Optimal Placement of UPQC in Distribution Network Using Hybrid Approach
This study represents a power quality enhancement approach using a new hybrid algorithm which merges both Path Finder Algorithm (PFA) and Grey Wolf Optimizer (GWO) for determining the precise position and sizing of a unified power quality conditioner (UPQC). For this optimal selection, the adopted m...
Saved in:
Published in: | Cybernetics and systems Vol. 54; no. 7; pp. 1014 - 1036 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Taylor & Francis
03-10-2023
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | This study represents a power quality enhancement approach using a new hybrid algorithm which merges both Path Finder Algorithm (PFA) and Grey Wolf Optimizer (GWO) for determining the precise position and sizing of a unified power quality conditioner (UPQC). For this optimal selection, the adopted model named as Grey Wolf Insisted Inertia-based Path finder Algorithm is used. To determine the best location of the UPQC device, the suggested model focuses on the cost of UPQC, power losses, and voltage stability index. Further, the presented concept was implemented using IEEE 69 and IEEE 33 bus networks and the proposed model's performance was compared to that of other traditional approaches with respect to minimum fitness value. Accordingly, for a 50% loading scenario, the proposed model is 0.30%, 0.20%, 0.348%, 0.277%, and 0.105% better than PF, GWO, GM-DA, DA, and GA schemes. Likewise, in convergence analysis for 100th iteration, the suggested approach reaches the least value of 536.80. Therefore, it is evident that the proposed PF-GWO algorithm is more efficient than existing models with lower convergence rates. Thus, it is concluded that the proposed model achieves power quality enhancement for the optimal location and sizing of UPQC in power systems. |
---|---|
AbstractList | This study represents a power quality enhancement approach using a new hybrid algorithm which merges both Path Finder Algorithm (PFA) and Grey Wolf Optimizer (GWO) for determining the precise position and sizing of a unified power quality conditioner (UPQC). For this optimal selection, the adopted model named as Grey Wolf Insisted Inertia-based Path finder Algorithm is used. To determine the best location of the UPQC device, the suggested model focuses on the cost of UPQC, power losses, and voltage stability index. Further, the presented concept was implemented using IEEE 69 and IEEE 33 bus networks and the proposed model's performance was compared to that of other traditional approaches with respect to minimum fitness value. Accordingly, for a 50% loading scenario, the proposed model is 0.30%, 0.20%, 0.348%, 0.277%, and 0.105% better than PF, GWO, GM-DA, DA, and GA schemes. Likewise, in convergence analysis for 100th iteration, the suggested approach reaches the least value of 536.80. Therefore, it is evident that the proposed PF-GWO algorithm is more efficient than existing models with lower convergence rates. Thus, it is concluded that the proposed model achieves power quality enhancement for the optimal location and sizing of UPQC in power systems. |
