Dissipative Spin-Wave Diode and Nonreciprocal Magnonic Amplifier

We propose an experimentally feasible dissipative spin-wave diode comprising two magnetic layers coupled via a nonmagnetic spacer. We theoretically demonstrate that the spacer mediates not only coherent interactions but also dissipative coupling. Interestingly, an appropriately engineered dissipatio...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters Vol. 132; no. 3; p. 036701
Main Authors: Zou, Ji, Bosco, Stefano, Thingstad, Even, Klinovaja, Jelena, Loss, Daniel
Format: Journal Article
Language:English
Published: United States 19-01-2024
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We propose an experimentally feasible dissipative spin-wave diode comprising two magnetic layers coupled via a nonmagnetic spacer. We theoretically demonstrate that the spacer mediates not only coherent interactions but also dissipative coupling. Interestingly, an appropriately engineered dissipation engenders a nonreciprocal device response, facilitating the realization of a spin-wave diode. This diode permits wave propagation in one direction alone, given that the coherent Dzyaloshinskii-Moriya (DM) interaction is balanced with the dissipative coupling. The polarity of the diode is determined by the sign of the DM interaction. Furthermore, we show that when the magnetic layers undergo incoherent pumping, the device operates as a unidirectional spin-wave amplifier. The amplifier gain is augmented by cascading multiple magnetic bilayers. By extending our model to a one-dimensional ring structure, we establish a connection between the physics of spin-wave amplification and non-Hermitian topology. Our proposal opens up a new avenue for harnessing inherent dissipation in spintronic applications.
AbstractList We propose an experimentally feasible dissipative spin-wave diode comprising two magnetic layers coupled via a nonmagnetic spacer. We theoretically demonstrate that the spacer mediates not only coherent interactions but also dissipative coupling. Interestingly, an appropriately engineered dissipation engenders a nonreciprocal device response, facilitating the realization of a spin-wave diode. This diode permits wave propagation in one direction alone, given that the coherent Dzyaloshinskii-Moriya (DM) interaction is balanced with the dissipative coupling. The polarity of the diode is determined by the sign of the DM interaction. Furthermore, we show that when the magnetic layers undergo incoherent pumping, the device operates as a unidirectional spin-wave amplifier. The amplifier gain is augmented by cascading multiple magnetic bilayers. By extending our model to a one-dimensional ring structure, we establish a connection between the physics of spin-wave amplification and non-Hermitian topology. Our proposal opens up a new avenue for harnessing inherent dissipation in spintronic applications.
ArticleNumber 036701
Author Bosco, Stefano
Thingstad, Even
Zou, Ji
Klinovaja, Jelena
Loss, Daniel
Author_xml – sequence: 1
  givenname: Ji
  surname: Zou
  fullname: Zou, Ji
  organization: Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
– sequence: 2
  givenname: Stefano
  surname: Bosco
  fullname: Bosco, Stefano
  organization: Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
– sequence: 3
  givenname: Even
  surname: Thingstad
  fullname: Thingstad, Even
  organization: Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
– sequence: 4
  givenname: Jelena
  surname: Klinovaja
  fullname: Klinovaja, Jelena
