Dissipative Spin-Wave Diode and Nonreciprocal Magnonic Amplifier
We propose an experimentally feasible dissipative spin-wave diode comprising two magnetic layers coupled via a nonmagnetic spacer. We theoretically demonstrate that the spacer mediates not only coherent interactions but also dissipative coupling. Interestingly, an appropriately engineered dissipatio...
Saved in:
Published in: | Physical review letters Vol. 132; no. 3; p. 036701 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
19-01-2024
|
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | We propose an experimentally feasible dissipative spin-wave diode comprising two magnetic layers coupled via a nonmagnetic spacer. We theoretically demonstrate that the spacer mediates not only coherent interactions but also dissipative coupling. Interestingly, an appropriately engineered dissipation engenders a nonreciprocal device response, facilitating the realization of a spin-wave diode. This diode permits wave propagation in one direction alone, given that the coherent Dzyaloshinskii-Moriya (DM) interaction is balanced with the dissipative coupling. The polarity of the diode is determined by the sign of the DM interaction. Furthermore, we show that when the magnetic layers undergo incoherent pumping, the device operates as a unidirectional spin-wave amplifier. The amplifier gain is augmented by cascading multiple magnetic bilayers. By extending our model to a one-dimensional ring structure, we establish a connection between the physics of spin-wave amplification and non-Hermitian topology. Our proposal opens up a new avenue for harnessing inherent dissipation in spintronic applications. |
---|---|
AbstractList | We propose an experimentally feasible dissipative spin-wave diode comprising two magnetic layers coupled via a nonmagnetic spacer. We theoretically demonstrate that the spacer mediates not only coherent interactions but also dissipative coupling. Interestingly, an appropriately engineered dissipation engenders a nonreciprocal device response, facilitating the realization of a spin-wave diode. This diode permits wave propagation in one direction alone, given that the coherent Dzyaloshinskii-Moriya (DM) interaction is balanced with the dissipative coupling. The polarity of the diode is determined by the sign of the DM interaction. Furthermore, we show that when the magnetic layers undergo incoherent pumping, the device operates as a unidirectional spin-wave amplifier. The amplifier gain is augmented by cascading multiple magnetic bilayers. By extending our model to a one-dimensional ring structure, we establish a connection between the physics of spin-wave amplification and non-Hermitian topology. Our proposal opens up a new avenue for harnessing inherent dissipation in spintronic applications. |
ArticleNumber | 036701 |
Author | Bosco, Stefano Thingstad, Even Zou, Ji Klinovaja, Jelena Loss, Daniel |
