Thermophysical properties of tantalum carbide (TaC) within 2000–5500 K temperature range
Investigation of the tantalum carbide physical properties at temperatures ranging from 2000 to 5500 K during rapid current pulse heating were carried out. The experimental results were obtained on the 150 μm thick lamellas cut from the Spark Plasma Sintered bulk samples with a TaC0,9 composition. Th...
Saved in:
Published in: | Ceramics international Vol. 48; no. 14; pp. 19655 - 19661 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier Ltd
15-07-2022
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Investigation of the tantalum carbide physical properties at temperatures ranging from 2000 to 5500 K during rapid current pulse heating were carried out. The experimental results were obtained on the 150 μm thick lamellas cut from the Spark Plasma Sintered bulk samples with a TaC0,9 composition. The conducted experiments showed that carbide of this composition melts in a narrow temperature range of 4100–4300 K. Measured enthalpies at the beginning (Hsol) and at the end of melting (Hliq) were 1.55 kJ/g and 2.1 kJ/g respectively. Specific heat Cp and electrical resistance ρ were also determined experimentally depending on temperature for the solid and liquid state of the tantalum carbide. For the solid state at T = 2500 K Cp and ρ values were 0.4 J/gK and ∼280–290 μΩ•cm respectively. A sharp increase of the Cp at the vicinity of melting was found, possible reasons of which were considered. The data for the liquid phase were obtained for the first time. |
---|---|
AbstractList | Investigation of the tantalum carbide physical properties at temperatures ranging from 2000 to 5500 K during rapid current pulse heating were carried out. The experimental results were obtained on the 150 μm thick lamellas cut from the Spark Plasma Sintered bulk samples with a TaC0,9 composition. The conducted experiments showed that carbide of this composition melts in a narrow temperature range of 4100–4300 K. Measured enthalpies at the beginning (Hsol) and at the end of melting (Hliq) were 1.55 kJ/g and 2.1 kJ/g respectively. Specific heat Cp and electrical resistance ρ were also determined experimentally depending on temperature for the solid and liquid state of the tantalum carbide. For the solid state at T = 2500 K Cp and ρ values were 0.4 J/gK and ∼280–290 μΩ•cm respectively. A sharp increase of the Cp at the vicinity of melting was found, possible reasons of which were considered. The data for the liquid phase were obtained for the first time. |
Author | Moskovskikh, D.O. Savvatimskiy, A.I. Nepapushev, A.A. Valyano, G.V. Onufriev, S.V. |
Author_xml | – sequence: 1 givenname: A.I. surname: Savvatimskiy fullname: Savvatimskiy, A.I. email: savvatimskiy.alexander@gmail.com organization: Joint Institute for High Temperatures RAS, Moscow, Russia – sequence: 2 givenname: S.V. surname: Onufriev fullname: Onufriev, S.V. organization: Joint Institute for High Temperatures RAS, Moscow, Russia – sequence: 3 givenname: G.V. orcidid: 0000-0002-1677-9157 surname: Valyano fullname: Valyano, G.V. organization: Joint Institute for High Temperatures RAS, Moscow, Russia – sequence: 4 givenname: A.A. orcidid: 0000-0001-9017-9937 surname: Nepapushev fullname: Nepapushev, A.A. organization: National University of Science and Technology MISiS, Moscow, Russia – sequence: 5 givenname: D.O. orcidid: 0000-0001-5168-4885 surname: Moskovskikh fullname: Moskovskikh, D.O. email: mos@misis.ru, dmitry.moskovskikh@gmail.com organization: National University of Science and Technology MISiS, Moscow, Russia |
BookMark | eNqFkM1KAzEUhYNUsK2-gmSpixlvMpm_nVL8w4KbunIRbpM7NqUzUzKp0p3v4Av4LD6KT-KU6trVgQPf4fCN2KBpG2LsVEAsQGQXy9iQx9o1IZYgZQxJ38sDNhRFnkRJmWYDNgSZy6golDxio65bQg-WCobsebYgX7frxbZzBld87ds1-eCo423FAzYBV5uaG_RzZ4mfzXByzt9cWLiGSwD4fv9IU4CvzwceqO5RDBtP3GPzQsfssMJVRye_OWZPN9ezyV00fby9n1xNI5MIGSJSuVEIKs8zpKosU7RW2aoUJVRSKjOfE6KlIqmUwqJAoaQohVBWEYpUZcmYZftd49uu81TptXc1-q0WoHeK9FL_KdI7RRqSvpc9eLkHqX_36sjrzjhqDFnnyQRtW_ffxA_NLXaT |
