Cu-Zr nanoglasses: Atomic structure, thermal stability and indentation properties
The structure of Cu50Zr50 metallic nanoglasses, their thermal stability and mechanical performance are studied in the present paper. Elemental segregation of Cu and Zr is observed in consolidated nanoglasses. A segregation model is proposed with Cu rich interfaces and Zr rich relaxed cores which exp...
Saved in:
Published in: | Acta materialia Vol. 136; pp. 181 - 189 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier Ltd
01-09-2017
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The structure of Cu50Zr50 metallic nanoglasses, their thermal stability and mechanical performance are studied in the present paper. Elemental segregation of Cu and Zr is observed in consolidated nanoglasses. A segregation model is proposed with Cu rich interfaces and Zr rich relaxed cores which explains the observed thermal and mechanical properties of nanoglasses. The interfacial regions with high free volume and enriched with Cu act as nucleating sites for the crystallization reaction, increasing the crystallization temperatures in nanoglasses compared to the melt-spun ribbon of the same composition. The hardness and Young's modulus increase as well for the nanoglasses compared to melt-spun ribbons. Metallic nanoglasses deform homogenously, while melt-spun ribbons reveal the formation of shear bands during indentation. It is proposed that the interfacial regions, which are sources of high free volume act as nucleating sites for the formation of numerous shear transformation zones giving rise to homogeneous deformation in nanoglasses.
[Display omitted] |
---|---|
AbstractList | The structure of Cu50Zr50 metallic nanoglasses, their thermal stability and mechanical performance are studied in the present paper. Elemental segregation of Cu and Zr is observed in consolidated nanoglasses. A segregation model is proposed with Cu rich interfaces and Zr rich relaxed cores which explains the observed thermal and mechanical properties of nanoglasses. The interfacial regions with high free volume and enriched with Cu act as nucleating sites for the crystallization reaction, increasing the crystallization temperatures in nanoglasses compared to the melt-spun ribbon of the same composition. The hardness and Young's modulus increase as well for the nanoglasses compared to melt-spun ribbons. Metallic nanoglasses deform homogenously, while melt-spun ribbons reveal the formation of shear bands during indentation. It is proposed that the interfacial regions, which are sources of high free volume act as nucleating sites for the formation of numerous shear transformation zones giving rise to homogeneous deformation in nanoglasses.
[Display omitted] |
Author | Boll, Torben Ivanisenko, Yulia Kilmametov, Askar Hahn, Horst Śniadecki, Zbigniew Gleiter, Herbert Schwaiger, Ruth Wang, Di Chellali, Reda Bergfeldt, Thomas Nandam, Sree Harsha Mu, Xiaoke |
Author_xml | – sequence: 1 givenname: Sree Harsha surname: Nandam fullname: Nandam, Sree Harsha email: sree.nandam@kit.edu organization: Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany – sequence: 2 givenname: Yulia surname: Ivanisenko fullname: Ivanisenko, Yulia organization: Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany – sequence: 3 givenname: Ruth surname: Schwaiger fullname: Schwaiger, Ruth organization: Institute for Applied Materials, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany – sequence: 4 givenname: Zbigniew surname: Śniadecki fullname: Śniadecki, Zbigniew organization: Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland – sequence: 5 givenname: Xiaoke surname: Mu fullname: Mu, Xiaoke organization: Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany – sequence: 6 givenname: Di surname: Wang fullname: Wang, Di organization: Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany – sequence: 7 givenname: Reda surname: Chellali fullname: Chellali, Reda organization: Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany – sequence: 8 givenname: Torben surname: Boll fullname: Boll, Torben organization: Institute for Applied Materials, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany – sequence: 9 givenname: Askar surname: Kilmametov fullname: Kilmametov, Askar organization: Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany – sequence: 10 givenname: Thomas surname: Bergfeldt fullname: Bergfeldt, Thomas organization: Institute for Applied Materials, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany – sequence: 11 givenname: Herbert surname: Gleiter fullname: Gleiter, Herbert organization: Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany – sequence: 12 givenname: Horst surname: Hahn fullname: Hahn, Horst organization: Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany |
BookMark | eNqFkF9LwzAUxYNMcFM_gtAPYGvS3DaNLzKG_2Aggr74EtL0VjPaZCSZsG9vx_YuHLiXyz2Hw29BZs47JOSG0YJRVt9tCm2SHnUqSspEQSdRdkbmrBE8L6His2nnlcxrqOCCLGLcTA-lADon76td_hUyp53_HnSMGO-zZfKjNVlMYWfSLuBtln4wjHqYTrq1g037TLsus65Dl3Sy3mXb4LcYksV4Rc57PUS8Ps1L8vn0-LF6yddvz6-r5To3nMqUa94IAFGyrms1RwBGAXsuTCdb3mNjmGSmLaE3gNCjxBoMhUYKqMpaSMYvSXXMNcHHGLBX22BHHfaKUXXgojbqxEUduCg6iR58D0cfTuV-LQYVjUVnsLMBTVKdt_8k_AEE9HGN |
CitedBy_id | crossref_primary_10_1007_s11661_022_06781_4 crossref_primary_10_1016_j_jallcom_2017_10_097 crossref_primary_10_1016_j_jmst_2020_12_037 crossref_primary_10_3389_fmats_2022_837359 crossref_primary_10_1016_j_intermet_2019_106480 crossref_primary_10_1016_j_ijplas_2020_102915 crossref_primary_10_1016_j_jnoncrysol_2021_121390 crossref_primary_10_1557_s43578_021_00285_4 crossref_primary_10_3389_fmats_2020_544660 crossref_primary_10_1002_adem_201900046 crossref_primary_10_1016_j_jnoncrysol_2022_121908 crossref_primary_10_1557_s43577_022_00347_w crossref_primary_10_1039_D0CS01212B crossref_primary_10_1016_j_jmst_2021_04_073 crossref_primary_10_1088_1361_6528_ab4a41 crossref_primary_10_3389_fmats_2022_908952 crossref_primary_10_1016_j_actamat_2023_119634 crossref_primary_10_1016_j_surfcoat_2020_126221 crossref_primary_10_1016_j_jmst_2022_09_025 crossref_primary_10_1016_j_rinp_2018_10_010 crossref_primary_10_1016_j_jmst_2024_03_003 crossref_primary_10_1016_j_matdes_2022_110752 crossref_primary_10_1021_acs_chemrev_3c00514 crossref_primary_10_1002_admi_202300721 crossref_primary_10_1007_s12598_023_02440_8 crossref_primary_10_1016_j_mtphys_2021_100370 crossref_primary_10_1039_C9NA00533A crossref_primary_10_1002_adem_201900694 crossref_primary_10_1007_s00707_022_03271_x crossref_primary_10_3390_met12020282 crossref_primary_10_1016_j_mattod_2020_04_005 crossref_primary_10_1016_j_mee_2020_111363 crossref_primary_10_3389_fmats_2024_1355522 crossref_primary_10_1063_5_0088043 crossref_primary_10_1016_j_actamat_2021_116955 crossref_primary_10_1016_j_jnoncrysol_2021_121316 crossref_primary_10_1016_j_rsurfi_2022_100094 crossref_primary_10_1016_j_ceramint_2024_05_204 crossref_primary_10_1021_acsami_4c02610 crossref_primary_10_1016_j_intermet_2022_107782 crossref_primary_10_1016_j_msea_2022_143253 crossref_primary_10_1016_j_actamat_2022_118152 crossref_primary_10_1016_j_jallcom_2019_153486 crossref_primary_10_3390_nano14120993 crossref_primary_10_1016_j_scriptamat_2020_09_009 crossref_primary_10_1007_s11661_021_06196_7 crossref_primary_10_1016_j_jallcom_2022_165991 crossref_primary_10_1016_j_actamat_2018_09_019 crossref_primary_10_1016_j_jallcom_2022_167693 crossref_primary_10_1016_j_scriptamat_2020_113639 crossref_primary_10_3389_fmats_2021_676764 crossref_primary_10_1007_s12633_024_03005_9 crossref_primary_10_1038_s41598_024_58247_9 crossref_primary_10_7498_aps_70_20211235 crossref_primary_10_1007_s12540_023_01389_8 crossref_primary_10_1007_s12666_020_01969_x crossref_primary_10_1016_j_mtla_2023_101914 crossref_primary_10_1021_acsanm_0c01584 crossref_primary_10_1016_j_vacuum_2019_109113 crossref_primary_10_1002_adem_201800404 crossref_primary_10_1557_s43578_021_00429_6 crossref_primary_10_3389_fmats_2021_664220 crossref_primary_10_1016_j_jallcom_2023_171681 crossref_primary_10_1016_j_jmst_2022_01_038 crossref_primary_10_1038_s41598_021_98494_8 crossref_primary_10_1016_j_jallcom_2021_161220 crossref_primary_10_1016_j_ijplas_2020_102845 crossref_primary_10_1016_j_matdes_2022_110972 crossref_primary_10_3390_nano14060546 crossref_primary_10_1016_j_scriptamat_2020_01_022 crossref_primary_10_1016_j_actamat_2020_03_021 crossref_primary_10_1016_j_jnoncrysol_2018_06_015 crossref_primary_10_1080_21663831_2023_2278597 crossref_primary_10_3390_ma15196617 crossref_primary_10_1002_sstr_202400011 crossref_primary_10_1002_adfm_202302386 crossref_primary_10_1080_02670836_2022_2164400 crossref_primary_10_2139_ssrn_3983058 crossref_primary_10_1016_j_apsusc_2020_147453 crossref_primary_10_1016_j_actamat_2019_02_033 crossref_primary_10_1103_PhysRevMaterials_8_046001 crossref_primary_10_1016_j_ijmecsci_2024_108981 crossref_primary_10_1016_j_jallcom_2019_06_097 crossref_primary_10_1021_acsnano_9b09778 |