Author | Yadav, Shravan Kumar Sabitha, B. Prabhakaran, Anush |
Author_xml | – sequence: 1 givenname: Shravan Kumar surname: Yadav fullname: Yadav, Shravan Kumar organization: Department of Electrical Engineering, NIT Jamshedpur – sequence: 2 givenname: B. surname: Sabitha fullname: Sabitha, B. organization: Electrical Engineering Department, Kumaraguru College of Technology – sequence: 3 givenname: Anush surname: Prabhakaran fullname: Prabhakaran, Anush organization: Electrical Engineering Department, Kumaraguru College of Technology |
BookMark | eNp9kN1KAzEQhYNUsK0-gpAX2Jqf_cneWaq2QrEV7HWYpIlGt8mSrEjf3l1ab72ZuZhzDnO-CRr54A1Ct5TMKBHkjtC6rCvGZowMg7KaV-ICjftjlZVFwUdoPGiyQXSFJil9EkI4r-gYLTdt5w7Q4G0D2hyM73CweLd9XWDn8YNLXXTqu3PB4xfT_YT4hXfJ-Xe8Oqro9njetjGA_rhGlxaaZG7Oe4p2T49vi1W23iyfF_N1pjklXQY5I0KAqIgwWilVWUEEy4mtlCYsr8FSxnRZGgPaFmCVzTUHKJQAykFQPkXFKVfHkFI0Vrax_z8eJSVyoCH_aMiBhjzT6H33J5_zNsQD9E2avezg2IRoI3jtkuT_R_wC1d5opQ |
CitedBy_id | crossref_primary_10_1016_j_rico_2024_100420 crossref_primary_10_1080_15435075_2023_2297775 |
Cites_doi | 10.1002/jnm.2467 10.1109/TII.2018.2834628 10.1016/j.aej.2018.02.002 10.1080/03772063.2021.1888325 10.1049/iet-gtd.2013.0382 10.1016/j.advengsoft.2013.12.007 10.46253/jcmps.v3i3.a1 10.1049/iet-pel.2016.0999 10.46253/jcmps.v4i1.a4 10.1007/s40313-020-00564-1 10.1016/j.epsr.2020.106259 10.1016/j.ijepes.2016.04.007 10.1016/j.ijepes.2021.106893 10.1108/JEDT-04-2019-0113 10.1016/j.epsr.2015.03.007 10.1109/ic-ETITE47903.2020.330 10.1155/2009/109501 10.1155/2012/838629 10.1016/j.asoc.2019.03.012 10.1109/TPWRS.2019.2919786 10.1007/s00521-015-1920-1 10.1109/TSG.2016.2624273 10.1109/ICPES.2017.8387268 10.1016/j.ijepes.2016.05.010 10.1049/iet-gtd.2015.1040 10.1016/j.matpr.2017.11.172 10.1007/978-3-540-73190-0_7 10.1049/iet-pel.2015.0642 10.46253/jcmps.v3i2.a4 10.1049/iet-gtd.2013.0423 10.1109/TPWRD.2011.2165301 10.1016/j.neucom.2015.07.099 |
ContentType | Journal Article |
Copyright | 2022 Taylor & Francis Group, LLC 2022 |
Copyright_xml | – notice: 2022 Taylor & Francis Group, LLC 2022 |
DBID | AAYXX CITATION |
DOI | 10.1080/01969722.2022.2129378 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1087-6553 |
EndPage | 1036 |
ExternalDocumentID | 10_1080_01969722_2022_2129378 2129378 |
Genre | Research Articles |
GroupedDBID | -~X .7F .DC .QJ 0BK 0R~ 29F 2DF 30N 3YN 4.4 5GY 5VS AAAVI AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABBKH ABCCY ABFIM ABHAV ABJVF ABLIJ ABPEM ABPTK ABQHQ ABTAI ABXUL ABXYU ACGEJ ACGFS ACTIO ADCVX ADGTB ADXPE AEGYZ AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFOLD AFWLO AGDLA AGMYJ AHDLD AIJEM AIRXU AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 COF CS3 DKSSO DU5 EBS E~A E~B F5P FPAXQ FUNRP FVPDL GTTXZ HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 NX~ O9- P2P RIG RNANH ROSJB RTWRZ S-T SNACF TEN TFL TFT TFW TN5 TNC TTHFI TWF UT5 UU3 V1K ZGOLN ~S~ AAYXX ABJNI ABPAQ AHDZW CITATION DGEBU H13 TBQAZ TUROJ |
