Development of molecular cluster models to probe pyrite surface reactivity

The recent discovery that anaerobic methanogens can reductively dissolve pyrite and utilize dissolution products as a source of iron and sulfur to meet their biosynthetic demands for these elements prompted the development of atomic‐scale nanoparticle models, as maquettes of reactive surface sites,...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational chemistry Vol. 44; no. 32; pp. 2486 - 2500
Main Authors: Kour, Manjinder, Taborosi, Attila, Boyd, Eric S., Szilagyi, Robert K.
Format: Journal Article
Language:English
Published: New York Wiley Subscription Services, Inc 15-12-2023
Wiley Blackwell (John Wiley & Sons)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The recent discovery that anaerobic methanogens can reductively dissolve pyrite and utilize dissolution products as a source of iron and sulfur to meet their biosynthetic demands for these elements prompted the development of atomic‐scale nanoparticle models, as maquettes of reactive surface sites, for describing the fundamental redox steps that take place at the mineral surface during reduction. The given report describes our computational approach for modeling n (FeS 2 ) nanoparticles originated from mineral bulk structure. These maquettes contain a comprehensive set of coordinatively unsaturated Fe (II) sites that are connected via a range of persulfide (S 2 2− ) ligation. In addition to the specific maquettes with n  = 8, 18, and 32 FeS 2 units, we established guidelines for obtaining low‐energy structures by considering the pattern of ionic, covalent, and magnetic interactions among the metal and ligand sites. The developed models serve as computational nano‐reactors that can be used to describe the reductive dissolution mechanism of pyrite to better understand the reactive sites on the mineral, where microbial extracellular electron‐transfer reactions can occur.
AbstractList The recent discovery that anaerobic methanogens can reductively dissolve pyrite and utilize dissolution products as a source of iron and sulfur to meet their biosynthetic demands for these elements prompted the development of atomic-scale nanoparticle models, as maquettes of reactive surface sites, for describing the fundamental redox steps that take place at the mineral surface during reduction. The given report describes our computational approach for modeling n(FeS2) nanoparticles originated from mineral bulk structure. These maquettes contain a comprehensive set of coordinatively unsaturated Fe(II) sites that are connected via a range of persulfide (S22–) ligation. In addition to the specific maquettes with n = 8, 18, and 32 FeS2 units, we established guidelines for obtaining low-energy structures by considering the pattern of ionic, covalent, and magnetic interactions among the metal and ligand sites. The developed models serve as computational nano-reactors that can be used to describe the reductive dissolution mechanism of pyrite to better understand the reactive sites on the mineral, where microbial extracellular electron-transfer reactions can occur.
The recent discovery that anaerobic methanogens can reductively dissolve pyrite and utilize dissolution products as a source of iron and sulfur to meet their biosynthetic demands for these elements prompted the development of atomic-scale nanoparticle models, as maquettes of reactive surface sites, for describing the fundamental redox steps that take place at the mineral surface during reduction. The given report describes our computational approach for modeling n(FeS2 ) nanoparticles originated from mineral bulk structure. These maquettes contain a comprehensive set of coordinatively unsaturated Fe(II) sites that are connected via a range of persulfide (S2 2- ) ligation. In addition to the specific maquettes with n = 8, 18, and 32 FeS2 units, we established guidelines for obtaining low-energy structures by considering the pattern of ionic, covalent, and magnetic interactions among the metal and ligand sites. The developed models serve as computational nano-reactors that can be used to describe the reductive dissolution mechanism of pyrite to better understand the reactive sites on the mineral, where microbial extracellular electron-transfer reactions can occur.