Cites_doi | 10.1126/science.1136726 10.1103/PhysRevB.64.180201 10.1103/PhysRevLett.84.2901 10.1557/jmr.2014.101 10.1038/srep25832 10.1063/1.4818493 10.1016/j.actamat.2011.07.007 10.1016/j.actamat.2014.07.015 10.1080/09500830500197724 10.1103/PhysRevLett.95.195501 10.1126/science.1135795 10.1021/nl2038216 10.1016/j.matchar.2015.12.025 10.1103/PhysRevLett.96.245502 10.1016/j.actamat.2008.08.028 10.1073/pnas.0806051105 10.1016/j.scriptamat.2016.01.036 10.1103/PhysRevB.83.100202 10.1016/j.scriptamat.2017.06.007 10.1016/j.jallcom.2007.12.105 10.1063/1.4833018 10.1179/095066010X12646898728200 10.1038/nmat4300 10.1016/0022-3093(89)90007-0 10.1063/1.345798 10.1016/j.actamat.2016.05.002 10.1021/acsnano.5b05897 10.1063/1.3602315 10.1016/j.actamat.2013.02.005 10.1016/j.matlet.2016.05.189 10.1016/j.scriptamat.2014.11.010 10.1002/adma.201302700 10.1016/j.scriptamat.2007.07.019 10.1016/j.actamat.2007.01.052 10.1021/acsnano.6b01024 10.1016/j.actamat.2011.09.026 10.1016/j.ultramic.2006.06.008 10.1007/BF03027532 |
ContentType | Journal Article |
Copyright | 2017 Acta Materialia Inc. |
Copyright_xml | – notice: 2017 Acta Materialia Inc. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.actamat.2017.07.001 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-2453 |
EndPage | 189 |
ExternalDocumentID | 10_1016_j_actamat_2017_07_001 S1359645417305505 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABNEU ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MAGPM N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSM SSQ SSZ T5K TN5 XPP ZMT ~G- AAQXK AAXKI AAYXX ABTAH ABXDB ACNNM ADIYS ADMUD AFFNX AFJKZ AKRWK ASPBG AVWKF AZFZN CITATION FGOYB R2- SEW T9H ZY4 |
ID | FETCH-LOGICAL-c309t-a38744721ddba3e44104ef37cd9b3fe8c191cb24fc4e4fe9e64c0489745267913 |
ISSN | 1359-6454 |
IngestDate | Thu Sep 26 18:44:28 EDT 2024 Fri Feb 23 02:29:07 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Differential scanning calorimetry Metallic nanoglasses Phase separation Sputtering Atom probe tomography |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c309t-a38744721ddba3e44104ef37cd9b3fe8c191cb24fc4e4fe9e64c0489745267913 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1016_j_actamat_2017_07_001 elsevier_sciencedirect_doi_10_1016_j_actamat_2017_07_001 |
PublicationCentury | 2000 |
PublicationDate | 2017-09-01 2017-09-00 |
PublicationDateYYYYMMDD | 2017-09-01 |
PublicationDate_xml | – month: 09 year: 2017 text: 2017-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Acta materialia |
PublicationYear | 2017 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Park, Jang, Wakeda, Shibutani, Lee (bib31) 2007; 57 Wang, Guo, Ivanisenko, Goel, Nirschl, Gleiter, Hahn (bib28) 2017; 139 Miracle (bib23) 2013; 61 Danilov, Hahn, Gleiter, Wenzel (bib33) 2016; 10 Miracle, Louzguine-Luzgin, Louzguina-Luzgina, Inoue (bib32) 2010; 55 Gleiter (bib8) 2008; 56 Witte, Feng, Fang, Fischer, Ghafari, Kruk, Brand, Wang, Hahn, Gleiter (bib11) 2013; 103 Pan, Inoue, Sakurai, Chen (bib24) 2008; 105 Wang, Chen, Liu, Wang, Louzguine-Luzgin, Chen, Perepezko (bib18) 2014; 79 Hie, Kaban, Mattern, Song, Sun, Zhao, Kim, Eckert, Greer (bib6) 2016; 6 Wang, Wang, Mu, Goel, Feng, Ivanisenko, Hahn, Gleiter (bib17) 2016; 181 Xing, Li, Ramesh, Li, Hufnagel (bib5) 2001; 64 Johnson, Samwer (bib25) 2005; 95 Hays, Kim, Johnson (bib2) 2000; 84 Méar, Doisneau, Yavari, Greer (bib30) 2009; 483 Wilde, Rösner (bib29) 2011; 98 Swallen, Kearns, Mapes, Kim, McMahon, Ediger, Wu, Yu, Satija (bib34) 2007; 315 Inoue, Zhang, Tsurui, Yavari, Greer (bib40) 2005; 85 Zhao, Baibuz, Vernieres, Grammatikopoulos, Jansson, Nagel, Steinhauer, Sowwan, Kuronen, Nordlund, Djurabekova (bib27) 2016; 10 Yu, Luo, Samwer (bib26) 2013; 25 Schuh, Hufnagel, Ramamurty (bib1) 2007; 55 Wang, Jiang, Hahn, Li, Gleiter, Sun, Fang (bib7) 2015; 98 Franke, Leisen, Gleiter, Hahn (bib15) 2014; 29 Hahn, Averback (bib19) 1990; 67 Ma (bib36) 2015; 14 Liu, Wang, Wang, Zhao, Pan, Wang (bib4) 2007; 315 Śniadecki, Wang, Ivanisenko, Chakravadhanula, Kübel, Hahn, Gleiter (bib13) 2016; 113 Chen, Inoue, Zhang, Sakurai (bib39) 2006; 96 Adjaoud, Albe (bib16) 2016; 113 Thompson, Lawrence, Larson, Olson, Kelly, Gorman (bib21) 2007; 107 Kwon, Kim, Kim, Lee, Fleury (bib35) 2006; 12 Jing, Kramer, Birringer, Gleiter, Gonser (bib9) 1989; 113 Fang, Vainio, Puff, Wurschum, Wang, Wang, Ghafari, Jiang, Sun, Hahn, Gleiter (bib10) 2012; 12 Adibi, Sha, Branicio, Joshi, Liu, Zhang (bib38) 2013; 103 Chen, Frank, Asao, Louzguine-Luzgin, Sharma, Wang, Xie, Ishikawa, Hatakeyama, Lin, Esashi, Yamamoto, Inoue (bib12) 2011; 59 Wang, Jiang, Hahn, Li, Gleiter, Sun, Fang (bib14) 2016; 116 Kilmametov, Gröger, Hahn, Schimmel, Walheim (bib20) 2016 Wang, Qu, Wang, Cao, Liao, Kawasaki, Ringer, Shan, Langdon, Shen (bib3) 2012; 60 Sopu, Ritter, Gleiter, Albe (bib37) 2011; 83 Larson, Prosa, Ulfig, Geiser, Kelly (bib22) 2013 Wang (10.1016/j.actamat.2017.07.001_bib7) 2015; 98 Yu (10.1016/j.actamat.2017.07.001_bib26) 2013; 25 Adibi (10.1016/j.actamat.2017.07.001_bib38) 2013; 103 Franke (10.1016/j.actamat.2017.07.001_bib15) 2014; 29 Wang (10.1016/j.actamat.2017.07.001_bib28) 2017; 139 Hays (10.1016/j.actamat.2017.07.001_bib2) 2000; 84 Méar (10.1016/j.actamat.2017.07.001_bib30) 2009; 483 Wang (10.1016/j.actamat.2017.07.001_bib17) 2016; 181 Ma (10.1016/j.actamat.2017.07.001_bib36) 2015; 14 Fang (10.1016/j.actamat.2017.07.001_bib10) 2012; 12 Swallen (10.1016/j.actamat.2017.07.001_bib34) 2007; 315 Sopu (10.1016/j.actamat.2017.07.001_bib37) 2011; 83 Witte (10.1016/j.actamat.2017.07.001_bib11) 2013; 103 Kwon (10.1016/j.actamat.2017.07.001_bib35) 2006; 12 Thompson (10.1016/j.actamat.2017.07.001_bib21) 2007; 107 Liu (10.1016/j.actamat.2017.07.001_bib4) 2007; 315 Gleiter (10.1016/j.actamat.2017.07.001_bib8) 2008; 56 Miracle (10.1016/j.actamat.2017.07.001_bib23) 2013; 61 Johnson (10.1016/j.actamat.2017.07.001_bib25) 2005; 95 Schuh (10.1016/j.actamat.2017.07.001_bib1) 2007; 55 Miracle (10.1016/j.actamat.2017.07.001_bib32) 2010; 55 Xing (10.1016/j.actamat.2017.07.001_bib5) 2001; 64 Chen (10.1016/j.actamat.2017.07.001_bib39) 2006; 96 Jing (10.1016/j.actamat.2017.07.001_bib9) 1989; 113 Hie (10.1016/j.actamat.2017.07.001_bib6) 2016; 6 Śniadecki (10.1016/j.actamat.2017.07.001_bib13) 2016; 113 Wang (10.1016/j.actamat.2017.07.001_bib14) 2016; 116 Larson (10.1016/j.actamat.2017.07.001_bib22) 2013 Wilde (10.1016/j.actamat.2017.07.001_bib29) 2011; 98 Wang (10.1016/j.actamat.2017.07.001_bib3) 2012; 60 Chen (10.1016/j.actamat.2017.07.001_bib12) 2011; 59 Pan (10.1016/j.actamat.2017.07.001_bib24) 2008; 105 Zhao (10.1016/j.actamat.2017.07.001_bib27) 2016; 10 Wang (10.1016/j.actamat.2017.07.001_bib18) 2014; 79 Danilov (10.1016/j.actamat.2017.07.001_bib33) 2016; 10 Inoue (10.1016/j.actamat.2017.07.001_bib40) 2005; 85 Park (10.1016/j.actamat.2017.07.001_bib31) 2007; 57 Adjaoud (10.1016/j.actamat.2017.07.001_bib16) 2016; 113 Hahn (10.1016/j.actamat.2017.07.001_bib19) 1990; 67 Kilmametov (10.1016/j.actamat.2017.07.001_bib20) 2016 |
References_xml | – volume: 181 start-page: 248 year: 2016 end-page: 252 ident: bib17 article-title: Surface segregation of primary glassy nanoparticles of Fe publication-title: Mater. Lett. contributor: fullname: Gleiter – volume: 98 start-page: 40 year: 2015 end-page: 43 ident: bib7 article-title: Plasticity of a scandium-based nanoglass publication-title: Scr. Mater. contributor: fullname: Fang – volume: 56 start-page: 5875 year: 2008 end-page: 5893 ident: bib8 article-title: Our thoughts are ours, their ends none of our own: are there ways to synthesize materials beyond the limitations of today? publication-title: Acta Mater. contributor: fullname: Gleiter – volume: 98 start-page: 251904 year: 2011 ident: bib29 article-title: Nanocrystallization in a shear band: an publication-title: Appl. Phys. Lett. contributor: fullname: Rösner – volume: 113 start-page: 26 year: 2016 end-page: 33 ident: bib13 article-title: Nanoscale morphology of Ni publication-title: Mater. Charact. contributor: fullname: Gleiter – volume: 113 start-page: 167 year: 1989 end-page: 170 ident: bib9 article-title: Modified atomic structure in a Pd-Fe-Si nanoglass publication-title: J. Non Cryst. Solids contributor: fullname: Gonser – volume: 12 start-page: 458 year: 2012 end-page: 463 ident: bib10 article-title: Atomic structure and structural stability of Sc publication-title: Nano Lett. contributor: fullname: Gleiter – volume: 103 start-page: 073106 year: 2013 ident: bib11 article-title: Evidence for enhanced ferromagnetism in an iron-based nanoglass publication-title: Appl. Phys. Lett. contributor: fullname: Gleiter – volume: 10 start-page: 3241 year: 2016 end-page: 3247 ident: bib33 article-title: Mechanisms of nanoglass ultrastability publication-title: ACS Nano contributor: fullname: Wenzel – volume: 59 start-page: 6433 year: 2011 end-page: 6440 ident: bib12 article-title: Formation and properties of Au-based nanograined metallic glasses publication-title: Acta Mater. contributor: fullname: Inoue – volume: 83 start-page: 100202 year: 2011 ident: bib37 article-title: Deformation behavior of bulk and nanostructured metallic glasses studied via molecular dynamics simulations publication-title: Phys. Rev. B contributor: fullname: Albe – volume: 315 start-page: 353 year: 2007 end-page: 356 ident: bib34 article-title: Organic glasses