CitedBy_id | crossref_primary_10_1016_j_ceramint_2023_08_035 crossref_primary_10_1016_j_oceram_2024_100598 crossref_primary_10_31857_S0044457X22602358 crossref_primary_10_3390_met13040818 crossref_primary_10_1364_OL_494970 crossref_primary_10_1016_j_compositesa_2024_108318 crossref_primary_10_1134_S0036023623600272 crossref_primary_10_1016_j_ceramint_2024_03_327 crossref_primary_10_1134_S0018151X2205011X |
Cites_doi | 10.1080/17436753.2018.1510819 10.1134/S0018151X18050206 10.1016/j.jeurceramsoc.2021.06.031 10.1007/s10853-020-04959-y 10.1038/srep37962 10.1088/2053-1591/ab6e39 10.1038/s41598-020-76945-y 10.1007/BF00773385 10.1007/s40145-021-0477-y 10.1070/PU1991v034n03ABEH002360 10.1038/srep37946 10.1016/j.ceramint.2021.09.053 10.1103/PhysRevB.92.020104 10.1016/0925-8388(94)01310-E 10.1016/j.commatsci.2021.110869 10.1557/jmr.2017.61 10.3103/S1062873818040172 10.3390/ma12172728 10.1016/j.ceramint.2020.03.158 10.1016/j.jallcom.2014.11.216 10.1070/PU1984v027n10ABEH004128 10.1111/j.1551-2916.2007.02253.x 10.1134/S1063778816140131 10.1134/S0018151X20060188 10.1016/j.jssc.2007.09.015 10.1111/j.1151-2916.1964.tb13128.x 10.3103/S1062873818040147 10.1016/j.apt.2020.12.018 10.1016/j.jeurceramsoc.2018.11.030 10.1016/j.ceramint.2021.07.180 |
ContentType | Journal Article |
Copyright | 2022 |
Copyright_xml | – notice: 2022 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ceramint.2022.03.102 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3956 |
EndPage | 19661 |
ExternalDocumentID | 10_1016_j_ceramint_2022_03_102 S0272884222008884 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABJNI ABMAC ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SMS SPC SPCBC SSM SSZ T5K ~G- AAQXK AAXKI AAYXX ABFNM ABXDB ACNNM ADMUD AFFNX AFJKZ AKRWK ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG RNS SEW WUQ XPP |
ID | FETCH-LOGICAL-c312t-e47c4a04776aef995add4df9190f224cbbeaade83f44a88a14219114d4ea15463 |
ISSN | 0272-8842 |
IngestDate | Thu Sep 26 15:45:58 EDT 2024 Fri Feb 23 02:40:30 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Keywords | Carbide Specific heat Heat of melting Pulse electrical heating Enthalpy TaC |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c312t-e47c4a04776aef995add4df9190f224cbbeaade83f44a88a14219114d4ea15463 |
ORCID | 0000-0002-1677-9157 0000-0001-9017-9937 0000-0001-5168-4885 |
PageCount | 7 |
ParticipantIDs | crossref_primary_10_1016_j_ceramint_2022_03_102 elsevier_sciencedirect_doi_10_1016_j_ceramint_2022_03_102 |
PublicationCentury | 2000 |
PublicationDate | 2022-07-15 |
PublicationDateYYYYMMDD | 2022-07-15 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Ceramics international |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Savvatimskiy (bib11) 2021; 59 Danil’yants, Kirillin, Novikov (bib18) 1988; 26 Bober, Karow, Mueller (bib20) 1980; vol. 12 Batenin, V Bunkin, V Karlov, Kirillin, Pitaevskiĭ, Prokhorov, Rukhadze, Savvatimskiĭ, Fortov, Sheĭndlin (bib9) 1991; 34 Hong, van de Walle (bib41) 2015; 92 Sheindlin, Falyakhov, Petukhov, Valyano, Vasin (bib28) 2018; 117 Chase (bib22) 1998 Savvatimskiy, Onufriev, Valyano, Muboyadzhyan (bib6) 2020; 55 Cedillos-Barraza, Manara, Boboridis, Watkins, Grasso, Jayaseelan, Konings, Reece, Lee (bib8) 2016; 6 Vorotilo, Sidnov, Sedegov, Abedi, Vorotilo, Moskovskikh (bib33) 2022; 201 Schick (bib21) 1966 Gusev, Kurlov, Lipatnikov (bib30) 2007; 180 Buinevich, Nepapushev, Moskovskikh, Kuskov, Yudin, Mukasyan (bib40) 2021; 47 Zhang, Shao, Feng, Fu, Li (bib2) 2021; 41 Savvatimskiy, Onufriev, Muboyadzhyan (bib4) 2017; 32 Gild, Zhang, Harrington, Jiang, Hu, Quinn, Mellor, Zhou, Vecchio, Luo (bib34) 2016; 6 Savvatimskiy (bib27) 2018; 82 Kondratyev, Muboyajan, Onufriev, Savvatimskiy (bib3) 2015; 631 Savvatimskiy, Onufriev (bib12) 2016; 79 Buinevich, Nepapushev, Moskovskikh, Trusov, Kuskov, Mukasyan (bib39) 2021; 32 Petrova, Chekhovskoi (bib25) 1978; 16 Fernández Guillermet (bib31) 1995; 217 V Lebedev, Savvatimskiĭ (bib10) 1984; 27 V Onufriev, Savvatimskiy, Muboyadzhyan (bib15) 2020; 6 Deadmore (bib17) 1964; 47 Rudy (bib29) 1965; 1 Savvatimskiy, Onufriev, Muboyadzhyan (bib5) 2019; 39 Xiang, Xing, Dai, Wang, Su, Miao, Zhang, Wang, Qi, Yao, Wang, Zhao, Li, Zhou (bib32) 2021; 10 Onufriev, Savvatimskiy (bib26) 2018; 56 Buinevich, Nepapushev, Moskovskikh, Trusov, Kuskov, Vadchenko, Rogachev, Mukasyan (bib38) 2020; 46 Sheindlin, Belevich, Kozhevnikov (bib23) 1972; 10 Moskovskikh, Vorotilo, Buinevich, Sedegov, Kuskov, Khort, Shuck, Zhukovskyi, Mukasyan (bib36) 2020; 10 Kats, Ordan’yan, Zaitsev (bib14) 1981; 17 Andrievskii, Strel’nikova, Poltoratskii, Kharkhardin, Smirnov (bib7) 1967; 6 Han, Lin, Li, Li, Wu, Wang, He, Kang, Ma (bib35) 2021; 47 Ushakov, Navrotsky, Hong, van de Walle (bib37) 2019; 12 Wang, Liu, Liu, Zhang, Cheng (bib1) 2008; 91 Reithof, Acchione, Branyan (bib19) 1967; 3 Storms (bib24) 1967 Savvatimskii, Onufriev (bib13) 2020; 58 Onufriev (bib16) 2018; 82 Kats (10.1016/j.ceramint.2022.03.102_bib14) 1981; 17 Sheindlin (10.1016/j.ceramint.2022.03.102_bib23) 1972; 10 Buinevich (10.1016/j.ceramint.2022.03.102_bib39) 2021; 32 Xiang (10.1016/j.ceramint.2022.03.102_bib32) 2021; 10 Kondratyev (10.1016/j.ceramint.2022.03.102_bib3) 2015; 631 Danil’yants (10.1016/j.ceramint.2022.03.102_bib18) 1988; 26 Han (10.1016/j.ceramint.2022.03.102_bib35) 2021; 47 Bober (10.1016/j.ceramint.2022.03.102_bib20) 1980; vol. 12 Storms (10.1016/j.ceramint.2022.03.102_bib24) 1967 Savvatimskiy (10.1016/j.ceramint.2022.03.102_bib27) 2018; 82 Zhang (10.1016/j.ceramint.2022.03.102_bib2) 2021; 41 V Lebedev (10.1016/j.ceramint.2022.03.102_bib10) 1984; 27 Chase (10.1016/j.ceramint.2022.03.102_bib22) 1998 Cedillos-Barraza (10.1016/j.ceramint.2022.03.102_bib8) 2016; 6 Andrievskii (10.1016/j.ceramint.2022.03.102_bib7) 1967; 6 Buinevich (10.1016/j.ceramint.2022.03.102_bib40) 2021; 47 Rudy (10.1016/j.ceramint.2022.03.102_bib29) 1965; 1 Sheindlin (10.1016/j.ceramint.2022.03.102_bib28) 2018; 117 Reithof (10.1016/j.ceramint.2022.03.102_bib19) 1967; 3 Onufriev (10.1016/j.ceramint.2022.03.102_bib16) 2018; 82 Ushakov (10.1016/j.ceramint.2022.03.102_bib37) 2019; 12 Petrova (10.1016/j.ceramint.2022.03.102_bib25) 1978; 16 V Onufriev (10.1016/j.ceramint.2022.03.102_bib15) 2020; 6 Moskovskikh (10.1016/j.ceramint.2022.03.102_bib36) 2020; 10 Buinevich (10.1016/j.ceramint.2022.03.102_bib38) 2020; 46 Savvatimskiy (10.1016/j.ceramint.2022.03.102_bib12) 2016; 79 Hong (10.1016/j.ceramint.2022.03.102_bib41) 2015; 92 Savvatimskiy (10.1016/j.ceramint.2022.03.102_bib11) 2021; 59 Batenin (10.1016/j.ceramint.2022.03.102_bib9) 1991; 34 Gusev (10.1016/j.ceramint.2022.03.102_bib30) 2007; 180 Fernández Guillermet (10.1016/j.ceramint.2022.03.102_bib31) 1995; 217 Savvatimskiy (10.1016/j.ceramint.2022.03.102_bib5) 2019; 39 Onufriev (10.1016/j.ceramint.2022.03.102_bib26) 2018; 56 Gild (10.1016/j.ceramint.2022.03.102_bib34) 2016; 6 Savvatimskiy (10.1016/j.ceramint.2022.03.102_bib6) 2020; 55 Vorotilo (10.1016/j.ceramint.2022.03.102_bib33) 2022; 201 Deadmore (10.1016/j.ceramint.2022.03.102_bib17) 1964; 47 Wang (10.1016/j.ceramint.2022.03.102_bib1) 2008; 91 Savvatimskii (10.1016/j.ceramint.2022.03.102_bib13) 2020; 58 Schick (10.1016/j.ceramint.2022.03.102_bib21) 1966 Savvatimskiy (10.1016/j.ceramint.2022.03.102_bib4) 2017; 32 |
References_xml | – volume: vol. 12 year: 1980 ident: bib20 publication-title: Study of the Spectral Reflectivity and Emissivity of Liquid Ceramics contributor: fullname: Mueller – volume: 10 start-page: 385 year: 2021 end-page: 441 ident: bib32 article-title: High-entropy ceramics: present status, challenges, and a look forward publication-title: J. Adv. Ceram. contributor: fullname: Zhou – volume: 91 start-page: 1249 year: 2008 end-page: 1252 ident: bib1 article-title: Deposition mechanism for chemical vapor deposition of zirconium carbide coatings publication-title: J. Am. Ceram. Soc. contributor: fullname: Cheng – volume: 46 start-page: 16068 year: 2020 end-page: 16073 ident: bib38 article-title: Fabrication of ultra-high-temperature nonstoichiometric hafnium carbonitride via combustion synthesis and spark plasma sintering publication-title: Ceram. Int. contributor: fullname: Mukasyan – volume: 47 year: 1964 ident: bib17 article-title: Normal spectral emittance (0.65) of TaC-HfC solid solutions and tungsten above 1600°C publication-title: J. Am. Ceram. Soc. contributor: fullname: Deadmore – volume: 26 start-page: 65 year: 1988 end-page: 69 ident: bib18 article-title: Emissivity of tantalum carbide at elevated temperatures publication-title: High Temp contributor: fullname: Novikov – volume: 180 start-page: 3234 year: 2007 end-page: 3246 ident: bib30 article-title: Ta-C binary equilibrium phase diagram publication-title: J. Solid State Chem. contributor: fullname: Lipatnikov – volume: 6 start-page: 37946 year: 2016 ident: bib34 article-title: High-entropy metal diborides: a new class of high-entropy materials and a new type of ultrahigh temperature ceramics publication-title: Sci. Rep. contributor: fullname: Luo – volume: 59 start-page: 686 year: 2021 end-page: 692 ident: bib11 article-title: Specific heat and electrical resistance of metals Ta and W from the melting point to 7000 K under pulse current heating publication-title: High Temp contributor: fullname: Savvatimskiy – volume: 6 start-page: 37962 year: 2016 ident: bib8 article-title: Investigating the highest melting temperature materials: a laser melting study of the TaC-HfC system publication-title: Sci. Rep. contributor: fullname: Lee – volume: 92 year: 2015 ident: bib41 article-title: Prediction of the material with highest known melting point from ab initio molecular dynamics calculations publication-title: Phys. Rev. B contributor: fullname: van de Walle – volume: 58 start-page: 800 year: 2020 end-page: 805 ident: bib13 article-title: Resistivity of refractory carbides (ZrC, HfC, and TaC + HfC) in the solid and liquid states publication-title: High Temp contributor: fullname: Onufriev – volume: 39 start-page: 907 year: 2019 end-page: 914 ident: bib5 article-title: Thermophysical properties of the most refractory carbide Ta0.8Hf0.2C under high temperatures (2000–5000 K) publication-title: J. Eur. Ceram. Soc. contributor: fullname: Muboyadzhyan – volume: 1 start-page: 84 year: 1965 ident: bib29 article-title: Ternary phase equilibria in transition metalboron-carbon-silicon systems. Part II. Ternary systems, wright-patterson air force base air force mater publication-title: Lab contributor: fullname: Rudy – volume: 631 start-page: 52 year: 2015 end-page: 59 ident: bib3 article-title: The application of the fast pulse heating method for investigation of carbon-rich side of Zr–C phase diagram under high temperatures publication-title: J. Alloys Compd. contributor: fullname: Savvatimskiy – volume: 32 start-page: 1287 year: 2017 end-page: 1294 ident: bib4 article-title: Measurement of ZrC properties up to 5000 K by fast electrical pulse heating method publication-title: J. Mater. Res. contributor: fullname: Muboyadzhyan – volume: 27 start-page: 749 year: 1984 end-page: 771 ident: bib10 article-title: Metals during rapid heating by dense currents publication-title: Sov. Phys. Usp. contributor: fullname: Savvatimskiĭ – volume: 17 start-page: 2039 year: 1981 end-page: 2043 ident: bib14 article-title: High temperature creep of solid solutions in HfC-TaC system publication-title: Neorg. Mater. contributor: fullname: Zaitsev – volume: 10 start-page: 650 year: 1972 end-page: 652 ident: bib23 article-title: Enthalpy and specific heat for TaC in the temperature interval 273 - 3600° К publication-title: High Temp contributor: fullname: Kozhevnikov – volume: 12 start-page: 2728 year: 2019 ident: bib37 article-title: Carbides and nitrides of zirconium and hafnium publication-title: Materials contributor: fullname: van de Walle – volume: 6 start-page: 65 year: 1967 end-page: 67 ident: bib7 article-title: Melting point in systems ZrC-HfC, TaC-ZrC, TaC-HfC publication-title: Sov. Powder Metall. Met. Ceram. contributor: fullname: Smirnov – year: 1998 ident: bib22 article-title: NIST-JANAF Thermochemical Tables contributor: fullname: Chase – volume: 201 start-page: 110869 year: 2022 ident: bib33 article-title: Phase stability and mechanical properties of carbide solid solutions with 2–5 principal metals publication-title: Comput. Mater. Sci. contributor: fullname: Moskovskikh – volume: 117 start-page: s48 year: 2018 ident: bib28 article-title: Recent advances in the study of high-temperature behaviour of non-stoichiometric TaC x , HfC x and ZrC x carbides in the domain of their congruent melting point publication-title: Adv. Appl. Ceram. contributor: fullname: Vasin – volume: 16 start-page: 1226 