Development of molecular cluster models to probe pyrite surface reactivity
The recent discovery that anaerobic methanogens can reductively dissolve pyrite and utilize dissolution products as a source of iron and sulfur to meet their biosynthetic demands for these elements prompted the development of atomic‐scale nanoparticle models, as maquettes of reactive surface sites,...
Saved in:
Published in: | Journal of computational chemistry Vol. 44; no. 32; pp. 2486 - 2500 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
New York
Wiley Subscription Services, Inc
15-12-2023
Wiley Blackwell (John Wiley & Sons) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The recent discovery that anaerobic methanogens can reductively dissolve pyrite and utilize dissolution products as a source of iron and sulfur to meet their biosynthetic demands for these elements prompted the development of atomic‐scale nanoparticle models, as maquettes of reactive surface sites, for describing the fundamental redox steps that take place at the mineral surface during reduction. The given report describes our computational approach for modeling
n
(FeS
2
) nanoparticles originated from mineral bulk structure. These maquettes contain a comprehensive set of coordinatively unsaturated Fe
(II)
sites that are connected
via
a range of persulfide (S
2
2−
) ligation. In addition to the specific maquettes with
n
= 8, 18, and 32 FeS
2
units, we established guidelines for obtaining low‐energy structures by considering the pattern of ionic, covalent, and magnetic interactions among the metal and ligand sites. The developed models serve as computational nano‐reactors that can be used to describe the reductive dissolution mechanism of pyrite to better understand the reactive sites on the mineral, where microbial extracellular electron‐transfer reactions can occur. |
---|---|
AbstractList | The recent discovery that anaerobic methanogens can reductively dissolve pyrite and utilize dissolution products as a source of iron and sulfur to meet their biosynthetic demands for these elements prompted the development of atomic-scale nanoparticle models, as maquettes of reactive surface sites, for describing the fundamental redox steps that take place at the mineral surface during reduction. The given report describes our computational approach for modeling n(FeS2) nanoparticles originated from mineral bulk structure. These maquettes contain a comprehensive set of coordinatively unsaturated Fe(II) sites that are connected via a range of persulfide (S22–) ligation. In addition to the specific maquettes with n = 8, 18, and 32 FeS2 units, we established guidelines for obtaining low-energy structures by considering the pattern of ionic, covalent, and magnetic interactions among the metal and ligand sites. The developed models serve as computational nano-reactors that can be used to describe the reductive dissolution mechanism of pyrite to better understand the reactive sites on the mineral, where microbial extracellular electron-transfer reactions can occur. The recent discovery that anaerobic methanogens can reductively dissolve pyrite and utilize dissolution products as a source of iron and sulfur to meet their biosynthetic demands for these elements prompted the development of atomic-scale nanoparticle models, as maquettes of reactive surface sites, for describing the fundamental redox steps that take place at the mineral