Effect of D,L-buthionine-S,R-sulfoximine on the ratio of glutathione forms and the growth of Tatar buckwheat calli

We studied the intracellular content of reduced (GSH) and oxidized (GSSG) glutathione, glutathione reductase activity, glutathione-S-transferase, and ascorbate peroxidase in morphogenic and nonmorphogenic Tatar buckwheat calli during the culture cycle as well as under the treatment with D,L-buthioni...

Full description

Saved in:
Bibliographic Details
Published in:Russian journal of developmental biology Vol. 45; no. 1; pp. 41 - 51
Main Authors: Nigmatullina, L. R, Rumyantseva, N. I, Kostyukova, Yu. A
Format: Journal Article
Language:English
Published: Boston Springer-Verlag 2014
Springer US
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We studied the intracellular content of reduced (GSH) and oxidized (GSSG) glutathione, glutathione reductase activity, glutathione-S-transferase, and ascorbate peroxidase in morphogenic and nonmorphogenic Tatar buckwheat calli during the culture cycle as well as under the treatment with D,L-buthionine-S,R-sulfoximine (BSO), an inhibitor of γ-glutamylcysteine synthase, the first enzyme of glutathione biosynthesis. We found that, during passaging, cultures only slightly differed in total glutathione content; however, the content of GSH was higher in the morphogenic culture, whereas the content of GSSG was higher in the nonmorphogenic culture. In the morphogenic callus, the glutathione-S-transferase activity was 10–20 times higher and the glutathione reductase activity was 2–2.5 times lower than in the nonmorphogenic callus. Under the treatment with BSO, the decrease in the GSH content in the morphogenic callus was temporary (on day 6–8 of passage), whereas that in the nonmorphogenic callus decreased within a day and remained lower than in the control throughout the entire passage. In the morphogenic callus, BSO did not affect the content of GSSG, whereas it caused GSSG accumulation in the nonmorphogenic callus. These differences are probably due to the fact that, in the BSO-containing medium, glutathione reductase is activated in the morphogenic callus and, conversely, inhibited in the nonmorphogenic callus. Although BSO caused a decrease in the total glutathione content only in the nonmorphogenic culture, the cytostatic effect of BSO was more pronounced in the morphogenic callus. In addition, BSO also had a negative effect on the differentiation of proembryonic cell complexes in the morphogenic callus. The role of the glutathione redox status in maintaining the embryogenic activity of cultured plant cells is discussed.
Bibliography:http://dx.doi.org/10.1134/S1062360414010056
ISSN:1062-3604
1608-3326
DOI:10.1134/S1062360414010056