  organization: Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
– sequence: 5
  givenname: Daniel
  surname: Loss
  fullname: Loss, Daniel
  organization: Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38307041$$D View this record in MEDLINE/PubMed
BookMark eNpNkElPwzAQhS1URBf4C1WOXFJm7DSJb1RllcoiFnG0HGcCRtmw00r99wS1IE5vDu_Ne_rGbFA3NTE2RZghgjh7_Nj6J9qsqOtmKPgMRJwAHrARQiLDBDEasBGAwFACJEM29v4TAJDH6REbilRAAhGO2PmF9d62urMbCp5bW4dvur8ubJNToOs8uG9qR8a2rjG6DO70ez_EmmBRtaUtLLljdljo0tPJXifs9eryZXkTrh6ub5eLVWgEYhdSxnURczQxnxupDaVRlhZQRFwmkZZCoOZGS8oo55mMOE9FnKURxiSSYi6NmLDT3d9-ydeafKcq6w2Vpa6pWXvFJZfIJXDRW-Od1bjGe0eFap2ttNsqBPVDT_2jp3p6akevD073Heusovwv9otLfANGxW99
CitedBy_id crossref_primary_10_1016_j_physrep_2024_01_006
crossref_primary_10_1103_PhysRevA_109_023710
crossref_primary_10_1038_s41534_024_00842_9
crossref_primary_10_1038_s44306_024_00017_4
crossref_primary_10_1103_PhysRevResearch_6_033020
Cites_doi 10.1021/acs.nanolett.3c01709
10.1103/PhysRevLett.123.127202
10.1038/s42005-021-00790-2
10.1103/PhysRevB.84.024402
10.1016/j.physrep.2023.01.002
10.1103/PhysRevB.106.L180406
10.1103/PhysRevB.100.094415
10.1103/PhysRevLett.120.047201
10.1021/acs.nanolett.8b01502
10.1103/PhysRevB.106.224422
10.1103/PhysRevLett.64.2304
10.1103/RevModPhys.82.1155
10.1103/PhysRevLett.66.2152
10.1103/PhysRevA.95.013837
10.1103/PhysRevB.103.L241408
10.1103/PhysRevA.31.3761
10.1016/j.physrep.2020.12.004
10.1126/sciadv.aav0265
10.1103/PhysRevB.54.9353
10.1021/acs.nanolett.7b05392
10.1038/nphys3770
10.1016/j.physrep.2022.03.002
10.1103/PhysRevX.5.041049
10.1103/PhysRevLett.121.027202
10.1103/PhysRevLett.121.137203
10.1038/s41467-020-16863-9
10.1103/PhysRevLett.123.237207
10.1038/nphys3347
10.1103/PhysRevX.11.011032
10.1103/PhysRevLett.122.037203
10.1016/j.jallcom.2022.165152
10.1016/0022-3697(80)90210-3
10.1103/PhysRevB.105.L180406
10.1038/s41467-019-10545-x
10.1038/s41467-022-32959-w
10.1016/j.physrep.2011.06.003
10.1103/PhysRevLett.114.047201
10.1021/acs.nanolett.3c02607
10.1080/00018732.2014.933502
10.1088/1361-648X/abec1a
10.21468/SciPostPhys.15.4.173
10.1016/j.jmmm.2019.165659
10.1103/PhysRevApplied.14.034063
10.1063/5.0124841
10.1201/9780367822651
10.1038/s41467-018-05732-1
10.1038/nmat3301
10.1201/9781003141273
10.1103/PhysRevLett.90.187601
10.1103/PhysRevLett.122.257202
10.1103/PhysRevResearch.2.013031
10.1103/PhysRevX.5.021025
10.1103/PhysRevLett.45.1242
10.1093/oso/9780198566335.001.0001
10.1016/0304-8853(96)00062-5
10.1103/PhysRevB.107.024418
10.1103/PhysRevLett.67.1602
10.1093/acprof:oso/9780199213900.001.0001
10.1103/PhysRevLett.127.117204
10.1103/PhysRevB.108.104302
10.1063/1.4915101
10.1103/PhysRev.58.1098
10.1103/PhysRevLett.119.047201
10.1088/1361-6463/aa5b09
10.21468/SciPostPhysLectNotes.44
10.1103/PhysRevLett.106.158701
10.1103/PhysRevB.106.L100403
10.1103/PhysRevB.106.195130
10.1063/5.0146553
10.1109/TMAG.2022.3149664
10.1103/PhysRevB.102.180408
10.3367/UFNe.0185.201510m.1099
10.1103/PhysRevLett.123.247202
10.1103/PRXQuantum.4.010306
10.1103/PhysRevLett.129.117201
10.1103/PhysRevLett.102.207204
10.1103/PhysRevApplied.14.024047
ContentType Journal Article
DBID NPM
AAYXX
CITATION
7X8
DOI 10.1103/PhysRevLett.132.036701
DatabaseName PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1079-7114
EndPage 036701
ExternalDocumentID 10_1103_PhysRevLett_132_036701
38307041
Genre Journal Article
GroupedDBID ---
-DZ
-~X
123
2-P
29O
3MX
5VS
85S
8NH
ACBEA
ACGFO
ACNCT
AENEX
AEQTI
AFFNX
AFGMR
AGDNE
AJQPL
ALMA_UNASSIGNED_HOLDINGS
APKKM
AUAIK
CS3
D0L
DU5
EBS
EJD
ER.