year: 1978 end-page: 1231 ident: bib25 article-title: Determination of the true specific heat of zirconium, niobium and tantalum carbides by pulse method publication-title: High Temp contributor: fullname: Chekhovskoi – volume: 55 start-page: 13559 year: 2020 end-page: 13568 ident: bib6 article-title: Thermophysical properties for hafnium carbide (HfC) versus temperature from 2000 to 5000 K (experiment) publication-title: J. Mater. Sci. contributor: fullname: Muboyadzhyan – year: 1967 ident: bib24 article-title: Refractory Materials contributor: fullname: Storms – volume: 34 start-page: 278 year: 1991 end-page: 279 ident: bib9 article-title: Sergeĭ Vladimirovich Lebedev (obituary) publication-title: Sov. Phys. Usp. contributor: fullname: Sheĭndlin – volume: 6 start-page: 125554 year: 2020 ident: bib15 article-title: Investigation of physical properties of 0.9ZrN + 0.1ZrO 2 ceramics at 2000–4500 K by current pulse heating publication-title: Mater. Res. Express contributor: fullname: Muboyadzhyan – volume: 82 start-page: 359 year: 2018 end-page: 362 ident: bib27 article-title: Nonequilibrium defects upon the pulsed heating of solids publication-title: Bull. Russ. Acad. Sci. Phys. contributor: fullname: Savvatimskiy – volume: 217 start-page: 69 year: 1995 end-page: 89 ident: bib31 article-title: Analysis of thermochemical properties and phase stability in the zirconium-carbon system publication-title: J. Alloys Compd. contributor: fullname: Fernández Guillermet – volume: 47 start-page: 30043 year: 2021 end-page: 30050 ident: bib40 article-title: Ultra-high-temperature tantalum-hafnium carbonitride ceramics fabricated by combustion synthesis and spark plasma sintering publication-title: Ceram. Int. contributor: fullname: Mukasyan – volume: 47 start-page: 35105 year: 2021 end-page: 35110 ident: bib35 article-title: Microstructure and characterization of (Ti,V,Nb,Ta)(C,N) high-entropy ceramic publication-title: Ceram. Int. contributor: fullname: Ma – volume: 32 start-page: 385 year: 2021 end-page: 389 ident: bib39 article-title: Mechanochemical synthesis and spark plasma sintering of hafnium carbonitride ceramics publication-title: Adv. Powder Technol. contributor: fullname: Mukasyan – volume: 41 start-page: 6181 year: 2021 end-page: 6188 ident: bib2 article-title: Ablation-resistant Ta0.78Hf0.22C solid solution ceramic modified C/C composites for oxidizing environments over 2200 °C publication-title: J. Eur. Ceram. Soc. contributor: fullname: Li – volume: 82 start-page: 372 year: 2018 end-page: 379 ident: bib16 article-title: Measuring the temperature of substances upon fast heating with a current pulse publication-title: Bull. Russ. Acad. Sci. Phys. contributor: fullname: Onufriev – volume: 3 start-page: 515 year: 1967 end-page: 522 ident: bib19 article-title: High-temperature spectral emissivity studies on some refractory metals and carbides publication-title: Temp. Its Meas. Control Sci. Ind. contributor: fullname: Branyan – volume: 79 start-page: 1637 year: 2016 end-page: 1655 ident: bib12 article-title: Method and apparatus for studying high-temperature properties of conductive materials in the interests of nuclear power engineering publication-title: Phys. At. Nucl. contributor: fullname: Onufriev – volume: 56 start-page: 678 year: 2018 end-page: 684 ident: bib26 article-title: Measuring the specific heat of conducting substances in conditions of microsecond heating with a current pulse publication-title: High Temp contributor: fullname: Savvatimskiy – year: 1966 ident: bib21 article-title: Thermodynamics of Certain Refractory Compounds contributor: fullname: Schick – volume: 10 year: 2020 ident: bib36 article-title: Extremely hard and tough high entropy nitride ceramics publication-title: Sci. Rep. contributor: fullname: Mukasyan – volume: 117 start-page: s48 year: 2018 ident: 10.1016/j.ceramint.2022.03.102_bib28 article-title: Recent advances in the study of high-temperature behaviour of non-stoichiometric TaC x , HfC x and ZrC x carbides in the domain of their congruent melting point publication-title: Adv. Appl. Ceram. doi: 10.1080/17436753.2018.1510819 contributor: fullname: Sheindlin – volume: 56 