surface during reduction. The given report describes our computational approach for modeling n(FeS2 ) nanoparticles originated from mineral bulk structure. These maquettes contain a comprehensive set of coordinatively unsaturated Fe(II) sites that are connected via a range of persulfide (S2 2- ) ligation. In addition to the specific maquettes with n = 8, 18, and 32 FeS2 units, we established guidelines for obtaining low-energy structures by considering the pattern of ionic, covalent, and magnetic interactions among the metal and ligand sites. The developed models serve as computational nano-reactors that can be used to describe the reductive dissolution mechanism of pyrite to better understand the reactive sites on the mineral, where microbial extracellular electron-transfer reactions can occur. The recent discovery that anaerobic methanogens can reductively dissolve pyrite and utilize dissolution products as a source of iron and sulfur to meet their biosynthetic demands for these elements prompted the development of atomic‐scale nanoparticle models, as maquettes of reactive surface sites, for describing the fundamental redox steps that take place at the mineral surface during reduction. The given report describes our computational approach for modeling n(FeS2) nanoparticles originated from mineral bulk structure. These maquettes contain a comprehensive set of coordinatively unsaturated Fe(II) sites that are connected via a range of persulfide (S22−) ligation. In addition to the specific maquettes with n = 8, 18, and 32 FeS2 units, we established guidelines for obtaining low‐energy structures by considering the pattern of ionic, covalent, and magnetic interactions among the metal and ligand sites. The developed models serve as computational nano‐reactors that can be used to describe the reductive dissolution mechanism of pyrite to better understand the reactive sites on the mineral, where microbial extracellular electron‐transfer reactions can occur. The recent discovery that anaerobic methanogens can reductively dissolve pyrite and utilize dissolution products as a source of iron and sulfur to meet their biosynthetic demands for these elements prompted the development of atomic‐scale nanoparticle models, as maquettes of reactive surface sites, for describing the fundamental redox steps that take place at the mineral surface during reduction. The given report describes our computational approach for modeling n (FeS 2 ) nanoparticles originated from mineral bulk structure. These maquettes contain a comprehensive set of coordinatively unsaturated Fe (II) sites that are connected via a range of persulfide (S 2 2− ) ligation. In addition to the specific maquettes with n = 8, 18, and 32 FeS 2 units, we established guidelines for obtaining low‐energy structures by considering the pattern of ionic, covalent, and magnetic interactions among the metal and ligand sites. The developed models serve as computational nano‐reactors that can be used to describe the reductive dissolution mechanism of pyrite to better understand the reactive sites on the mineral, where microbial extracellular electron‐transfer reactions can occur. |
Author | Kour, Manjinder Szilagyi, Robert K Taborosi, Attila Boyd, Eric S |