Author_xml | – sequence: 1 givenname: Ji surname: Zou fullname: Zou, Ji organization: Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland – sequence: 2 givenname: Stefano surname: Bosco fullname: Bosco, Stefano organization: Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland – sequence: 3 givenname: Even surname: Thingstad fullname: Thingstad, Even organization: Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland – sequence: 4 givenname: Jelena surname: Klinovaja fullname: Klinovaja, Jelena organization: Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland – sequence: 5 givenname: Daniel surname: Loss fullname: Loss, Daniel organization: Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38307041$$D View this record in MEDLINE/PubMed |
BookMark | eNpNkElPwzAQhS1URBf4C1WOXFJm7DSJb1RllcoiFnG0HGcCRtmw00r99wS1IE5vDu_Ne_rGbFA3NTE2RZghgjh7_Nj6J9qsqOtmKPgMRJwAHrARQiLDBDEasBGAwFACJEM29v4TAJDH6REbilRAAhGO2PmF9d62urMbCp5bW4dvur8ubJNToOs8uG9qR8a2rjG6DO70ez_EmmBRtaUtLLljdljo0tPJXifs9eryZXkTrh6ub5eLVWgEYhdSxnURczQxnxupDaVRlhZQRFwmkZZCoOZGS8oo55mMOE9FnKURxiSSYi6NmLDT3d9-ydeafKcq6w2Vpa6pWXvFJZfIJXDRW-Od1bjGe0eFap2ttNsqBPVDT_2jp3p6akevD073Heusovwv9otLfANGxW99 |
CitedBy_id | crossref_primary_10_1016_j_physrep_2024_01_006 crossref_primary_10_1103_PhysRevA_109_023710 crossref_primary_10_1038_s41534_024_00842_9 crossref_primary_10_1038_s44306_024_00017_4 crossref_primary_10_1103_PhysRevResearch_6_033020 |
Cites_doi | 10.1021/acs.nanolett.3c01709 10.1103/PhysRevLett.123.127202 10.1038/s42005-021-00790-2 10.1103/PhysRevB.84.024402 10.1016/j.physrep.2023.01.002 10.1103/PhysRevB.106.L180406 10.1103/PhysRevB.100.094415 10.1103/PhysRevLett.120.047201 10.1021/acs.nanolett.8b01502 10.1103/PhysRevB.106.224422 10.1103/PhysRevLett.64.2304 10.1103/RevModPhys.82.1155 10.1103/PhysRevLett.66.2152 10.1103/PhysRevA.95.013837 10.1103/PhysRevB.103.L241408 10.1103/PhysRevA.31.3761 10.1016/j.physrep.2020.12.004 10.1126/sciadv.aav0265 10.1103/PhysRevB.54.9353 10.1021/acs.nanolett.7b05392 10.1038/nphys3770 10.1016/j.physrep.2022.03.002 10.1103/PhysRevX.5.041049 10.1103/PhysRevLett.121.027202 10.1103/PhysRevLett.121.137203 10.1038/s41467-020-16863-9 10.1103/PhysRevLett.123.237207 10.1038/nphys3347 10.1103/PhysRevX.11.011032 10.1103/PhysRevLett.122.037203 10.1016/j.jallcom.2022.165152 10.1016/0022-3697(80)90210-3 10.1103/PhysRevB.105.L180406 10.1038/s41467-019-10545-x 10.1038/s41467-022-32959-w 10.1016/j.physrep.2011.06.003 10.1103/PhysRevLett.114.047201 10.1021/acs.nanolett.3c02607 10.1080/00018732.2014.933502 10.1088/1361-648X/abec1a 10.21468/SciPostPhys.15.4.173 10.1016/j.jmmm.2019.165659 10.1103/PhysRevApplied.14.034063 10.1063/5.0124841 10.1201/9780367822651 10.1038/s41467-018-05732-1 10.1038/nmat3301 10.1201/9781003141273 10.1103/PhysRevLett.90.187601 10.1103/PhysRevLett.122.257202 10.1103/PhysRevResearch.2.013031 10.1103/PhysRevX.5.021025 10.1103/PhysRevLett.45.1242 10.1093/oso/9780198566335.001.0001 10.1016/0304-8853(96)00062-5 10.1103/PhysRevB.107.024418 10.1103/PhysRevLett.67.1602 10.1093/acprof:oso/9780199213900.001.0001 10.1103/PhysRevLett.127.117204 10.1103/PhysRevB.108.104302 10.1063/1.4915101 10.1103/PhysRev.58.1098 10.1103/PhysRevLett.119.047201 10.1088/1361-6463/aa5b09 10.21468/SciPostPhysLectNotes.44 10.1103/PhysRevLett.106.158701 10.1103/PhysRevB.106.L100403 10.1103/PhysRevB.106.195130 10.1063/5.0146553 10.1109/TMAG.2022.3149664 10.1103/PhysRevB.102.180408 10.3367/UFNe.0185.201510m.1099 10.1103/PhysRevLett.123.247202 10.1103/PRXQuantum.4.010306 10.1103/PhysRevLett.129.117201 10.1103/PhysRevLett.102.207204 10.1103/PhysRevApplied.14.024047 |