F5P
MVM
N9A
NPBMV
NPM
OK1
P2P
ROL
S7W
SJN
TN5
UBE
UCJ
VQA
WH7
XSW
YNT
ZPR
~02
186
3O-
41~
6TJ
8WZ
9M8
A6W
AAYJJ
AAYXX
ABTAH
ACKIV
CITATION
H~9
NEJ
NHB
OHT
P0-
RNS
T9H
UBC
VOH
XJT
XOL
YYP
ZCG
ZY4
7X8
ID FETCH-LOGICAL-c311t-eb2af621c625c9ace84b8f0f42974a9331a2ca9ebed2b9422836b8416e37f59c3
ISSN 0031-9007
IngestDate Fri Oct 25 09:53:24 EDT 2024
Wed Nov 13 12:39:28 EST 2024
Sat Nov 02 12:04:59 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c311t-eb2af621c625c9ace84b8f0f42974a9331a2ca9ebed2b9422836b8416e37f59c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7782-9624
0000-0002-7862-2286
0000-0002-4035-9654
0000-0003-0828-1153
PMID 38307041
PQID 2929129023
PQPubID 23479
PageCount 1
ParticipantIDs proquest_miscellaneous_2929129023
crossref_primary_10_1103_PhysRevLett_132_036701
pubmed_primary_38307041
PublicationCentury 2000
PublicationDate 2024-01-19
PublicationDateYYYYMMDD 2024-01-19
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-19
  day: 19
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Physical review letters
PublicationTitleAlternate Phys Rev Lett
PublicationYear 2024
References H.-P. Breuer (PhysRevLett.132.036701Cc40R1) 2007
PhysRevLett.132.036701Cc18R1
PhysRevLett.132.036701Cc16R1
PhysRevLett.132.036701Cc14R1
PhysRevLett.132.036701Cc5R1
PhysRevLett.132.036701Cc12R1
PhysRevLett.132.036701Cc7R1
PhysRevLett.132.036701Cc10R1
PhysRevLett.132.036701Cc1R1
PhysRevLett.132.036701Cc80R1
PhysRevLett.132.036701Cc3R1
M. Tooley (PhysRevLett.132.036701Cc8R1) 2019
PhysRevLett.132.036701Cc73R1
PhysRevLett.132.036701Cc52R1
PhysRevLett.132.036701Cc71R1
PhysRevLett.132.036701Cc31R1
PhysRevLett.132.036701Cc54R1
PhysRevLett.132.036701Cc77R1
PhysRevLett.132.036701Cc33R1
PhysRevLett.132.036701Cc75R1
PhysRevLett.132.036701Cc35R1
PhysRevLett.132.036701Cc58R1
PhysRevLett.132.036701Cc37R1
PhysRevLett.132.036701Cc79R1
PhysRevLett.132.036701Cc39R1
PhysRevLett.132.036701Cc28R1
PhysRevLett.132.036701Cc26R1
PhysRevLett.132.036701Cc24R1
PhysRevLett.132.036701Cc22R1
PhysRevLett.132.036701Cc20R1
H. Bruus (PhysRevLett.132.036701Cc49R1) 2004
PhysRevLett.132.036701Cc60R1
PhysRevLett.132.036701Cc85R1
PhysRevLett.132.036701Cc62R1
D. Crecraft (PhysRevLett.132.036701Cc9R1) 2002
PhysRevLett.132.036701Cc43R1
PhysRevLett.132.036701Cc66R1
PhysRevLett.132.036701Cc47R1
PhysRevLett.132.036701Cc68R1
PhysRevLett.132.036701Cc19R1
PhysRevLett.132.036701Cc17R1
PhysRevLett.132.036701Cc15R1
PhysRevLett.132.036701Cc13R1
PhysRevLett.132.036701Cc4R1
PhysRevLett.132.036701Cc11R1
PhysRevLett.132.036701Cc6R1
PhysRevLett.132.036701Cc81R1
PhysRevLett.132.036701Cc2R1
PhysRevLett.132.036701Cc74R1
PhysRevLett.132.036701Cc51R1
PhysRevLett.132.036701Cc72R1
PhysRevLett.132.036701Cc32R1
PhysRevLett.132.036701Cc53R1
PhysRevLett.132.036701Cc78R1
PhysRevLett.132.036701Cc34R1
PhysRevLett.132.036701Cc55R1
PhysRevLett.132.036701Cc76R1
PhysRevLett.132.036701Cc36R1
PhysRevLett.132.036701Cc57R1