The recent discovery that anaerobic methanogens can reductively dissolve pyrite and utilize dissolution products as a source of iron and sulfur to meet their biosynthetic demands for these elements prompted the development of atomic‐scale nanoparticle models, as maquettes of reactive surface sites, for describing the fundamental redox steps that take place at the mineral surface during reduction. The given report describes our computational approach for modeling n(FeS2) nanoparticles originated from mineral bulk structure. These maquettes contain a comprehensive set of coordinatively unsaturated Fe(II) sites that are connected via a range of persulfide (S22−) ligation. In addition to the specific maquettes with n = 8, 18, and 32 FeS2 units, we established guidelines for obtaining low‐energy structures by considering the pattern of ionic, covalent, and magnetic interactions among the metal and ligand sites. The developed models serve as computational nano‐reactors that can be used to describe the reductive dissolution mechanism of pyrite to better understand the reactive sites on the mineral, where microbial extracellular electron‐transfer reactions can occur.
The recent discovery that anaerobic methanogens can reductively dissolve pyrite and utilize dissolution products as a source of iron and sulfur to meet their biosynthetic demands for these elements prompted the development of atomic‐scale nanoparticle models, as maquettes of reactive surface sites, for describing the fundamental redox steps that take place at the mineral surface during reduction. The given report describes our computational approach for modeling n (FeS 2 ) nanoparticles originated from mineral bulk structure. These maquettes contain a comprehensive set of coordinatively unsaturated Fe (II) sites that are connected via a range of persulfide (S 2 2− ) ligation. In addition to the specific maquettes with n  = 8, 18, and 32 FeS 2 units, we established guidelines for obtaining low‐energy structures by considering the pattern of ionic, covalent, and magnetic interactions among the metal and ligand sites. The developed models serve as computational nano‐reactors that can be used to describe the reductive dissolution mechanism of pyrite to better understand the reactive sites on the mineral, where microbial extracellular electron‐transfer reactions can occur.
Author Kour, Manjinder
Szilagyi, Robert K
Taborosi, Attila
Boyd, Eric S
Author_xml – sequence: 1
  givenname: Manjinder
  surname: Kour
  fullname: Kour, Manjinder
  organization: Department of Microbiology and Cell Biology Montana State University Bozeman Montana USA
– sequence: 2
  givenname: Attila
  surname: Taborosi
  fullname: Taborosi, Attila
  organization: Research Initiative for Supra‐Materials, Faculty of Engineering Shinshu University Nagano Japan
– sequence: 3
  givenname: Eric S.
  surname: Boyd
  fullname: Boyd, Eric S.
  organization: Department of Microbiology and Cell Biology Montana State University Bozeman Montana USA
– sequence: 4
  givenname: Robert K.
  surname: Szilagyi
  fullname: Szilagyi, Robert K.
  organization: Department of Chemistry The University of British Columbia Okanagan, Kelowna British Columbia Canada
BackLink https://www.osti.gov/biblio/1997563$$D View this record in Osti.gov