Author_xml | – sequence: 1 givenname: Manjinder surname: Kour fullname: Kour, Manjinder organization: Department of Microbiology and Cell Biology Montana State University Bozeman Montana USA – sequence: 2 givenname: Attila surname: Taborosi fullname: Taborosi, Attila organization: Research Initiative for Supra‐Materials, Faculty of Engineering Shinshu University Nagano Japan – sequence: 3 givenname: Eric S. surname: Boyd fullname: Boyd, Eric S. organization: Department of Microbiology and Cell Biology Montana State University Bozeman Montana USA – sequence: 4 givenname: Robert K. surname: Szilagyi fullname: Szilagyi, Robert K. organization: Department of Chemistry The University of British Columbia Okanagan, Kelowna British Columbia Canada |
BackLink | https://www.osti.gov/biblio/1997563$$D View this record in Osti.gov |
BookMark | eNpd0E1Lw0AQBuBFFGyrB_9B0IseUvcrm92j1G8KXhS8LZvJBFPSbN3dFPrvTa0nTwPDw_DOOyXHve-RkAtG54xSfrsCmPOSM3FEJowalRtdfh6TCWWG51oV7JRMY1xRSkWh5IS83uMWO79ZY58y32Rr3yEMnQsZdENMGMZNjV3Mks82wVeYbXahTZjFITQOMAvoILXbNu3OyEnjuojnf3NGPh4f3hfP-fLt6WVxt8xBMJ5ycE2JAozQrAJgjGppUPGKO2oMKEmZVLLSuuKl0U1dFE0pGnScFbWsOVRiRi4Pd31MrY0wpoEv8H2PkCwzpiyUGNH1AY2hvweMya7bCNh1rkc_RMt1YRTlWu7p1T-68kPoxxdGpaUyspR6VDcHBcHHGLCxm9CuXdhZRu2-ejtWb3-rFz-ywnew |
Cites_doi | 10.1111/1462-2920.16285 10.1128/JB.00146-21 10.1016/j.gca.2010.02.027 10.1016/j.cplett.2006.10.023 10.1016/0016-7037(84)90089-9 10.1103/PhysRevB.43.11926 10.1063/1.1740588 10.1021/jp810292n 10.1016/0016-7037(91)90005-P 10.1038/s41396-021-01028-3 10.1016/j.surfrep.2008.09.002 10.1016/S1367-5931(98)80058-6 10.1016/0010-8545(95)07011-L 10.1016/0022-3697(85)90204-5 10.1016/j.tim.2022.05.005 10.1103/PhysRevB.46.6671 10.1039/b508541a 10.1016/j.coal.2006.07.003 10.1016/j.femsle.2004.08.027 10.1103/PhysRevB.54.16533 10.1021/acs.inorgchem.8b00877 10.1128/aem.42.4.580-584.1981 10.1021/cr020615 10.1002/jcc.20449 10.1021/ja002183v 10.1039/b616481c 10.1016/S0016-7037(01)00745-1 10.1021/es803417s 10.1021/ci00038a003 10.1515/9781501509490-009 10.1039/C6SC00705H 10.1103/PhysRevB.50.8214 10.3389/fmicb.2022.878387 10.1103/PhysRevB.48.4978.2 10.1021/cr9500390 10.1021/acs.jctc.5b01082 10.1016/j.jcrysgro.2004.02.020 10.1021/cr0503658 10.1107/S2052520616003954 10.1111/j.1462-2920.2012.02783.x 10.2475/ajs.268.1.1 10.1021/acs.jpca.0c11284 10.1016/j.jallcom.2005.02.052 10.1016/0016-7037(87)90337-1 10.1128/JB.00117-21 |
ContentType | Journal Article |
Copyright | 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
CorporateAuthor | Montana State Univ., Bozeman, MT (United States) |
CorporateAuthor_xml | – name: Montana State Univ., Bozeman, MT (United States) |
DBID | AAYXX CITATION JQ2 7X8 OTOTI |
DOI | 10.1002/jcc.27213 |
DatabaseName | CrossRef ProQuest Computer Science Collection MEDLINE - Academic OSTI.GOV |
DatabaseTitle | CrossRef ProQuest Computer Science Collection MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Computer Science Collection CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1096-987X |
EndPage | 2500 |
ExternalDocumentID | 1997563 10_1002_jcc_27213 |
GroupedDBID | --- -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 36B 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAMNL AANLZ AAONW AAXRX AAYXX AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFO ACGFS ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CITATION CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS ESX F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RWK RX1 RYL SUPJJ TN5 UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YQT ZZTAW ~IA ~KM ~WT JQ2 7X8 ABHUG ABPTK ABWRO ACXME ADAWD ADDAD AFVGU AGJLS OTOTI |