ContentType | Journal Article |
DBID | NPM AAYXX CITATION 7X8 |
DOI | 10.1103/PhysRevLett.132.036701 |
DatabaseName | PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1079-7114 |
EndPage | 036701 |
ExternalDocumentID | 10_1103_PhysRevLett_132_036701 38307041 |
Genre | Journal Article |
GroupedDBID | --- -DZ -~X 123 2-P 29O 3MX 5VS 85S 8NH ACBEA ACGFO ACNCT AENEX AEQTI AFFNX AFGMR AGDNE AJQPL ALMA_UNASSIGNED_HOLDINGS APKKM AUAIK CS3 D0L DU5 EBS EJD ER. F5P MVM N9A NPBMV NPM OK1 P2P ROL S7W SJN TN5 UBE UCJ VQA WH7 XSW YNT ZPR ~02 186 3O- 41~ 6TJ 8WZ 9M8 A6W AAYJJ AAYXX ABTAH ACKIV CITATION H~9 NEJ NHB OHT P0- RNS T9H UBC VOH XJT XOL YYP ZCG ZY4 7X8 |
ID | FETCH-LOGICAL-c311t-eb2af621c625c9ace84b8f0f42974a9331a2ca9ebed2b9422836b8416e37f59c3 |
ISSN | 0031-9007 |
IngestDate | Fri Oct 25 09:53:24 EDT 2024 Wed Nov 13 12:39:28 EST 2024 Sat Nov 02 12:04:59 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c311t-eb2af621c625c9ace84b8f0f42974a9331a2ca9ebed2b9422836b8416e37f59c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-7782-9624 0000-0002-7862-2286 0000-0002-4035-9654 0000-0003-0828-1153 |
PMID | 38307041 |
PQID | 2929129023 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | proquest_miscellaneous_2929129023 crossref_primary_10_1103_PhysRevLett_132_036701 pubmed_primary_38307041 |
PublicationCentury | 2000 |
PublicationDate | 2024-01-19 |
PublicationDateYYYYMMDD | 2024-01-19 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-19 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Physical review letters |
PublicationTitleAlternate | Phys Rev Lett |
PublicationYear | 2024 |
References | H.-P. Breuer (PhysRevLett.132.036701Cc40R1) 2007 PhysRevLett.132.036701Cc18R1 PhysRevLett.132.036701Cc16R1 PhysRevLett.132.036701Cc14R1 PhysRevLett.132.036701Cc5R1 PhysRevLett.132.036701Cc12R1 PhysRevLett.132.036701Cc7R1 PhysRevLett.132.036701Cc10R1 PhysRevLett.132.036701Cc1R1 PhysRevLett.132.036701Cc80R1 PhysRevLett.132.036701Cc3R1 M. Tooley (PhysRevLett.132.036701Cc8R1) 2019 PhysRevLett.132.036701Cc73R1 PhysRevLett.132.036701Cc52R1 PhysRevLett.132.036701Cc71R1 PhysRevLett.132.036701Cc31R1 PhysRevLett.132.036701Cc54R1 PhysRevLett.132.036701Cc77R1 PhysRevLett.132.036701Cc33R1 PhysRevLett.132.036701Cc75R1 PhysRevLett.132.036701Cc35R1 PhysRevLett.132.036701Cc58R1 PhysRevLett.132.036701Cc37R1 PhysRevLett.132.036701Cc79R1 PhysRevLett.132.036701Cc39R1 PhysRevLett.132.036701Cc28R1 PhysRevLett.132.036701Cc26R1 PhysRevLett.132.036701Cc24R1 PhysRevLett.132.036701Cc22R1 PhysRevLett.132.036701Cc20R1 H. Bruus (PhysRevLett.132.036701Cc49R1) 2004 PhysRevLett.132.036701Cc60R1 PhysRevLett.132.036701Cc85R1 PhysRevLett.132.036701Cc62R1 D. Crecraft (PhysRevLett.132.036701Cc9R1) 2002 PhysRevLett.132.036701Cc43R1 