ID | FETCH-LOGICAL-c310t-a42088a8708ecbbb7f808240f7bc0249af122c66eeacf5afbf4c3aa5b8a13a813 |
IEDL.DBID | TFW |
ISSN | 0196-9722 |
IngestDate | Thu Nov 21 22:02:45 EST 2024 Tue Jul 11 04:11:17 EDT 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c310t-a42088a8708ecbbb7f808240f7bc0249af122c66eeacf5afbf4c3aa5b8a13a813 |
PageCount | 23 |
ParticipantIDs | informaworld_taylorfrancis_310_1080_01969722_2022_2129378 crossref_primary_10_1080_01969722_2022_2129378 |
PublicationCentury | 2000 |
PublicationDate | 2023-10-03 |
PublicationDateYYYYMMDD | 2023-10-03 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-03 day: 03 |
PublicationDecade | 2020 |
PublicationTitle | Cybernetics and systems |
PublicationYear | 2023 |
Publisher | Taylor & Francis |
Publisher_xml | – name: Taylor & Francis |
References | CIT0030 CIT0010 CIT0032 CIT0031 CIT0012 CIT0034 CIT0033 Dheeban S. S. (CIT0008) 2021 CIT0014 CIT0013 CIT0035 CIT0016 CIT0015 CIT0018 CIT0017 CIT0019 CIT0021 CIT0020 CIT0001 CIT0023 CIT0022 CIT0003 Gaddala K. (CIT0011) 2020; 14 CIT0025 CIT0002 CIT0024 CIT0005 CIT0027 CIT0004 CIT0026 CIT0007 CIT0029 CIT0006 CIT0028 CIT0009 |
References_xml | – ident: CIT0014 doi: 10.1002/jnm.2467 – ident: CIT0034 doi: 10.1109/TII.2018.2834628 – ident: CIT0033 doi: 10.1016/j.aej.2018.02.002 – ident: CIT0007 doi: 10.1080/03772063.2021.1888325 – volume: 14 start-page: 1 year: 2020 ident: CIT0011 publication-title: Evolutionary Intelligence contributor: fullname: Gaddala K. – ident: CIT0013 doi: 10.1049/iet-gtd.2013.0382 – ident: CIT0022 doi: 10.1016/j.advengsoft.2013.12.007 – ident: CIT0031 doi: 10.46253/jcmps.v3i3.a1 – ident: CIT0006 doi: 10.1049/iet-pel.2016.0999 – ident: CIT0002 – ident: CIT0020 doi: 10.46253/jcmps.v4i1.a4 – ident: CIT0012 doi: 10.1007/s40313-020-00564-1 – ident: CIT0025 doi: 10.1016/j.epsr.2020.106259 – ident: CIT0026 doi: 10.1016/j.ijepes.2016.04.007 – ident: CIT0004 doi: 10.1016/j.ijepes.2021.106893 – ident: CIT0010 doi: 10.1108/JEDT-04-2019-0113 – ident: CIT0015 doi: 10.1016/j.epsr.2015.03.007 – ident: CIT0009 doi: 10.1109/ic-ETITE47903.2020.330 – ident: CIT0029 doi: 10.1155/2009/109501 – ident: CIT0030 doi: 10.1155/2012/838629 – ident: CIT0032 doi: 10.1016/j.asoc.2019.03.012 – ident: CIT0019 doi: 10.1109/TPWRS.2019.2919786 – ident: CIT0021 doi: 10.1007/s00521-015-1920-1 – ident: CIT0035 doi: 10.1109/TSG.2016.2624273 – ident: CIT0018 doi: 10.1109/ICPES.2017.8387268 – ident: CIT0024 doi: 10.1016/j.ijepes.2016.05.010 – ident: CIT0027 doi: 10.1049/iet-gtd.2015.1040 – start-page: 1 year: 2021 ident: CIT0008 publication-title: Energy Sources, Part A: Recovery, Utilization, and Environmental Effects contributor: fullname: Dheeban S. S. – ident: CIT0016 doi: 10.1016/j.matpr.2017.11.172 – ident: CIT0028 doi: 10.1007/978-3-540-73190-0_7 – ident: CIT0023 doi: 10.1049/iet-pel.2015.0642 – ident: CIT0003 doi: 10.46253/jcmps.v3i2.a4 – ident: CIT0005 doi: 10.1049/iet-gtd.2013.0423 – ident: CIT0017 doi: 10.1109/TPWRD.2011.2165301 – ident: CIT0001 doi: 10.1016/j.neucom.2015.07.099 |