ID | FETCH-LOGICAL-c312t-caf7e3c9381bcc110849e62b2a099c6401464b88b2798fd55f73fea215d4d2cb3 |
ISSN | 0192-8651 |
IngestDate | Mon Nov 06 04:06:30 EST 2023 Sat Aug 17 01:47:46 EDT 2024 Thu Nov 21 04:24:07 EST 2024 Thu Nov 21 22:19:03 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 32 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c312t-caf7e3c9381bcc110849e62b2a099c6401464b88b2798fd55f73fea215d4d2cb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDOE USDOE Office of Science (SC), Basic Energy Sciences (BES). Chemical Sciences, Geosciences & Biosciences Division (CSGB) SC0020246 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jcc.27213 |
PQID | 2884694748 |
PQPubID | 48816 |
PageCount | 15 |
ParticipantIDs | osti_scitechconnect_1997563 proquest_miscellaneous_2859602843 proquest_journals_2884694748 crossref_primary_10_1002_jcc_27213 |
PublicationCentury | 2000 |
PublicationDate | 2023-12-15 |
PublicationDateYYYYMMDD | 2023-12-15 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationTitle | Journal of computational chemistry |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc Wiley Blackwell (John Wiley & Sons) |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley Blackwell (John Wiley & Sons) |
References | e_1_2_8_28_1 Dean J. A. (e_1_2_8_50_1) 1999 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 Schoonen M. A. A. (e_1_2_8_4_1) 2004 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_6_1 Bayliss P. (e_1_2_8_19_1) 1989; 74 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 Ferry J. G. (e_1_2_8_8_1) 2012 Frisch M. J. (e_1_2_8_33_1) 2016 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 |
References_xml | – ident: e_1_2_8_11_1 doi: 10.1111/1462-2920.16285 – ident: e_1_2_8_9_1 doi: 10.1128/JB.00146-21 – ident: e_1_2_8_51_1 doi: 10.1016/j.gca.2010.02.027 – ident: e_1_2_8_41_1 doi: 10.1016/j.cplett.2006.10.023 – ident: e_1_2_8_18_1 doi: 10.1016/0016-7037(84)90089-9 – ident: e_1_2_8_24_1 doi: 10.1103/PhysRevB.43.11926 – ident: e_1_2_8_40_1 doi: 10.1063/1.1740588 – ident: e_1_2_8_39_1 doi: 10.1021/jp810292n – ident: e_1_2_8_49_1 doi: 10.1016/0016-7037(91)90005-P – ident: e_1_2_8_16_1 doi: 10.1038/s41396-021-01028-3 – ident: e_1_2_8_15_1 doi: 10.1016/j.surfrep.2008.09.002 – ident: e_1_2_8_30_1 doi: 10.1016/S1367-5931(98)80058-6 – ident: e_1_2_8_29_1 doi: 10.1016/0010-8545(95)07011-L – ident: e_1_2_8_25_1 doi: 10.1016/0022-3697(85)90204-5 – volume-title: Lange's handbook of chemistry year: 1999 ident: e_1_2_8_50_1 contributor: fullname: Dean J. A. – ident: e_1_2_8_17_1 doi: 10.1016/j.tim.2022.05.005 – ident: e_1_2_8_45_1 doi: 10.1103/PhysRevB.46.6671 – ident: e_1_2_8_37_1 doi: 10.1039/b508541a – ident: e_1_2_8_20_1 doi: 10.1016/j.coal.2006.07.003 – ident: e_1_2_8_14_1 doi: 10.1016/j.femsle.2004.08.027 – ident: e_1_2_8_43_1 doi: 10.1103/PhysRevB.54.16533 – ident: e_1_2_8_27_1 doi: 10.1021/acs.inorgchem.8b00877 – volume-title: In Sulfur biogeochemistry—past and present year: 2004 ident: e_1_2_8_4_1 contributor: fullname: Schoonen M. A. A. – ident: e_1_2_8_10_1 doi: 10.1128/aem.42.4.580-584.1981 – ident: e_1_2_8_46_1 doi: 10.1021/cr020615 – volume: 74 start-page: 1168 year: 1989 ident: e_1_2_8_19_1 publication-title: Am. Mineral. contributor: fullname: Bayliss P. – ident: e_1_2_8_38_1 doi: 10.1002/jcc.20449 – volume-title: Methanogenesis: Ecology, physiology, biochemistry & genetics year: 2012 ident: e_1_2_8_8_1 