BookMark eNpd0E1Lw0AQBuBFFGyrB_9B0IseUvcrm92j1G8KXhS8LZvJBFPSbN3dFPrvTa0nTwPDw_DOOyXHve-RkAtG54xSfrsCmPOSM3FEJowalRtdfh6TCWWG51oV7JRMY1xRSkWh5IS83uMWO79ZY58y32Rr3yEMnQsZdENMGMZNjV3Mks82wVeYbXahTZjFITQOMAvoILXbNu3OyEnjuojnf3NGPh4f3hfP-fLt6WVxt8xBMJ5ycE2JAozQrAJgjGppUPGKO2oMKEmZVLLSuuKl0U1dFE0pGnScFbWsOVRiRi4Pd31MrY0wpoEv8H2PkCwzpiyUGNH1AY2hvweMya7bCNh1rkc_RMt1YRTlWu7p1T-68kPoxxdGpaUyspR6VDcHBcHHGLCxm9CuXdhZRu2-ejtWb3-rFz-ywnew
Cites_doi 10.1111/1462-2920.16285
10.1128/JB.00146-21
10.1016/j.gca.2010.02.027
10.1016/j.cplett.2006.10.023
10.1016/0016-7037(84)90089-9
10.1103/PhysRevB.43.11926
10.1063/1.1740588
10.1021/jp810292n
10.1016/0016-7037(91)90005-P
10.1038/s41396-021-01028-3
10.1016/j.surfrep.2008.09.002
10.1016/S1367-5931(98)80058-6
10.1016/0010-8545(95)07011-L
10.1016/0022-3697(85)90204-5
10.1016/j.tim.2022.05.005
10.1103/PhysRevB.46.6671
10.1039/b508541a
10.1016/j.coal.2006.07.003
10.1016/j.femsle.2004.08.027
10.1103/PhysRevB.54.16533
10.1021/acs.inorgchem.8b00877
10.1128/aem.42.4.580-584.1981
10.1021/cr020615
10.1002/jcc.20449
10.1021/ja002183v
10.1039/b616481c
10.1016/S0016-7037(01)00745-1
10.1021/es803417s
10.1021/ci00038a003
10.1515/9781501509490-009
10.1039/C6SC00705H
10.1103/PhysRevB.50.8214
10.3389/fmicb.2022.878387
10.1103/PhysRevB.48.4978.2
10.1021/cr9500390
10.1021/acs.jctc.5b01082
10.1016/j.jcrysgro.2004.02.020
10.1021/cr0503658
10.1107/S2052520616003954
10.1111/j.1462-2920.2012.02783.x
10.2475/ajs.268.1.1
10.1021/acs.jpca.0c11284
10.1016/j.jallcom.2005.02.052
10.1016/0016-7037(87)90337-1
10.1128/JB.00117-21
ContentType Journal Article
Copyright 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor Montana State Univ., Bozeman, MT (United States)
CorporateAuthor_xml – name: Montana State Univ., Bozeman, MT (United States)
DBID AAYXX
CITATION
JQ2
7X8
OTOTI
DOI 10.1002/jcc.27213
DatabaseName CrossRef
ProQuest Computer Science Collection
MEDLINE - Academic
OSTI.GOV
DatabaseTitle CrossRef
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
ProQuest Computer Science Collection
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1096-987X
EndPage 2500
ExternalDocumentID 1997563
10_1002_jcc_27213
GroupedDBID ---
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
36B
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAMNL
AANLZ
AAONW
AAXRX
AAYXX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CITATION
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
ESX
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWK
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YQT
ZZTAW
~IA
~KM
~WT
JQ2
7X8
ABHUG
ABPTK
ABWRO
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
OTOTI
ID FETCH-LOGICAL-c312t-caf7e3c9381bcc110849e62b2a099c6401464b88b2798fd55f73fea215d4d2cb3
ISSN 0192-8651
IngestDate Mon Nov 06 04:06:30 EST 2023
Sat Aug 17 01:47:46 EDT 2024
Thu Nov 21 04:24:07 EST 2024
Thu Nov 21 22:19:03 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 32
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-caf7e3c9381bcc110849e62b2a099c6401464b88b2798fd55f73fea215d4d2cb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE
USDOE Office of Science (SC), Basic Energy Sciences (BES). Chemical Sciences, Geosciences & Biosciences Division (CSGB)
SC0020246
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jcc.27213
PQID 2884694748
PQPubID 48816
PageCount 15
ParticipantIDs osti_scitechconnect_1997563
proquest_miscellaneous_2859602843
proquest_journals_2884694748
crossref_primary_10_1002_jcc_27213
PublicationCentury 2000
PublicationDate 2023-12-15
PublicationDateYYYYMMDD 2023-12-15
