A novel Li3Mg3NbO7 microwave dielectric ceramic with ultra-low loss

Novel ultra-low-loss Li3Mg3NbO7 ceramics were synthesized using solid-state reaction method. The microstructure, bond characteristics, and microwave dielectric properties (MDPs) of the Li3Mg3NbO7 ceramics were explored. Furthermore, the Li3Mg3NbO7 ceramics crystallized in the orthorhombic rock-salt...

Full description

Saved in:
Bibliographic Details
Published in:Ceramics international Vol. 49; no. 15; pp. 25495 - 25503
Main Authors: Cai, Chaoyang, Ma, Jingjing, Xie, Jiawei, Li, Hao, Guo, Wenming, Qin, Hang, Gao, Pengzhao, Xiao, Hanning
Format: Journal Article
Language:English
Published: Elsevier Ltd 01-08-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Novel ultra-low-loss Li3Mg3NbO7 ceramics were synthesized using solid-state reaction method. The microstructure, bond characteristics, and microwave dielectric properties (MDPs) of the Li3Mg3NbO7 ceramics were explored. Furthermore, the Li3Mg3NbO7 ceramics crystallized in the orthorhombic rock-salt structure and the optimized density (97.7%) was obtained at 1200 °C. Utilizing complex chemical bond theory (P–V-L theory) and Raman spectra, the connection between structure and properties was constructed. εr value was mainly affected by the ρrel and average ionic polarization. The UNb–O and packing fraction were the key internal factors influencing the Q × f value. The τf was intimately relevant to Nb–O bond and τε. Notably, the Li3Mg3NbO7 ceramics sintered at 1200 °C exhibited excellent MDPs (εr = 14.7, Q × f = 121,047 GHz, τf = −24.8 ppm/°C), offering enormous prospects for 5G/6G communication applications.
ISSN:0272-8842
1873-3956
DOI:10.1016/j.ceramint.2023.05.090