contributor: fullname: Ferry J. G. – ident: e_1_2_8_31_1 doi: 10.1021/ja002183v – ident: e_1_2_8_42_1 doi: 10.1039/b616481c – ident: e_1_2_8_5_1 doi: 10.1016/S0016-7037(01)00745-1 – ident: e_1_2_8_6_1 doi: 10.1021/es803417s – ident: e_1_2_8_34_1 doi: 10.1021/ci00038a003 – ident: e_1_2_8_48_1 doi: 10.1515/9781501509490-009 – ident: e_1_2_8_36_1 doi: 10.1039/C6SC00705H – ident: e_1_2_8_23_1 doi: 10.1103/PhysRevB.50.8214 – ident: e_1_2_8_7_1 doi: 10.3389/fmicb.2022.878387 – ident: e_1_2_8_44_1 doi: 10.1103/PhysRevB.48.4978.2 – ident: e_1_2_8_32_1 doi: 10.1021/cr9500390 – ident: e_1_2_8_35_1 doi: 10.1021/acs.jctc.5b01082 – ident: e_1_2_8_22_1 doi: 10.1016/j.jcrysgro.2004.02.020 – ident: e_1_2_8_3_1 doi: 10.1021/cr0503658 – ident: e_1_2_8_26_1 doi: 10.1107/S2052520616003954 – volume-title: Gaussian 16 rev. C.01 year: 2016 ident: e_1_2_8_33_1 contributor: fullname: Frisch M. J. – ident: e_1_2_8_13_1 doi: 10.1111/j.1462-2920.2012.02783.x – ident: e_1_2_8_2_1 doi: 10.2475/ajs.268.1.1 – ident: e_1_2_8_28_1 doi: 10.1021/acs.jpca.0c11284 – ident: e_1_2_8_21_1 doi: 10.1016/j.jallcom.2005.02.052 – ident: e_1_2_8_47_1 doi: 10.1016/0016-7037(87)90337-1 – ident: e_1_2_8_12_1 doi: 10.1128/JB.00117-21 |
SSID | ssj0003564 |
Score | 2.475369 |
Snippet | The recent discovery that anaerobic methanogens can reductively dissolve pyrite and utilize dissolution products as a source of iron and sulfur to meet their... |
SourceID | osti proquest crossref |
SourceType | Open Access Repository Aggregation Database |
StartPage | 2486 |
SubjectTerms | broken-symmetry DFT calculations Dissolution Iron magnetic interactions maquette chemistry Maquettes Microorganisms Nanoparticles Pyrite pyrite nanoparticles reductive dissolution surface reactivity |
Title | Development of molecular cluster models to probe pyrite surface reactivity |
URI | https://www.proquest.com/docview/2884694748 https://search.proquest.com/docview/2859602843 https://www.osti.gov/biblio/1997563 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLZYOcAF8VN0G8ggblVGsZ3EOU6j04SmgbRO6i1KXmy0aUqmNjmUv573YjspmpDGgUvUOm4O73NfPj-_9z3GPpUJ7Y2hjAopqkgl1kYFVCaqqowILEiTUKHw2WV6sdJfF2oxHrSPY_8VaRxDrKly9h_QHh6KA_gZMccroo7XB-G-kwXUn52H9rczuO1IFMH1vul1HaiZjJndbddIO2ebbm0LoCYqVOpAHSX-wluh7wMRYogQGsYNnhtnuiKg-oakGIfk3yUtt2bTZw8ct-317RgKaLZV8MljKPbyF075ub0e8799SNbHKISkfA9XpXlknF_FnVKU6XS163id8KNfYD7K6d2oCvrY7mvcq5ned_dOPvYG4EjgTlaO77Rwjn_xPT-9Oj_Pl4vVco89FuiNqMGClD-G17WMExUkp-bi8_CwP4jKpEGHe-913XOQ5XP2zIPAjx3qL9gjU79kT04CBK_Ytx30eWP5gD736HOHPm8b3qPPHfrco89H9F-zq9PF8uQs8t0yIpBfRBtBYVMjIUMKVgJQdYfKTCJKUeAmABJFKkGq1LpEI2hbxbFNpTUFUr5KVQJK-YZN6qY2bxnXUlskegVo_F0CaWljEdt5PE8qC2Uhp-xjME1-50RRcid_LXK0X97bb8oOyGg5MjmSIwbK24I2p8SmOMG7h8GWuf_3bHKhkQ1nKlV6yj4Mt9GEdIhV1KbpaE6Mm24kVXL_AXMO2NNxPR6ySbvuzDu2t6m69_0q-A1DIHtg |
link.rule.ids | 230,315,782,786,887,27934,27935 |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+molecular+cluster+models+to+probe+pyrite+surface+reactivity&rft.jtitle=Journal+of+computational+chemistry&rft.au=Kour%2C+Manjinder&rft.au=Taborosi%2C+Attila&rft.au=Boyd%2C+Eric+S&rft.au=Szilagyi%2C+Robert+K&rft.date=2023-12-15&rft.eissn=1096-987X&rft.volume=44&rft.issue=32&rft.spage=2486&rft.epage=2500&rft_id=info:doi/10.1002%2Fjcc.27213&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0192-8651&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0192-8651&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0192-8651&client=summon |