with exceptional thermodynamic and kinetic stability publication-title: Science contributor: fullname: Satija – volume: 103 start-page: 211905 year: 2013 ident: bib38 article-title: A transition from localized shear banding to homogeneous super plastic flow in nanoglass publication-title: Appl. Phys. Lett. contributor: fullname: Zhang – volume: 96 start-page: 245502 year: 2006 ident: bib39 article-title: Extraordinary plasticity of ductile bulk metallic glasses publication-title: Phys. Rev. Lett. contributor: fullname: Sakurai – volume: 55 start-page: 218 year: 2010 end-page: 256 ident: bib32 article-title: An assessment of binary metallic glasses: correlations between structure, glass forming ability and stability publication-title: Int. Mater. Rev. contributor: fullname: Inoue – volume: 64 start-page: 180201 year: 2001 ident: bib5 article-title: Enhanced plastic strain in Zr-based bulk amorphous alloys publication-title: Phys. Rev. B contributor: fullname: Hufnagel – volume: 95 start-page: 195501 year: 2005 ident: bib25 article-title: A universal criterion for plastic yielding of metallic glasses with a (T/T publication-title: Phys. Rev. Lett. contributor: fullname: Samwer – volume: 116 start-page: 95 year: 2016 end-page: 99 ident: bib14 article-title: Sample size effects on strength and deformation mechanism of Sc publication-title: Scr. Mater. contributor: fullname: Fang – volume: 139 start-page: 9 year: 2017 end-page: 12 ident: bib28 article-title: Atomic structure of Fe publication-title: Scr. Mater. contributor: fullname: Hahn – volume: 84 start-page: 2901 year: 2000 end-page: 2904 ident: bib2 article-title: Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing publication-title: Phys. Rev. Lett. contributor: fullname: Johnson – volume: 67 start-page: 1113 year: 1990 end-page: 1115 ident: bib19 article-title: The production of nanocrystalline powders by magnetron sputtering publication-title: J. Appl. Phys. contributor: fullname: Averback – volume: 6 start-page: 25832 year: 2016 ident: bib6 article-title: Local microstructural evolution at shear bands in metallic glasses with nanoscale phase separation publication-title: Sci. Rep. contributor: fullname: Greer – volume: 10 start-page: 4684 year: 2016 end-page: 4694 ident: bib27 article-title: Formation mechanism of Fe nanocubes by magnetron sputtering inert gas condensation publication-title: ACS Nano contributor: fullname: Djurabekova – volume: 107 start-page: 131 year: 2007 end-page: 139 ident: bib21 article-title: In situ site-specific specimen preparation for atom probe tomography publication-title: Ultramicroscopy contributor: fullname: Gorman – volume: 61 start-page: 3157 year: 2013 end-page: 3171 ident: bib23 article-title: The density and packing fraction of binary metallic glasses publication-title: Acta Mater. contributor: fullname: Miracle – volume: 14 start-page: 547 year: 2015 end-page: 552 ident: bib36 article-title: Tuning order in disorder publication-title: Nature contributor: fullname: Ma – year: 2013 ident: bib22 article-title: Local Electrode Atom Probe Tomography contributor: fullname: Kelly – volume: 57 start-page: 805 year: 2007 end-page: 808 ident: bib31 article-title: Atomic packing density and its influence on the properties of Cu-Zr amorphous alloys publication-title: Scr. Mater. contributor: fullname: Lee – volume: 12 start-page: 207 year: 2006 end-page: 212 ident: bib35 article-title: Formation of amorphous phase in the binary Cu-Zr alloy system publication-title: Met. Mater. Int. contributor: fullname: Fleury – volume: 315 start-page: 1385 year: 2007 end-page: 1388 ident: bib4 article-title: Super plastic bulk metallic glasses at room temperature publication-title: Science contributor: fullname: Wang – volume: 29 start-page: 1210 year: 2014 end-page: 1216 ident: bib15 article-title: Thermal and plastic behaviour of nanoglasses publication-title: J. Mater. Res. contributor: fullname: Hahn – volume: 85 start-page: 221 year: 2005 end-page: 237 ident: bib40 article-title: Unusual room-temperature compressive plasticity in nanocrystal-toughened bulk copper-zirconium glass publication-title: Philos. Mag. Lett. contributor: fullname: Greer – volume: 105 start-page: 14769 year: 2008 end-page: 14772 ident: bib24 article-title: Experimental characterization of shear transformation zones for plastic flow of bulk metallic glasses publication-title: Proc. Nat. Acad. Sci. contributor: fullname: Chen – volume: 483 start-page: 256 year: 2009 end-page: 259 ident: bib30 article-title: Structural effects of shot-peening