PhysRevLett.132.036701Cc66R1 PhysRevLett.132.036701Cc47R1 PhysRevLett.132.036701Cc68R1 PhysRevLett.132.036701Cc19R1 PhysRevLett.132.036701Cc17R1 PhysRevLett.132.036701Cc15R1 PhysRevLett.132.036701Cc13R1 PhysRevLett.132.036701Cc4R1 PhysRevLett.132.036701Cc11R1 PhysRevLett.132.036701Cc6R1 PhysRevLett.132.036701Cc81R1 PhysRevLett.132.036701Cc2R1 PhysRevLett.132.036701Cc74R1 PhysRevLett.132.036701Cc51R1 PhysRevLett.132.036701Cc72R1 PhysRevLett.132.036701Cc32R1 PhysRevLett.132.036701Cc53R1 PhysRevLett.132.036701Cc78R1 PhysRevLett.132.036701Cc34R1 PhysRevLett.132.036701Cc55R1 PhysRevLett.132.036701Cc76R1 PhysRevLett.132.036701Cc36R1 PhysRevLett.132.036701Cc57R1 PhysRevLett.132.036701Cc38R1 PhysRevLett.132.036701Cc59R1 PhysRevLett.132.036701Cc29R1 G. P. Srivastava (PhysRevLett.132.036701Cc45R1) 2022 PhysRevLett.132.036701Cc27R1 PhysRevLett.132.036701Cc25R1 PhysRevLett.132.036701Cc23R1 PhysRevLett.132.036701Cc21R1 PhysRevLett.132.036701Cc70R1 PhysRevLett.132.036701Cc61R1 PhysRevLett.132.036701Cc84R1 PhysRevLett.132.036701Cc63R1 PhysRevLett.132.036701Cc42R1 PhysRevLett.132.036701Cc44R1 PhysRevLett.132.036701Cc67R1 PhysRevLett.132.036701Cc86R1 PhysRevLett.132.036701Cc46R1 PhysRevLett.132.036701Cc69R1 PhysRevLett.132.036701Cc48R1 |
References_xml | – ident: PhysRevLett.132.036701Cc76R1 doi: 10.1021/acs.nanolett.3c01709 – ident: PhysRevLett.132.036701Cc58R1 doi: 10.1103/PhysRevLett.123.127202 – ident: PhysRevLett.132.036701Cc27R1 doi: 10.1038/s42005-021-00790-2 – ident: PhysRevLett.132.036701Cc19R1 doi: 10.1103/PhysRevB.84.024402 – ident: PhysRevLett.132.036701Cc17R1 doi: 10.1016/j.physrep.2023.01.002 – ident: PhysRevLett.132.036701Cc54R1 doi: 10.1103/PhysRevB.106.L180406 – ident: PhysRevLett.132.036701Cc59R1 doi: 10.1103/PhysRevB.100.094415 – ident: PhysRevLett.132.036701Cc16R1 doi: 10.1103/PhysRevLett.120.047201 – ident: PhysRevLett.132.036701Cc72R1 doi: 10.1021/acs.nanolett.8b01502 – ident: PhysRevLett.132.036701Cc36R1 doi: 10.1103/PhysRevB.106.224422 – ident: PhysRevLett.132.036701Cc51R1 doi: 10.1103/PhysRevLett.64.2304 – ident: PhysRevLett.132.036701Cc67R1 doi: 10.1103/RevModPhys.82.1155 – ident: PhysRevLett.132.036701Cc52R1 doi: 10.1103/PhysRevLett.66.2152 – ident: PhysRevLett.132.036701Cc61R1 doi: 10.1103/PhysRevA.95.013837 – ident: PhysRevLett.132.036701Cc84R1 doi: 10.1103/PhysRevB.103.L241408 – ident: PhysRevLett.132.036701Cc66R1 doi: 10.1103/PhysRevA.31.3761 – ident: PhysRevLett.132.036701Cc7R1 doi: 10.1016/j.physrep.2020.12.004 – ident: PhysRevLett.132.036701Cc74R1 doi: 10.1126/sciadv.aav0265 – ident: PhysRevLett.132.036701Cc79R1 doi: 10.1103/PhysRevB.54.9353 – ident: PhysRevLett.132.036701Cc44R1 doi: 10.1021/acs.nanolett.7b05392 – ident: PhysRevLett.132.036701Cc77R1 doi: 10.1038/nphys3770 – ident: PhysRevLett.132.036701Cc2R1 doi: 10.1016/j.physrep.2022.03.002 – ident: PhysRevLett.132.036701Cc21R1 doi: 10.1103/PhysRevX.5.041049 – ident: PhysRevLett.132.036701Cc35R1 doi: 10.1103/PhysRevLett.121.027202 – ident: PhysRevLett.132.036701Cc57R1 doi: 10.1103/PhysRevLett.121.137203 – ident: PhysRevLett.132.036701Cc85R1 doi: 