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Journal of computational chemistry
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Wiley Blackwell (John Wiley & Sons)
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley Blackwell (John Wiley & Sons)
References e_1_2_8_28_1
Dean J. A. (e_1_2_8_50_1) 1999
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
Schoonen M. A. A. (e_1_2_8_4_1) 2004
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_6_1
Bayliss P. (e_1_2_8_19_1) 1989; 74
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
Ferry J. G. (e_1_2_8_8_1) 2012
Frisch M. J. (e_1_2_8_33_1) 2016
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
References_xml – ident: e_1_2_8_11_1
  doi: 10.1111/1462-2920.16285
– ident: e_1_2_8_9_1
  doi: 10.1128/JB.00146-21
– ident: e_1_2_8_51_1
  doi: 10.1016/j.gca.2010.02.027
– ident: e_1_2_8_41_1
  doi: 10.1016/j.cplett.2006.10.023
– ident: e_1_2_8_18_1
  doi: 10.1016/0016-7037(84)90089-9
– ident: e_1_2_8_24_1
  doi: 10.1103/PhysRevB.43.11926
– ident: e_1_2_8_40_1
  doi: 10.1063/1.1740588
– ident: e_1_2_8_39_1
  doi: 10.1021/jp810292n
– ident: e_1_2_8_49_1
  doi: 10.1016/0016-7037(91)90005-P
– ident: e_1_2_8_16_1
  doi: 10.1038/s41396-021-01028-3
– ident: e_1_2_8_15_1
  doi: 10.1016/j.surfrep.2008.09.002
– ident: e_1_2_8_30_1
  doi: 10.1016/S1367-5931(98)80058-6
– ident: e_1_2_8_29_1
  doi: 10.1016/0010-8545(95)07011-L
– ident: e_1_2_8_25_1
  doi: 10.1016/0022-3697(85)90204-5
– volume-title: Lange's handbook of chemistry
  year: 1999
  ident: e_1_2_8_50_1
  contributor:
    fullname: Dean J. A.
– ident: e_1_2_8_17_1
  doi: 10.1016/j.tim.2022.05.005
– ident: e_1_2_8_45_1
  doi: 10.1103/PhysRevB.46.6671
– ident: e_1_2_8_37_1
  doi: 10.1039/b508541a
– ident: e_1_2_8_20_1
  doi: 10.1016/j.coal.2006.07.003
– ident: e_1_2_8_14_1
  doi: 10.1016/j.femsle.2004.08.027
– ident: e_1_2_8_43_1
  doi: 10.1103/PhysRevB.54.16533
– ident: e_1_2_8_27_1
  doi: 10.1021/acs.inorgchem.8b00877
– volume-title: In Sulfur biogeochemistry—past and present
  year: 2004
  ident: e_1_2_8_4_1
  contributor:
    fullname: Schoonen M. A. A.
– ident: e_1_2_8_10_1
  doi: 10.1128/aem.42.4.580-584.1981
– ident: e_1_2_8_46_1
  doi: 10.1021/cr020615
– volume: 74
  start-page: 1168
  year: 1989
  ident: e_1_2_8_19_1
  publication-title: Am. Mineral.
  contributor:
    fullname: Bayliss P.
– ident: e_1_2_8_38_1
  doi: 10.1002/jcc.20449
– volume-title: Methanogenesis: Ecology, physiology, biochemistry & genetics
  year: 2012
  ident: e_1_2_8_8_1
  contributor:
    fullname: Ferry J. G.
– ident: e_1_2_8_31_1
  doi: 10.1021/ja002183v
– ident: e_1_2_8_42_1
  doi: 10.1039/b616481c
– ident: e_1_2_8_5_1
  doi: 10.1016/S0016-7037(01)00745-1
– ident: e_1_2_8_6_1
  doi: 10.1021/es803417s
– ident: e_1_2_8_34_1
  doi: 10.1021/ci00038a003
– ident: e_1_2_8_48_1
  doi: 10.1515/9781501509490-009
– ident: e_1_2_8_36_1
  doi: 10.1039/C6SC00705H
– ident: e_1_2_8_23_1
  doi: 10.1103/PhysRevB.50.8214
– ident: e_1_2_8_7_1
  doi: 10.3389/fmicb.2022.878387
– ident: e_1_2_8_44_1
  doi: 10.1103/PhysRevB.48.4978.2
– ident: e_1_2_8_32_1
  doi: 10.1021/cr9500390
– ident: e_1_2_8_35_1
  doi: 10.1021/acs.jctc.5b01082
– ident: e_1_2_8_22_1
  doi: 10.1016/j.jcrysgro.2004.02.020
– ident: e_1_2_8_3_1
  doi: 10.1021/cr0503658
– ident: e_1_2_8_26_1
  doi: 10.1107/S2052520616003954
– volume-title: Gaussian 16 rev. C.01
  year: 2016
  ident: e_1_2_8_33_1
  contributor:
    fullname: Frisch M. J.