in bulk metallic glasses publication-title: J. Alloy Comp. contributor: fullname: Greer – volume: 55 start-page: 4067 year: 2007 end-page: 4109 ident: bib1 article-title: Mechanical behavior of amorphous alloys publication-title: Acta Mater. contributor: fullname: Ramamurty – volume: 25 start-page: 5904 year: 2013 end-page: 5908 ident: bib26 article-title: Ultrastable metallic glass publication-title: Adv. Mater. contributor: fullname: Samwer – volume: 60 start-page: 253 year: 2012 end-page: 260 ident: bib3 article-title: Introducing a strain-hardening capability to improve the ductility of bulk-metallic glasses via severe plastic deformation publication-title: Acta Mater. contributor: fullname: Shen – volume: 113 start-page: 284 year: 2016 end-page: 292 ident: bib16 article-title: Interfaces and interphases in nanoglasses: surface segregation effects and their implications on structural properties publication-title: Acta Mater. contributor: fullname: Albe – volume: 79 start-page: 30 year: 2014 end-page: 36 ident: bib18 article-title: The ultrastable kinetic behaviour of an Au-based nanoglass publication-title: Acta Mater. contributor: fullname: Perepezko – start-page: 1600115 year: 2016 ident: bib20 article-title: Bulk density measurements of small solid objects using laser confocal microscopy publication-title: Adv. Mater. Tech. contributor: fullname: Walheim – volume: 315 start-page: 1385 year: 2007 ident: 10.1016/j.actamat.2017.07.001_bib4 article-title: Super plastic bulk metallic glasses at room temperature publication-title: Science doi: 10.1126/science.1136726 contributor: fullname: Liu – volume: 64 start-page: 180201 year: 2001 ident: 10.1016/j.actamat.2017.07.001_bib5 article-title: Enhanced plastic strain in Zr-based bulk amorphous alloys publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.64.180201 contributor: fullname: Xing – volume: 84 start-page: 2901 year: 2000 ident: 10.1016/j.actamat.2017.07.001_bib2 article-title: Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.84.2901 contributor: fullname: Hays – volume: 29 start-page: 1210 year: 2014 ident: 10.1016/j.actamat.2017.07.001_bib15 article-title: Thermal and plastic behaviour of nanoglasses publication-title: J. Mater. Res. doi: 10.1557/jmr.2014.101 contributor: fullname: Franke – volume: 6 start-page: 25832 year: 2016 ident: 10.1016/j.actamat.2017.07.001_bib6 article-title: Local microstructural evolution at shear bands in metallic glasses with nanoscale phase separation publication-title: Sci. Rep. doi: 10.1038/srep25832 contributor: fullname: Hie – volume: 103 start-page: 073106 year: 2013 ident: 10.1016/j.actamat.2017.07.001_bib11 article-title: Evidence for enhanced ferromagnetism in an iron-based nanoglass publication-title: Appl. Phys. Lett. doi: 10.1063/1.4818493 contributor: fullname: Witte – volume: 59 start-page: 6433 year: 2011 ident: 10.1016/j.actamat.2017.07.001_bib12 article-title: Formation and properties of Au-based nanograined metallic glasses publication-title: Acta Mater. doi: 10.1016/j.actamat.2011.07.007 contributor: fullname: Chen – volume: 79 start-page: 30 year: 2014 ident: 10.1016/j.actamat.2017.07.001_bib18 article-title: The ultrastable kinetic behaviour of an Au-based nanoglass publication-title: Acta Mater. doi: 10.1016/j.actamat.2014.07.015 contributor: fullname: Wang – volume: 85 start-page: 221 year: 2005 ident: 10.1016/j.actamat.2017.07.001_bib40 article-title: Unusual room-temperature compressive plasticity in nanocrystal-toughened bulk copper-zirconium glass publication-title: Philos. Mag. Lett. doi: 10.1080/09500830500197724 contributor: fullname: Inoue – volume: 95 start-page: 195501 year: 2005 ident: 10.1016/j.actamat.2017.07.001_bib25 article-title: A universal criterion for plastic yielding of metallic glasses with a (T/Tg)2/3 temperature dependence publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.95.195501 contributor: fullname: Johnson – volume: 315 start-page: 353 year: 2007 ident: 10.1016/j.actamat.2017.07.001_bib34 article-title: Organic glasses with exceptional thermodynamic and kinetic stability publication-title: Science doi: 10.1126/science.1135795 contributor: fullname: Swallen – volume: 12 start-page: 458 year: 2012 ident: 10.1016/j.actamat.2017.07.001_bib10 article-title: Atomic structure and structural stability of Sc75Fe25 nanoglasses publication-title: Nano Lett. doi: 10.1021/nl2038216 contributor: fullname: Fang – volume: 113 start-page: 26 year: 2016 ident: 10.1016/j.actamat.2017.07.001_bib13 article-title: Nanoscale morphology of Ni50Ti45Cu5 