SSID | ssj0003371 |
Score | 2.373676 |
Snippet | This study represents a power quality enhancement approach using a new hybrid algorithm which merges both Path Finder Algorithm (PFA) and Grey Wolf Optimizer... |
SourceID | crossref informaworld |
SourceType | Aggregation Database Publisher |
StartPage | 1014 |
SubjectTerms | Grey Wolf optimization path finder algorithm power quality UPQC placement VSI |
Title | Optimal Placement of UPQC in Distribution Network Using Hybrid Approach |
URI | https://www.tandfonline.com/doi/abs/10.1080/01969722.2022.2129378 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED5BJxagPER5yQMDDIEkTuJ0rPqgUymiFWyR7fgkBlJE04F_jy9xUDvAAksmXxRd7pXLfd8BXKHva1t1hF4XTeLZ6BfTInf0YtGN_STPMRIEFB4_iclLOhgSTU6vwcLQWCV9Q2NNFFHFanJuqZbNRNxdRekiQoJR0YUyliC4L3FuW4uejZ6_YzHnwm0kTDwSaTA8P91lIzttcJeuZZ3R3j887z7supKT9WobacOWKQ6g7Zx6ya4d8_TNIdw_2ADyZs9OqblOfUO2QDafPvbZa8EGxLHr1mOxST0-zqqRAzb-JOAX6zmC8iOYj4az_thzmxY8bcu70pP0kz2V1ndTo5VSAlNbGkQ-CqWJU1BiEIY6SYwN0xhLVBhpLmWsUhlwmQb8GFrFojAnwKLcoNAq5JoO2eIrN0GgOSJyzKM46sBto-HsvSbUyIKGp9QpKiNFZU5RHeiuv4esrDoZWK8dyfivsqd_kD2DHVotXw3u8XNolR8rcwHby3x1WdnYF8u-zRg |
link.rule.ids | 315,782,786,1455,1509,27933,27934,58021,59734,60523 |
linkProvider | Taylor & Francis |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED7RMsAClIcoTw8MMASaOInTseqDIEopohVskePkJAZSRNuBf48vcap2gAWWTHYUXXx3Xy533wdwgY2G0qjDsZqY-paOfh4JuaPliabX8JMEXUGDwuGzGLwGnS7R5CxmYaitkr6hsSCKyGM1OTcVo8uWuJuc00U4NEdFF0pZIqjAugbHnPjzR72XRTTmXBhNQt-iPeUUz0-3WclPK-ylS3mnt_0fT7wDWwZ1slZxTGqwlma7UDN-PWWXhnz6ag9uH3UMeddrh1Rfp9IhmyAbD5_a7C1jHaLZNQpZbFB0kLO864CFXzT7xVqGo3wfxr3uqB1aRmzBUhrhzSxJ_9kDqd03SFUcxwIDjQ7cBopYEa2gRNtxlO-nOlKjJzFGV3EpvTiQNpeBzQ-gmk2y9BCYm6QoVOxwRYs0_kpS21YcETkmrufW4bo0cfRRcGpEdklVagwVkaEiY6g6NJdfRDTLixlYKI9E_Ne9R3_Yew4b4eihH_XvBvfHsElK83kfHz-B6uxznp5CZZrMz_ID9w3bV9E8 |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZokRALUB6iPD0wwBBI4iR2x6ptKAKVIlrBFjmOT2IgrWg78O_xJQ5qB1hgyeSLosu9crn7PkIuwHWVqTp8pwU6ckz0C5HIHZyQt0I3yjIIOC4K95_54FV0ewiT0652YXCsEr-hoQSKKGI1Ovc0g2oi7qaAdOE-rlHhBTMWFzWyHgqTsIxJj-KX72DMGLeUhJGDMtUSz0-3WUlPK-ClS2kn3v6HB94hW7bmpO3SSBpkTee7pGG9ekYvLfT01R65fTQR5N2cHWJ3HRuHdAJ0PHzq0LecdhFk1_Jj0UE5P06LmQPa_8TNL9q2COX7ZBz3Rp2-Y6kWHGXqu7kj8S-7kMZ5hVZpmnIQpjYIXOCpQlBBCZ7vqyjSJk5DKCGFQDEpw1RIj0nhsQNSzye5PiQ0yDRwlfpM4SFTfWXa8xQDAAZZEAZNcl1pOJmWiBqJVwGVWkUlqKjEKqpJWsvvIZkXrQwoeUcS9qvs0R9kz8nGsBsnD3eD-2OyiTTzxRAfOyH1-cdCn5LaLFucFeb2BWGfz-A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Placement+of+UPQC+in+Distribution+Network+Using+Hybrid+Approach&rft.jtitle=Cybernetics+and+systems&rft.au=Yadav%2C+Shravan+Kumar&rft.au=Sabitha%2C+B.&rft.au=Prabhakaran%2C+Anush&rft.date=2023-10-03&rft.pub=Taylor+%26+Francis&rft.issn=0196-9722&rft.eissn=1087-6553&rft.volume=54&rft.issue=7&rft.spage=1014&rft.epage=1036&rft_id=info:doi/10.1080%2F01969722.2022.2129378&rft.externalDocID=2129378 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-9722&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-9722&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-9722&client=summon |