start-page: 678 year: 2018 ident: 10.1016/j.ceramint.2022.03.102_bib26 article-title: Measuring the specific heat of conducting substances in conditions of microsecond heating with a current pulse publication-title: High Temp doi: 10.1134/S0018151X18050206 contributor: fullname: Onufriev – volume: 59 start-page: 686 year: 2021 ident: 10.1016/j.ceramint.2022.03.102_bib11 article-title: Specific heat and electrical resistance of metals Ta and W from the melting point to 7000 K under pulse current heating publication-title: High Temp contributor: fullname: Savvatimskiy – volume: 10 start-page: 650 year: 1972 ident: 10.1016/j.ceramint.2022.03.102_bib23 article-title: Enthalpy and specific heat for TaC in the temperature interval 273 - 3600° К publication-title: High Temp contributor: fullname: Sheindlin – volume: 41 start-page: 6181 year: 2021 ident: 10.1016/j.ceramint.2022.03.102_bib2 article-title: Ablation-resistant Ta0.78Hf0.22C solid solution ceramic modified C/C composites for oxidizing environments over 2200 °C publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2021.06.031 contributor: fullname: Zhang – volume: 55 start-page: 13559 year: 2020 ident: 10.1016/j.ceramint.2022.03.102_bib6 article-title: Thermophysical properties for hafnium carbide (HfC) versus temperature from 2000 to 5000 K (experiment) publication-title: J. Mater. Sci. doi: 10.1007/s10853-020-04959-y contributor: fullname: Savvatimskiy – volume: 6 start-page: 37962 year: 2016 ident: 10.1016/j.ceramint.2022.03.102_bib8 article-title: Investigating the highest melting temperature materials: a laser melting study of the TaC-HfC system publication-title: Sci. Rep. doi: 10.1038/srep37962 contributor: fullname: Cedillos-Barraza – volume: 6 start-page: 125554 year: 2020 ident: 10.1016/j.ceramint.2022.03.102_bib15 article-title: Investigation of physical properties of 0.9ZrN + 0.1ZrO 2 ceramics at 2000–4500 K by current pulse heating publication-title: Mater. Res. Express doi: 10.1088/2053-1591/ab6e39 contributor: fullname: V Onufriev – year: 1998 ident: 10.1016/j.ceramint.2022.03.102_bib22 contributor: fullname: Chase – volume: 10 year: 2020 ident: 10.1016/j.ceramint.2022.03.102_bib36 article-title: Extremely hard and tough high entropy nitride ceramics publication-title: Sci. Rep. doi: 10.1038/s41598-020-76945-y contributor: fullname: Moskovskikh – volume: 6 start-page: 65 year: 1967 ident: 10.1016/j.ceramint.2022.03.102_bib7 article-title: Melting point in systems ZrC-HfC, TaC-ZrC, TaC-HfC publication-title: Sov. Powder Metall. Met. Ceram. doi: 10.1007/BF00773385 contributor: fullname: Andrievskii – year: 1967 ident: 10.1016/j.ceramint.2022.03.102_bib24 contributor: fullname: Storms – volume: vol. 12 year: 1980 ident: 10.1016/j.ceramint.2022.03.102_bib20 contributor: fullname: Bober – volume: 16 start-page: 1226 year: 1978 ident: 10.1016/j.ceramint.2022.03.102_bib25 article-title: Determination of the true specific heat of zirconium, niobium and tantalum carbides by pulse method publication-title: High Temp contributor: fullname: Petrova – volume: 10 start-page: 385 year: 2021 ident: 10.1016/j.ceramint.2022.03.102_bib32 article-title: High-entropy ceramics: present status, challenges, and a look forward publication-title: J. Adv. Ceram. doi: 10.1007/s40145-021-0477-y contributor: fullname: Xiang – volume: 34 start-page: 278 year: 1991 ident: 10.1016/j.ceramint.2022.03.102_bib9 article-title: Sergeĭ Vladimirovich Lebedev (obituary) publication-title: Sov. Phys. Usp. doi: 10.1070/PU1991v034n03ABEH002360 contributor: fullname: Batenin – volume: 3 start-page: 515 year: 1967 ident: 10.1016/j.ceramint.2022.03.102_bib19 article-title: High-temperature spectral emissivity studies on some refractory metals and carbides publication-title: Temp. Its Meas. Control Sci. Ind. contributor: fullname: Reithof – volume: 6 start-page: 37946 year: 2016 ident: 10.1016/j.ceramint.2022.03.102_bib34 article-title: High-entropy metal diborides: a new class of high-entropy materials and a new type of ultrahigh temperature ceramics publication-title: Sci. Rep. doi: 10.1038/srep37946 contributor: fullname: Gild – volume: 47 start-page: 35105 year: 2021 ident: 