PhysRevLett.132.036701Cc38R1
PhysRevLett.132.036701Cc59R1
PhysRevLett.132.036701Cc29R1
G. P. Srivastava (PhysRevLett.132.036701Cc45R1) 2022
PhysRevLett.132.036701Cc27R1
PhysRevLett.132.036701Cc25R1
PhysRevLett.132.036701Cc23R1
PhysRevLett.132.036701Cc21R1
PhysRevLett.132.036701Cc70R1
PhysRevLett.132.036701Cc61R1
PhysRevLett.132.036701Cc84R1
PhysRevLett.132.036701Cc63R1
PhysRevLett.132.036701Cc42R1
PhysRevLett.132.036701Cc44R1
PhysRevLett.132.036701Cc67R1
PhysRevLett.132.036701Cc86R1
PhysRevLett.132.036701Cc46R1
PhysRevLett.132.036701Cc69R1
PhysRevLett.132.036701Cc48R1
References_xml – ident: PhysRevLett.132.036701Cc76R1
  doi: 10.1021/acs.nanolett.3c01709
– ident: PhysRevLett.132.036701Cc58R1
  doi: 10.1103/PhysRevLett.123.127202
– ident: PhysRevLett.132.036701Cc27R1
  doi: 10.1038/s42005-021-00790-2
– ident: PhysRevLett.132.036701Cc19R1
  doi: 10.1103/PhysRevB.84.024402
– ident: PhysRevLett.132.036701Cc17R1
  doi: 10.1016/j.physrep.2023.01.002
– ident: PhysRevLett.132.036701Cc54R1
  doi: 10.1103/PhysRevB.106.L180406
– ident: PhysRevLett.132.036701Cc59R1
  doi: 10.1103/PhysRevB.100.094415
– ident: PhysRevLett.132.036701Cc16R1
  doi: 10.1103/PhysRevLett.120.047201
– ident: PhysRevLett.132.036701Cc72R1
  doi: 10.1021/acs.nanolett.8b01502
– ident: PhysRevLett.132.036701Cc36R1
  doi: 10.1103/PhysRevB.106.224422
– ident: PhysRevLett.132.036701Cc51R1
  doi: 10.1103/PhysRevLett.64.2304
– ident: PhysRevLett.132.036701Cc67R1
  doi: 10.1103/RevModPhys.82.1155
– ident: PhysRevLett.132.036701Cc52R1
  doi: 10.1103/PhysRevLett.66.2152
– ident: PhysRevLett.132.036701Cc61R1
  doi: 10.1103/PhysRevA.95.013837
– ident: PhysRevLett.132.036701Cc84R1
  doi: 10.1103/PhysRevB.103.L241408
– ident: PhysRevLett.132.036701Cc66R1
  doi: 10.1103/PhysRevA.31.3761
– ident: PhysRevLett.132.036701Cc7R1
  doi: 10.1016/j.physrep.2020.12.004
– ident: PhysRevLett.132.036701Cc74R1
  doi: 10.1126/sciadv.aav0265
– ident: PhysRevLett.132.036701Cc79R1
  doi: 10.1103/PhysRevB.54.9353
– ident: PhysRevLett.132.036701Cc44R1
  doi: 10.1021/acs.nanolett.7b05392
– ident: PhysRevLett.132.036701Cc77R1
  doi: 10.1038/nphys3770
– ident: PhysRevLett.132.036701Cc2R1
  doi: 10.1016/j.physrep.2022.03.002
– ident: PhysRevLett.132.036701Cc21R1
  doi: 10.1103/PhysRevX.5.041049
– ident: PhysRevLett.132.036701Cc35R1
  doi: 10.1103/PhysRevLett.121.027202
– ident: PhysRevLett.132.036701Cc57R1
  doi: 10.1103/PhysRevLett.121.137203
– ident: PhysRevLett.132.036701Cc85R1
  doi: 10.1038/s41467-020-16863-9
– ident: PhysRevLett.132.036701Cc38R1
  doi: 10.1103/PhysRevLett.123.237207
– ident: PhysRevLett.132.036701Cc1R1
  doi: 10.1038/nphys3347
– ident: PhysRevLett.132.036701Cc10R1
  doi: 10.1103/PhysRevX.11.011032
– ident: PhysRevLett.132.036701Cc28R1
  doi: 10.1103/PhysRevLett.122.037203
– ident: PhysRevLett.132.036701Cc46R1
  doi: 10.1016/j.jallcom.2022.165152
– ident: PhysRevLett.132.036701Cc63R1
  doi: 10.1016/0022-3697(80)90210-3