10.1038/s41467-020-16863-9 – ident: PhysRevLett.132.036701Cc38R1 doi: 10.1103/PhysRevLett.123.237207 – ident: PhysRevLett.132.036701Cc1R1 doi: 10.1038/nphys3347 – ident: PhysRevLett.132.036701Cc10R1 doi: 10.1103/PhysRevX.11.011032 – ident: PhysRevLett.132.036701Cc28R1 doi: 10.1103/PhysRevLett.122.037203 – ident: PhysRevLett.132.036701Cc46R1 doi: 10.1016/j.jallcom.2022.165152 – ident: PhysRevLett.132.036701Cc63R1 doi: 10.1016/0022-3697(80)90210-3 – volume-title: Analog Electronics: Circuits, Systems and Signal Processing year: 2002 ident: PhysRevLett.132.036701Cc9R1 contributor: fullname: D. Crecraft – ident: PhysRevLett.132.036701Cc34R1 doi: 10.1103/PhysRevB.105.L180406 – ident: PhysRevLett.132.036701Cc47R1 doi: 10.1038/s41467-019-10545-x – ident: PhysRevLett.132.036701Cc73R1 doi: 10.1038/s41467-022-32959-w – ident: PhysRevLett.132.036701Cc4R1 doi: 10.1016/j.physrep.2011.06.003 – ident: PhysRevLett.132.036701Cc18R1 doi: 10.1103/PhysRevLett.114.047201 – ident: PhysRevLett.132.036701Cc53R1 doi: 10.1021/acs.nanolett.3c02607 – ident: PhysRevLett.132.036701Cc62R1 doi: 10.1080/00018732.2014.933502 – ident: PhysRevLett.132.036701Cc5R1 doi: 10.1088/1361-648X/abec1a – ident: PhysRevLett.132.036701Cc86R1 doi: 10.21468/SciPostPhys.15.4.173 – ident: PhysRevLett.132.036701Cc70R1 doi: 10.1016/j.jmmm.2019.165659 – ident: PhysRevLett.132.036701Cc22R1 doi: 10.1103/PhysRevApplied.14.034063 – ident: PhysRevLett.132.036701Cc31R1 doi: 10.1063/5.0124841 – volume-title: Electronic Circuits: Fundamentals and Applications year: 2019 ident: PhysRevLett.132.036701Cc8R1 doi: 10.1201/9780367822651 contributor: fullname: M. Tooley – ident: PhysRevLett.132.036701Cc48R1 doi: 10.1038/s41467-018-05732-1 – ident: PhysRevLett.132.036701Cc80R1 doi: 10.1038/nmat3301 – volume-title: The Physics of Phonons year: 2022 ident: PhysRevLett.132.036701Cc45R1 doi: 10.1201/9781003141273 contributor: fullname: G. P. Srivastava – ident: PhysRevLett.132.036701Cc55R1 doi: 10.1103/PhysRevLett.90.187601 – ident: PhysRevLett.132.036701Cc75R1 doi: 10.1103/PhysRevLett.122.257202 – ident: PhysRevLett.132.036701Cc32R1 doi: 10.1103/PhysRevResearch.2.013031 – ident: PhysRevLett.132.036701Cc25R1 doi: 10.1103/PhysRevX.5.021025 – ident: PhysRevLett.132.036701Cc29R1 doi: 10.1103/PhysRevLett.45.1242 – volume-title: Many-Body Quantum Theory in Condensed Matter Physics year: 2004 ident: PhysRevLett.132.036701Cc49R1 doi: 10.1093/oso/9780198566335.001.0001 contributor: fullname: H. Bruus – ident: PhysRevLett.132.036701Cc78R1 doi: 10.1016/0304-8853(96)00062-5 – ident: PhysRevLett.132.036701Cc13R1 doi: 10.1103/PhysRevB.107.024418 – ident: PhysRevLett.132.036701Cc42R1 doi: 10.1103/PhysRevLett.67.1602 – volume-title: The Theory of Open Quantum Systems year: 2007 ident: PhysRevLett.132.036701Cc40R1 doi: 10.1093/acprof:oso/9780199213900.001.0001 contributor: fullname: H.