKxBINLSOE0eeif2eM_NGiGMvfaNs2iQGnU50iphYJCDnjNel8057xwduVw_F7T8zvmCZnGWpL44Ji_LAceKGBOhRNbLwtSTk7hRtaFjkTeZ8jljrqF56kr8jU7wGszBXVpYxJVgRrx_aCesGLyX-cqYCSn_YjYJo_6c1OWw0lxvid48QYRTfbFOsYLsl1keTea-Sgdvi_00IgUTo1VEncBMKQXdAEBTu5vzzhcOZ6SGcaWmhmz23087C-Xw6gycOWgPber69oT5o4ZpFE09hBLQ-EFdGD-NQv2cRr8Colx4HTkeBkLUbj_3hHsnYCA8cCE8jju3C7oi_lxeP51dJX2ghqVWqFglhPFUa49PCNJl0EnWBhKOU81npDU1yKguDtSP2QnTaqcYaMkeGqMoaferVrlhtpy3uCUBJGET5WmvMdC6dq20pTaOLnBqKzA7E8G3Cq1nU06iIh7CJqq9NNBBnbJdlb9bDDg3kJVXvJdV3XjIQB29WrfqPtKtUGtCVOVF_fmKMfbEmCfHEALQDsbqYv-Ch-NX5l6PgnK9wKe2H
link.rule.ids 315,782,786,866,2106,27933,27934
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning+Methods+for+Predicting+Argania+spinosa+Crop+Yield+and+Leaf+Area+Index%3A+A+Combined+Drought+Index+Approach+from+Multisource+Remote+Sensing+Data&rft.jtitle=AgriEngineering&rft.au=Mouafik%2C+Mohamed&rft.au=Fouad%2C+Mounir&rft.au=Ahmed+El+Aboudi&rft.date=2024-09-01&rft.pub=MDPI+AG&rft.eissn=2624-7402&rft.volume=6&rft.issue=3&rft.spage=2283&rft_id=info:doi/10.3390%2Fagriengineering6030134&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2624-7402&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2624-7402&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2624-7402&client=summon