nanoglass publication-title: Mater. Charact. doi: 10.1016/j.matchar.2015.12.025 contributor: fullname: Śniadecki – volume: 96 start-page: 245502 year: 2006 ident: 10.1016/j.actamat.2017.07.001_bib39 article-title: Extraordinary plasticity of ductile bulk metallic glasses publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.245502 contributor: fullname: Chen – volume: 56 start-page: 5875 year: 2008 ident: 10.1016/j.actamat.2017.07.001_bib8 article-title: Our thoughts are ours, their ends none of our own: are there ways to synthesize materials beyond the limitations of today? publication-title: Acta Mater. doi: 10.1016/j.actamat.2008.08.028 contributor: fullname: Gleiter – year: 2013 ident: 10.1016/j.actamat.2017.07.001_bib22 contributor: fullname: Larson – volume: 105 start-page: 14769 year: 2008 ident: 10.1016/j.actamat.2017.07.001_bib24 article-title: Experimental characterization of shear transformation zones for plastic flow of bulk metallic glasses publication-title: Proc. Nat. Acad. Sci. doi: 10.1073/pnas.0806051105 contributor: fullname: Pan – volume: 116 start-page: 95 year: 2016 ident: 10.1016/j.actamat.2017.07.001_bib14 article-title: Sample size effects on strength and deformation mechanism of Sc75Fe25 nanoglass and metallic glass publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2016.01.036 contributor: fullname: Wang – volume: 83 start-page: 100202 year: 2011 ident: 10.1016/j.actamat.2017.07.001_bib37 article-title: Deformation behavior of bulk and nanostructured metallic glasses studied via molecular dynamics simulations publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.100202 contributor: fullname: Sopu – volume: 139 start-page: 9 year: 2017 ident: 10.1016/j.actamat.2017.07.001_bib28 article-title: Atomic structure of Fe90Sc10 glassy nanoparticles and nanoglasses publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2017.06.007 contributor: fullname: Wang – volume: 483 start-page: 256 year: 2009 ident: 10.1016/j.actamat.2017.07.001_bib30 article-title: Structural effects of shot-peening in bulk metallic glasses publication-title: J. Alloy Comp. doi: 10.1016/j.jallcom.2007.12.105 contributor: fullname: Méar – volume: 103 start-page: 211905 year: 2013 ident: 10.1016/j.actamat.2017.07.001_bib38 article-title: A transition from localized shear banding to homogeneous super plastic flow in nanoglass publication-title: Appl. Phys. Lett. doi: 10.1063/1.4833018 contributor: fullname: Adibi – volume: 55 start-page: 218 year: 2010 ident: 10.1016/j.actamat.2017.07.001_bib32 article-title: An assessment of binary metallic glasses: correlations between structure, glass forming ability and stability publication-title: Int. Mater. Rev. doi: 10.1179/095066010X12646898728200 contributor: fullname: Miracle – volume: 14 start-page: 547 year: 2015 ident: 10.1016/j.actamat.2017.07.001_bib36 article-title: Tuning order in disorder publication-title: Nature doi: 10.1038/nmat4300 contributor: fullname: Ma – volume: 113 start-page: 167 year: 1989 ident: 10.1016/j.actamat.2017.07.001_bib9 article-title: Modified atomic structure in a Pd-Fe-Si nanoglass publication-title: J. Non Cryst. Solids doi: 10.1016/0022-3093(89)90007-0 contributor: fullname: Jing – volume: 67 start-page: 1113 year: 1990 ident: 10.1016/j.actamat.2017.07.001_bib19 article-title: The production of nanocrystalline powders by magnetron sputtering publication-title: J. Appl. Phys. doi: 10.1063/1.345798 contributor: fullname: Hahn – volume: 113 start-page: 284 year: 2016 ident: 10.1016/j.actamat.2017.07.001_bib16 article-title: Interfaces and interphases in nanoglasses: surface segregation effects and their implications on structural properties publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.05.002 contributor: fullname: Adjaoud – volume: 10 start-page: 3241 year: 2016 ident: 10.1016/j.actamat.2017.07.001_bib33 article-title: Mechanisms of nanoglass ultrastability publication-title: ACS Nano doi: 10.1021/acsnano.5b05897 contributor: fullname: Danilov – volume: 98 start-page: 251904 year: 2011 ident: 10.1016/j.actamat.2017.07.001_bib29 article-title: Nanocrystallization in a shear band: an in situ investigation publication-title: Appl. Phys. Lett. doi: 10.1063/1.3602315 contributor: fullname: Wilde – volume: 61 start-page: 3157 year: 2013 ident: 10.1016/j.actamat.2017.07.001_bib23 article-title: The density and packing fraction of binary metallic glasses publication-title: Acta Mater. doi: 10.1016/j.actamat.2013.02.005 contributor: fullname: Miracle – volume: 181 start-page: 248 year: 2016 ident: 