Low power consumption bipolar resistive switching characteristics of ZnO-based memory devices
Ag/ZnO/Pt structure resistive switching devices are fabricated by radio frequency (RF) magnetron sputtering at room temperature. The memory devices exhibit stable and reversible resistive switching behavior. The ratio of high resistance state to low resistance state can reach as high as 102. The ret...
Saved in:
Published in: | Chinese optics letters Vol. 10; no. 1; pp. 74 - 77 |
---|---|
Main Author: | |
Format: | Journal Article |
Language: | English |
Published: |
01-01-2012
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Ag/ZnO/Pt structure resistive switching devices are fabricated by radio frequency (RF) magnetron sputtering at room temperature. The memory devices exhibit stable and reversible resistive switching behavior. The ratio of high resistance state to low resistance state can reach as high as 102. The retention mea- surement indicates that the memory property of these devices can be maintained for a long time (over 104 s under 0.1-V durable stress). Moreover, the operation voltages are very low, -0.4 V (OFF state) and 0.8 V (ON state). A high-voltage forming process is not required in the initial state, and multi-step reset process is demonstrated. Resistive switching device with the Ag/ZnO/ITO structure is constructed for comparison with the Ag/ZnO/Pt device. |
---|---|
Bibliography: | Ag/ZnO/Pt structure resistive switching devices are fabricated by radio frequency (RF) magnetron sputtering at room temperature. The memory devices exhibit stable and reversible resistive switching behavior. The ratio of high resistance state to low resistance state can reach as high as 102. The retention mea- surement indicates that the memory property of these devices can be maintained for a long time (over 104 s under 0.1-V durable stress). Moreover, the operation voltages are very low, -0.4 V (OFF state) and 0.8 V (ON state). A high-voltage forming process is not required in the initial state, and multi-step reset process is demonstrated. Resistive switching device with the Ag/ZnO/ITO structure is constructed for comparison with the Ag/ZnO/Pt device. 31-1890/O3 |
ISSN: | 1671-7694 |
DOI: | 10.3788/COL201210.013102 |