– ident: e_1_2_8_13_1
  doi: 10.1111/j.1462-2920.2012.02783.x
– ident: e_1_2_8_2_1
  doi: 10.2475/ajs.268.1.1
– ident: e_1_2_8_28_1
  doi: 10.1021/acs.jpca.0c11284
– ident: e_1_2_8_21_1
  doi: 10.1016/j.jallcom.2005.02.052
– ident: e_1_2_8_47_1
  doi: 10.1016/0016-7037(87)90337-1
– ident: e_1_2_8_12_1
  doi: 10.1128/JB.00117-21
SSID ssj0003564
Score 2.475369
Snippet The recent discovery that anaerobic methanogens can reductively dissolve pyrite and utilize dissolution products as a source of iron and sulfur to meet their...
SourceID osti
proquest
crossref
SourceType Open Access Repository
Aggregation Database
StartPage 2486
SubjectTerms broken-symmetry DFT calculations
Dissolution
Iron
magnetic interactions
maquette chemistry
Maquettes
Microorganisms
Nanoparticles
Pyrite
pyrite nanoparticles
reductive dissolution
surface reactivity
Title Development of molecular cluster models to probe pyrite surface reactivity
URI https://www.proquest.com/docview/2884694748
https://search.proquest.com/docview/2859602843
https://www.osti.gov/biblio/1997563
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLZYOcAF8VN0G8ggblVGsZ3EOU6j04SmgbRO6i1KXmy0aUqmNjmUv573YjspmpDGgUvUOm4O73NfPj-_9z3GPpUJ7Y2hjAopqkgl1kYFVCaqqowILEiTUKHw2WV6sdJfF2oxHrSPY_8VaRxDrKly9h_QHh6KA_gZMccroo7XB-G-kwXUn52H9rczuO1IFMH1vul1HaiZjJndbddIO2ebbm0LoCYqVOpAHSX-wluh7wMRYogQGsYNnhtnuiKg-oakGIfk3yUtt2bTZw8ct-317RgKaLZV8MljKPbyF075ub0e8799SNbHKISkfA9XpXlknF_FnVKU6XS163id8KNfYD7K6d2oCvrY7mvcq5ned_dOPvYG4EjgTlaO77Rwjn_xPT-9Oj_Pl4vVco89FuiNqMGClD-G17WMExUkp-bi8_CwP4jKpEGHe-913XOQ5XP2zIPAjx3qL9gjU79kT04CBK_Ytx30eWP5gD736HOHPm8b3qPPHfrco89H9F-zq9PF8uQs8t0yIpBfRBtBYVMjIUMKVgJQdYfKTCJKUeAmABJFKkGq1LpEI2hbxbFNpTUFUr5KVQJK-YZN6qY2bxnXUlskegVo_F0CaWljEdt5PE8qC2Uhp-xjME1-50RRcid_LXK0X97bb8oOyGg5MjmSIwbK24I2p8SmOMG7h8GWuf_3bHKhkQ1nKlV6yj4Mt9GEdIhV1KbpaE6Mm24kVXL_AXMO2NNxPR6ySbvuzDu2t6m69_0q-A1DIHtg
link.rule.ids 230,315,782,786,887,27934,27935
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+molecular+cluster+models+to+probe+pyrite+surface+reactivity&rft.jtitle=Journal+of+computational+chemistry&rft.au=Kour%2C+Manjinder&rft.au=Taborosi%2C+Attila&rft.au=Boyd%2C+Eric+S&rft.au=Szilagyi%2C+Robert+K&rft.date=2023-12-15&rft.eissn=1096-987X&rft.volume=44&rft.issue=32&rft.spage=2486&rft.epage=2500&rft_id=info:doi/10.1002%2Fjcc.27213&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0192-8651&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0192-8651&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0192-8651&client=summon