-P. Breuer – ident: PhysRevLett.132.036701Cc69R1 doi: 10.1103/PhysRevLett.127.117204 – ident: PhysRevLett.132.036701Cc81R1 doi: 10.1103/PhysRevB.108.104302 – ident: PhysRevLett.132.036701Cc24R1 doi: 10.1063/1.4915101 – ident: PhysRevLett.132.036701Cc39R1 doi: 10.1103/PhysRev.58.1098 – ident: PhysRevLett.132.036701Cc15R1 doi: 10.1103/PhysRevLett.119.047201 – ident: PhysRevLett.132.036701Cc20R1 doi: 10.1088/1361-6463/aa5b09 – ident: PhysRevLett.132.036701Cc68R1 doi: 10.21468/SciPostPhysLectNotes.44 – ident: PhysRevLett.132.036701Cc26R1 doi: 10.1103/PhysRevLett.106.158701 – ident: PhysRevLett.132.036701Cc37R1 doi: 10.1103/PhysRevB.106.L100403 – ident: PhysRevLett.132.036701Cc43R1 doi: 10.1103/PhysRevB.106.195130 – ident: PhysRevLett.132.036701Cc71R1 doi: 10.1063/5.0146553 – ident: PhysRevLett.132.036701Cc3R1 doi: 10.1109/TMAG.2022.3149664 – ident: PhysRevLett.132.036701Cc33R1 doi: 10.1103/PhysRevB.102.180408 – ident: PhysRevLett.132.036701Cc6R1 doi: 10.3367/UFNe.0185.201510m.1099 – ident: PhysRevLett.132.036701Cc11R1 doi: 10.1103/PhysRevLett.123.247202 – ident: PhysRevLett.132.036701Cc60R1 doi: 10.1103/PRXQuantum.4.010306 – ident: PhysRevLett.132.036701Cc12R1 doi: 10.1103/PhysRevLett.129.117201 – ident: PhysRevLett.132.036701Cc14R1 doi: 10.1103/PhysRevLett.102.207204 – ident: PhysRevLett.132.036701Cc23R1 doi: 10.1103/PhysRevApplied.14.024047 |
SSID | ssj0001268 |
Score | 2.524723 |
Snippet | We propose an experimentally feasible dissipative spin-wave diode comprising two magnetic layers coupled via a nonmagnetic spacer. We theoretically demonstrate... |
SourceID | proquest crossref pubmed |
SourceType | Aggregation Database Index Database |
StartPage | 036701 |
Title | Dissipative Spin-Wave Diode and Nonreciprocal Magnonic Amplifier |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38307041 https://search.proquest.com/docview/2929129023 |
Volume | 132 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBZ5UOilJH1lkya40FtRYkte27o1ZB1CG7alu6GhFyHLEmwpdug-fn9mJK_tkAaSQy5mEewsnk_7zUMzI0I-hbGOE8tKaqzlmK0aUjDCgpaGcyWGhQldwu1iko6vs1Ee5914gm7tWZGGNcAaO2efgHYrFBbgM2AOT0Adno_CfQSadGXSK_N5cjOr6C-8X2g0q0t_UDCuKxxogYYL23Kx0A7vwDnFynI7a2p1G2_1xxrEpsHlr-v9ab3w3_XSbYJZG9PXc103tWNWVXVXdYL5-IXfTfmq6z77Bk5uvVJ_fMEuWkDVT0MwLF2hDdkZT51hKmga-ZbQllu75GUXezumDHFyXNSzu93CfVYPcboEvvNPs8I2p2OQe9yX0B-jPf4uz68uL-U0v55ukm0GDIQEOPk6bk10xJKsaRcH2Sf_l3zXU3kg_HBuyHSHvGrih-DUA79LNkz1mrzwQM3fkC89-IMW_sDBHwD8wR34gzX8QQv_W3J1nk_PLmhzSQbVPIoW1BRM2YRFGgJZLZQ2WVxkNrTgZ6SxglePFNNKwH-1ZIVwA9-SAs-aDU_tUGj-jmzBL5k9EmTGFBA_20QpFZcsVmB7kkSELDWGazEckJO1QuSNn4UiXQwZctlToQQVSq_CAfm41psE2sKzKFWZejmXDBgBU6CMD8h7r9BWJs_QEMXR_iO-fUBedrvxA9la_FuaQ7I5L5dHDvJbMLxrfQ |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Multiple Vendors |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dissipative+Spin-Wave+Diode+and+Nonreciprocal+Magnonic+Amplifier&rft.jtitle=Physical+review+letters&rft.au=Zou%2C+Ji&rft.au=Bosco%2C+Stefano&rft.au=Thingstad%2C+Even&rft.au=Klinovaja%2C+Jelena&rft.date=2024-01-19&rft.eissn=1079-7114&rft.volume=132&rft.issue=3&rft.spage=036701&rft.epage=036701&rft_id=info:doi/10.1103%2FPhysRevLett.132.036701&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9007&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9007&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9007&client=summon |