Electrochemical performance of spherical Li-rich LMNCO cathode materials prepared using a two-step spray-drying method
In this study we synthesized Li-rich Li1.2Ni0.13Mn0.54Co0.13O2 (LMNCO) as a composite cathode material through a two-step spray-drying method, using transition metal (TM) acetates and citric acid (CA, as a chelating agent) at various molar ratios and then calcining at various temperatures for variou...
Saved in:
Published in: | Ceramics international Vol. 48; no. 5; pp. 6302 - 6312 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier Ltd
01-03-2022
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study we synthesized Li-rich Li1.2Ni0.13Mn0.54Co0.13O2 (LMNCO) as a composite cathode material through a two-step spray-drying method, using transition metal (TM) acetates and citric acid (CA, as a chelating agent) at various molar ratios and then calcining at various temperatures for various periods of time. This two-step spray-drying method created hierarchical nano/micro-sphere structures of the LMNCO cathode material. The LMNCO cathode exhibited the best electrochemical performance when synthesized with a TM:CA ratio of 3:2, a calcination temperature of 900 °C, and a calcination time of 5 h. This as-prepared LMNCO composite was then modified with polyimide (PI) at various weight ratios (PI/LMNCO = 0.5, 1.0, and 1.5 wt%) to improve its electrochemical properties. Among the various structures, the LMNCO cathode material coated with 1.0 wt% of PI at a layer thickness of approximately 1.88 nm achieved the best initial discharge capacities. This modified electrode also displayed enhanced cycle stability, with over 93.3 and 87.9% of the capacity retained after 30 cycles at 0.1C and 100 cycles at 1C, respectively. In comparison, the capacity retention of the unmodified LMNCO electrode measured under the same conditions was no more than 91.3% at 0.1C and 70.1% at 1C. Thus, surface modification with PI was an effective method for improving the coulombic efficiency, discharge capacity, and long-term cycling performance of the LMNCO cathode. Such PI-coated LMNCO composite cathode materials appear to be potential candidates for use in next-generation high-performance lithium-ion batteries.
[Display omitted] |
---|---|
ISSN: | 0272-8842 1873-3956 |
DOI: | 10.1016/j.ceramint.2021.11.173 |