10.1016/j.ceramint.2022.03.102_bib35 article-title: Microstructure and characterization of (Ti,V,Nb,Ta)(C,N) high-entropy ceramic publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2021.09.053 contributor: fullname: Han – volume: 92 year: 2015 ident: 10.1016/j.ceramint.2022.03.102_bib41 article-title: Prediction of the material with highest known melting point from ab initio molecular dynamics calculations publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.92.020104 contributor: fullname: Hong – volume: 217 start-page: 69 year: 1995 ident: 10.1016/j.ceramint.2022.03.102_bib31 article-title: Analysis of thermochemical properties and phase stability in the zirconium-carbon system publication-title: J. Alloys Compd. doi: 10.1016/0925-8388(94)01310-E contributor: fullname: Fernández Guillermet – volume: 201 start-page: 110869 year: 2022 ident: 10.1016/j.ceramint.2022.03.102_bib33 article-title: Phase stability and mechanical properties of carbide solid solutions with 2–5 principal metals publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2021.110869 contributor: fullname: Vorotilo – volume: 32 start-page: 1287 year: 2017 ident: 10.1016/j.ceramint.2022.03.102_bib4 article-title: Measurement of ZrC properties up to 5000 K by fast electrical pulse heating method publication-title: J. Mater. Res. doi: 10.1557/jmr.2017.61 contributor: fullname: Savvatimskiy – volume: 82 start-page: 359 year: 2018 ident: 10.1016/j.ceramint.2022.03.102_bib27 article-title: Nonequilibrium defects upon the pulsed heating of solids publication-title: Bull. Russ. Acad. Sci. Phys. doi: 10.3103/S1062873818040172 contributor: fullname: Savvatimskiy – volume: 12 start-page: 2728 year: 2019 ident: 10.1016/j.ceramint.2022.03.102_bib37 article-title: Carbides and nitrides of zirconium and hafnium publication-title: Materials doi: 10.3390/ma12172728 contributor: fullname: Ushakov – volume: 46 start-page: 16068 year: 2020 ident: 10.1016/j.ceramint.2022.03.102_bib38 article-title: Fabrication of ultra-high-temperature nonstoichiometric hafnium carbonitride via combustion synthesis and spark plasma sintering publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.03.158 contributor: fullname: Buinevich – year: 1966 ident: 10.1016/j.ceramint.2022.03.102_bib21 contributor: fullname: Schick – volume: 631 start-page: 52 year: 2015 ident: 10.1016/j.ceramint.2022.03.102_bib3 article-title: The application of the fast pulse heating method for investigation of carbon-rich side of Zr–C phase diagram under high temperatures publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2014.11.216 contributor: fullname: Kondratyev – volume: 27 start-page: 749 year: 1984 ident: 10.1016/j.ceramint.2022.03.102_bib10 article-title: Metals during rapid heating by dense currents publication-title: Sov. Phys. Usp. doi: 10.1070/PU1984v027n10ABEH004128 contributor: fullname: V Lebedev – volume: 91 start-page: 1249 year: 2008 ident: 10.1016/j.ceramint.2022.03.102_bib1 article-title: Deposition mechanism for chemical vapor deposition of zirconium carbide coatings publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2007.02253.x contributor: fullname: Wang – volume: 79 start-page: 1637 year: 2016 ident: 10.1016/j.ceramint.2022.03.102_bib12 article-title: Method and apparatus for studying high-temperature properties of conductive materials in the interests of nuclear power engineering publication-title: Phys. At. Nucl. doi: 10.1134/S1063778816140131 contributor: fullname: Savvatimskiy – volume: 58 start-page: 800 year: 2020 ident: 10.1016/j.ceramint.2022.03.102_bib13 article-title: Resistivity of refractory carbides (ZrC, HfC, and TaC + HfC) in the solid and liquid states publication-title: High Temp doi: 10.1134/S0018151X20060188 contributor: fullname: Savvatimskii – volume: 17 start-page: 2039 year: 1981 ident: 10.1016/j.ceramint.2022.03.102_bib14 article-title: High temperature creep of solid solutions in HfC-TaC system publication-title: Neorg. Mater. contributor: fullname: Kats – volume: 180 start-page: 3234 year: 2007 ident: 10.1016/j.ceramint.2022.03.102_bib30 article-title: Ta-C binary equilibrium phase diagram publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2007.09.015 