10.1016/j.actamat.2017.07.001_bib17 article-title: Surface segregation of primary glassy nanoparticles of Fe90Sc10 nanoglass publication-title: Mater. Lett. doi: 10.1016/j.matlet.2016.05.189 contributor: fullname: Wang – start-page: 1600115 year: 2016 ident: 10.1016/j.actamat.2017.07.001_bib20 article-title: Bulk density measurements of small solid objects using laser confocal microscopy publication-title: Adv. Mater. Tech. contributor: fullname: Kilmametov – volume: 98 start-page: 40 year: 2015 ident: 10.1016/j.actamat.2017.07.001_bib7 article-title: Plasticity of a scandium-based nanoglass publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2014.11.010 contributor: fullname: Wang – volume: 25 start-page: 5904 year: 2013 ident: 10.1016/j.actamat.2017.07.001_bib26 article-title: Ultrastable metallic glass publication-title: Adv. Mater. doi: 10.1002/adma.201302700 contributor: fullname: Yu – volume: 57 start-page: 805 year: 2007 ident: 10.1016/j.actamat.2017.07.001_bib31 article-title: Atomic packing density and its influence on the properties of Cu-Zr amorphous alloys publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2007.07.019 contributor: fullname: Park – volume: 55 start-page: 4067 year: 2007 ident: 10.1016/j.actamat.2017.07.001_bib1 article-title: Mechanical behavior of amorphous alloys publication-title: Acta Mater. doi: 10.1016/j.actamat.2007.01.052 contributor: fullname: Schuh – volume: 10 start-page: 4684 year: 2016 ident: 10.1016/j.actamat.2017.07.001_bib27 article-title: Formation mechanism of Fe nanocubes by magnetron sputtering inert gas condensation publication-title: ACS Nano doi: 10.1021/acsnano.6b01024 contributor: fullname: Zhao – volume: 60 start-page: 253 year: 2012 ident: 10.1016/j.actamat.2017.07.001_bib3 article-title: Introducing a strain-hardening capability to improve the ductility of bulk-metallic glasses via severe plastic deformation publication-title: Acta Mater. doi: 10.1016/j.actamat.2011.09.026 contributor: fullname: Wang – volume: 107 start-page: 131 year: 2007 ident: 10.1016/j.actamat.2017.07.001_bib21 article-title: In situ site-specific specimen preparation for atom probe tomography publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2006.06.008 contributor: fullname: Thompson – volume: 12 start-page: 207 year: 2006 ident: 10.1016/j.actamat.2017.07.001_bib35 article-title: Formation of amorphous phase in the binary Cu-Zr alloy system publication-title: Met. Mater. Int. doi: 10.1007/BF03027532 contributor: fullname: Kwon |
SSID | ssj0012740 |
Score | 2.5600898 |
Snippet | The structure of Cu50Zr50 metallic nanoglasses, their thermal stability and mechanical performance are studied in the present paper. Elemental segregation of... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 181 |
SubjectTerms | Atom probe tomography Differential scanning calorimetry Metallic nanoglasses Phase separation Sputtering |
Title | Cu-Zr nanoglasses: Atomic structure, thermal stability and indentation properties |
URI | https://dx.doi.org/10.1016/j.actamat.2017.07.001 |
Volume | 136 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaW9gIHxFOUl3ygp8WQxE4dc1stiyiHSmiLVHqJbMdp04q06ibq3-_4lQRRIUDiEq28yq535tvxzGTmG4TeZFlqqBSM5FRxCFCSiogsUYTpAsIeaowwbnTCmh8cFR9XbDWbxXFj49p_1TSsga5t5-xfaHv4UFiA16BzuILW4fpHel_25Phq3sr2wjnGvuRt0dnm47kni-192tl6fj9ct4in6o5ETFXoRnK1W5e27DqUGUauWt3JOfi57sc0g1U_sCkJB671lTG2OWhzOry5D_56szHtuUvMfu8n96316bVsTsII5r4b0tO7y3xXLNpGVkb72drHqjlp45OMkKmA0y-WYoX0WWyhGeuVrMWluSCWVswfSH6t4JRkzLMID2aaTg1t6ge9hDM79WOIfjkOfGbiDKDZSRCMreTjjqs1bOtnpu213YvdSsotD5plxt3OwH6B-dxe7K-OvgyPpyCU9-3nYe9ja9j7W7_sdqdn4sgcPkD3QwSCFx46D9HMtI_QvQkv5WP01YEIT0D0AXsI4QFCb3EAEB4AhAECeAIgPALoCfr2aXW4_EzC7A2iaSI6Iqmdi8CztKqUpAac5oSZmnJdCUVrU2iI87XKWK2ZYTX8o_eYhsMAotM82-MipU_RVnvRmmcIS6lSrgtpRK0g2AXDIFlu7BNhELGiyQ56F4VTXnqKlTLWHp6VQZqllWaZ2GKJdAcVUYRl8BO9_1eC3n9_6_N_v_UFujuC-iXaAnGbV-jOpupfB3jcAOkzjZs |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cu-Zr+nanoglasses%3A+Atomic+structure%2C+thermal+stability+and+indentation+properties&rft.jtitle=Acta+materialia&rft.au=Nandam%2C+Sree+Harsha&rft.au=Ivanisenko%2C+Yulia&rft.au=Schwaiger%2C+Ruth&rft.au=%C5%9Aniadecki%2C+Zbigniew&rft.date=2017-09-01&rft.pub=Elsevier+Ltd&rft.issn=1359-6454&rft.eissn=1873-2453&rft.volume=136&rft.spage=181&rft.epage=189&rft_id=info:doi/10.1016%2Fj.actamat.2017.07.001&rft.externalDocID=S1359645417305505 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-6454&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-6454&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-6454&client=summon |