– volume-title: Analog Electronics: Circuits, Systems and Signal Processing
  year: 2002
  ident: PhysRevLett.132.036701Cc9R1
  contributor:
    fullname: D. Crecraft
– ident: PhysRevLett.132.036701Cc34R1
  doi: 10.1103/PhysRevB.105.L180406
– ident: PhysRevLett.132.036701Cc47R1
  doi: 10.1038/s41467-019-10545-x
– ident: PhysRevLett.132.036701Cc73R1
  doi: 10.1038/s41467-022-32959-w
– ident: PhysRevLett.132.036701Cc4R1
  doi: 10.1016/j.physrep.2011.06.003
– ident: PhysRevLett.132.036701Cc18R1
  doi: 10.1103/PhysRevLett.114.047201
– ident: PhysRevLett.132.036701Cc53R1
  doi: 10.1021/acs.nanolett.3c02607
– ident: PhysRevLett.132.036701Cc62R1
  doi: 10.1080/00018732.2014.933502
– ident: PhysRevLett.132.036701Cc5R1
  doi: 10.1088/1361-648X/abec1a
– ident: PhysRevLett.132.036701Cc86R1
  doi: 10.21468/SciPostPhys.15.4.173
– ident: PhysRevLett.132.036701Cc70R1
  doi: 10.1016/j.jmmm.2019.165659
– ident: PhysRevLett.132.036701Cc22R1
  doi: 10.1103/PhysRevApplied.14.034063
– ident: PhysRevLett.132.036701Cc31R1
  doi: 10.1063/5.0124841
– volume-title: Electronic Circuits: Fundamentals and Applications
  year: 2019
  ident: PhysRevLett.132.036701Cc8R1
  doi: 10.1201/9780367822651
  contributor:
    fullname: M. Tooley
– ident: PhysRevLett.132.036701Cc48R1
  doi: 10.1038/s41467-018-05732-1
– ident: PhysRevLett.132.036701Cc80R1
  doi: 10.1038/nmat3301
– volume-title: The Physics of Phonons
  year: 2022
  ident: PhysRevLett.132.036701Cc45R1
  doi: 10.1201/9781003141273
  contributor:
    fullname: G. P. Srivastava
– ident: PhysRevLett.132.036701Cc55R1
  doi: 10.1103/PhysRevLett.90.187601
– ident: PhysRevLett.132.036701Cc75R1
  doi: 10.1103/PhysRevLett.122.257202
– ident: PhysRevLett.132.036701Cc32R1
  doi: 10.1103/PhysRevResearch.2.013031
– ident: PhysRevLett.132.036701Cc25R1
  doi: 10.1103/PhysRevX.5.021025
– ident: PhysRevLett.132.036701Cc29R1
  doi: 10.1103/PhysRevLett.45.1242
– volume-title: Many-Body Quantum Theory in Condensed Matter Physics
  year: 2004
  ident: PhysRevLett.132.036701Cc49R1
  doi: 10.1093/oso/9780198566335.001.0001
  contributor:
    fullname: H. Bruus
– ident: PhysRevLett.132.036701Cc78R1
  doi: 10.1016/0304-8853(96)00062-5
– ident: PhysRevLett.132.036701Cc13R1
  doi: 10.1103/PhysRevB.107.024418
– ident: PhysRevLett.132.036701Cc42R1
  doi: 10.1103/PhysRevLett.67.1602
– volume-title: The Theory of Open Quantum Systems
  year: 2007
  ident: PhysRevLett.132.036701Cc40R1
  doi: 10.1093/acprof:oso/9780199213900.001.0001
  contributor:
    fullname: H.-P. Breuer
– ident: PhysRevLett.132.036701Cc69R1
  doi: 10.1103/PhysRevLett.127.117204
– ident: PhysRevLett.132.036701Cc81R1
  doi: 10.1103/PhysRevB.108.104302
– ident: PhysRevLett.132.036701Cc24R1
  doi: 10.1063/1.4915101
– ident: PhysRevLett.132.036701Cc39R1
  doi: 10.1103/PhysRev.58.1098
– ident: PhysRevLett.132.036701Cc15R1
  doi: 10.1103/PhysRevLett.119.047201
– ident: PhysRevLett.132.036701Cc20R1