contributor: fullname: Gusev – volume: 47 year: 1964 ident: 10.1016/j.ceramint.2022.03.102_bib17 article-title: Normal spectral emittance (0.65) of TaC-HfC solid solutions and tungsten above 1600°C publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1964.tb13128.x contributor: fullname: Deadmore – volume: 82 start-page: 372 year: 2018 ident: 10.1016/j.ceramint.2022.03.102_bib16 article-title: Measuring the temperature of substances upon fast heating with a current pulse publication-title: Bull. Russ. Acad. Sci. Phys. doi: 10.3103/S1062873818040147 contributor: fullname: Onufriev – volume: 26 start-page: 65 year: 1988 ident: 10.1016/j.ceramint.2022.03.102_bib18 article-title: Emissivity of tantalum carbide at elevated temperatures publication-title: High Temp contributor: fullname: Danil’yants – volume: 1 start-page: 84 year: 1965 ident: 10.1016/j.ceramint.2022.03.102_bib29 article-title: Ternary phase equilibria in transition metalboron-carbon-silicon systems. Part II. Ternary systems, wright-patterson air force base air force mater publication-title: Lab contributor: fullname: Rudy – volume: 32 start-page: 385 year: 2021 ident: 10.1016/j.ceramint.2022.03.102_bib39 article-title: Mechanochemical synthesis and spark plasma sintering of hafnium carbonitride ceramics publication-title: Adv. Powder Technol. doi: 10.1016/j.apt.2020.12.018 contributor: fullname: Buinevich – volume: 39 start-page: 907 year: 2019 ident: 10.1016/j.ceramint.2022.03.102_bib5 article-title: Thermophysical properties of the most refractory carbide Ta0.8Hf0.2C under high temperatures (2000–5000 K) publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2018.11.030 contributor: fullname: Savvatimskiy – volume: 47 start-page: 30043 year: 2021 ident: 10.1016/j.ceramint.2022.03.102_bib40 article-title: Ultra-high-temperature tantalum-hafnium carbonitride ceramics fabricated by combustion synthesis and spark plasma sintering publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2021.07.180 contributor: fullname: Buinevich |
SSID | ssj0016940 |
Score | 2.4432337 |
Snippet | Investigation of the tantalum carbide physical properties at temperatures ranging from 2000 to 5500 K during rapid current pulse heating were carried out. The... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 19655 |
SubjectTerms | Carbide Enthalpy Heat of melting Pulse electrical heating Specific heat TaC |
Title | Thermophysical properties of tantalum carbide (TaC) within 2000–5500 K temperature range |
URI | https://dx.doi.org/10.1016/j.ceramint.2022.03.102 |
Volume | 48 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6l7QUOiF9R_rQHkECRjb3e1OujFQItlXppqCpxsDbrXTWFOFFSV-LGO_ACPAuPwpMw4_Xai6gECHGx7ImcODNfZmYnM98S8jRhKiuVHAViJrOASwO_ORPzYBRro6Ko5AnH4eT94_ToVLya8Mlg4LZ-7GX_1dIgA1vj5OxfWLt7UxDAOdgcjmB1OP6p3deL5cqpf4XF9jWypjbdABKHH-sFElLP5mWTX07lGEsDWJCdV8gwGLkGCEgS4GLMnuXR4RA5rFoC5uG6nUjoOQ7glQXyPc_9AmNXvZGXWPhdbD7MG5Pm4UHYFXer2sBq_bKpwoYnnfxEfvwkm23Bh2888RFEz1W9ObM35GEe-mUL1rS42sFNW0tz8zR98xK6PJYCVoTl2wq1dckiTYIks_Tjzmdz4WOTex4YGRJHXjiHa8v2_kussGWL81A1KqqwsZYxZLyNI9ZHx65n8RgfDp-NYcsInGyRHQbeDZzrTn4wOX3b_Xm1l3Fb2mu_jDeYfvWnXZ0TeXnO9Ca50S5QaG6RdYsMdHWbXPdoK--Q9z9jjPYYo0tDHcZoizH6HBD2glp8UcTX989fEFnfvh5SD1W0QdVd8u71ZDreD9pNOgKVxOwi0DxVXEY8TfekNlk2goDJS5NBomkgPVSzmZay1CIxnEshZMwhRsIivORaxrgXwz2yXS0rfZ9QIUXJRyZOYInBIa8WJomY0lzFymQyjXbJS6emYmW5WArXpHheOMUWqNgiSkDOdknmtFm0GaXNFAsAwW_uffAP9z4k13rMPyLbF-taPyZbm7J-0oLlB4o8mMs |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermophysical+properties+of+tantalum+carbide+%28TaC%29+within+2000%E2%80%935500%C2%A0K+temperature+range&rft.jtitle=Ceramics+international&rft.au=Savvatimskiy%2C+A.I.&rft.au=Onufriev%2C+S.V.&rft.au=Valyano%2C+G.V.&rft.au=Nepapushev%2C+A.A.&rft.date=2022-07-15&rft.pub=Elsevier+Ltd&rft.issn=0272-8842&rft.eissn=1873-3956&rft.volume=48&rft.issue=14&rft.spage=19655&rft.epage=19661&rft_id=info:doi/10.1016%2Fj.ceramint.2022.03.102&rft.externalDocID=S0272884222008884 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0272-8842&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0272-8842&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0272-8842&client=summon |