  doi: 10.1088/1361-6463/aa5b09
– ident: PhysRevLett.132.036701Cc68R1
  doi: 10.21468/SciPostPhysLectNotes.44
– ident: PhysRevLett.132.036701Cc26R1
  doi: 10.1103/PhysRevLett.106.158701
– ident: PhysRevLett.132.036701Cc37R1
  doi: 10.1103/PhysRevB.106.L100403
– ident: PhysRevLett.132.036701Cc43R1
  doi: 10.1103/PhysRevB.106.195130
– ident: PhysRevLett.132.036701Cc71R1
  doi: 10.1063/5.0146553
– ident: PhysRevLett.132.036701Cc3R1
  doi: 10.1109/TMAG.2022.3149664
– ident: PhysRevLett.132.036701Cc33R1
  doi: 10.1103/PhysRevB.102.180408
– ident: PhysRevLett.132.036701Cc6R1
  doi: 10.3367/UFNe.0185.201510m.1099
– ident: PhysRevLett.132.036701Cc11R1
  doi: 10.1103/PhysRevLett.123.247202
– ident: PhysRevLett.132.036701Cc60R1
  doi: 10.1103/PRXQuantum.4.010306
– ident: PhysRevLett.132.036701Cc12R1
  doi: 10.1103/PhysRevLett.129.117201
– ident: PhysRevLett.132.036701Cc14R1
  doi: 10.1103/PhysRevLett.102.207204
– ident: PhysRevLett.132.036701Cc23R1
  doi: 10.1103/PhysRevApplied.14.024047
SSID ssj0001268
Score 2.524723
Snippet We propose an experimentally feasible dissipative spin-wave diode comprising two magnetic layers coupled via a nonmagnetic spacer. We theoretically demonstrate...
SourceID proquest
crossref
pubmed
SourceType Aggregation Database
Index Database
StartPage 036701
Title Dissipative Spin-Wave Diode and Nonreciprocal Magnonic Amplifier
URI https://www.ncbi.nlm.nih.gov/pubmed/38307041
https://search.proquest.com/docview/2929129023
Volume 132
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBZ5UOilJH1lkya40FtRYkte27o1ZB1CG7alu6GhFyHLEmwpdug-fn9mJK_tkAaSQy5mEewsnk_7zUMzI0I-hbGOE8tKaqzlmK0aUjDCgpaGcyWGhQldwu1iko6vs1Ee5914gm7tWZGGNcAaO2efgHYrFBbgM2AOT0Adno_CfQSadGXSK_N5cjOr6C-8X2g0q0t_UDCuKxxogYYL23Kx0A7vwDnFynI7a2p1G2_1xxrEpsHlr-v9ab3w3_XSbYJZG9PXc103tWNWVXVXdYL5-IXfTfmq6z77Bk5uvVJ_fMEuWkDVT0MwLF2hDdkZT51hKmga-ZbQllu75GUXezumDHFyXNSzu93CfVYPcboEvvNPs8I2p2OQe9yX0B-jPf4uz68uL-U0v55ukm0GDIQEOPk6bk10xJKsaRcH2Sf_l3zXU3kg_HBuyHSHvGrih-DUA79LNkz1mrzwQM3fkC89-IMW_sDBHwD8wR34gzX8QQv_W3J1nk_PLmhzSQbVPIoW1BRM2YRFGgJZLZQ2WVxkNrTgZ6SxglePFNNKwH-1ZIVwA9-SAs-aDU_tUGj-jmzBL5k9EmTGFBA_20QpFZcsVmB7kkSELDWGazEckJO1QuSNn4UiXQwZctlToQQVSq_CAfm41psE2sKzKFWZejmXDBgBU6CMD8h7r9BWJs_QEMXR_iO-fUBedrvxA9la_FuaQ7I5L5dHDvJbMLxrfQ
link.rule.ids 315,782,786,27933,27934
linkProvider Multiple Vendors
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dissipative+Spin-Wave+Diode+and+Nonreciprocal+Magnonic+Amplifier&rft.jtitle=Physical+review+letters&rft.au=Zou%2C+Ji&rft.au=Bosco%2C+Stefano&rft.au=Thingstad%2C+Even&rft.au=Klinovaja%2C+Jelena&rft.date=2024-01-19&rft.eissn=1079-7114&rft.volume=132&rft.issue=3&rft.spage=036701&rft.epage=036701&rft_id=info:doi/10.1103%2FPhysRevLett.132.036701&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9007&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9007&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9007&client=summon