Early detection of bearing faults using minimum entropy deconvolution adjusted and zero frequency filter
A method based on minimum entropy deconvolution with convolution adjustment and zero frequency filter is presented for the identification of weak faults in rolling element bearings. Localized fault present in rolling element bearings causes periodic impulses in the bearing vibration signal. The zero...
Saved in:
Published in: | Journal of vibration and control Vol. 28; no. 9-10; pp. 1011 - 1024 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
London, England
SAGE Publications
01-05-2022
SAGE PUBLICATIONS, INC |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | A method based on minimum entropy deconvolution with convolution adjustment and zero frequency filter is presented for the identification of weak faults in rolling element bearings. Localized fault present in rolling element bearings causes periodic impulses in the bearing vibration signal. The zero frequency filtering of the bearing vibration signal keeps only the localized disturbances at the impulse locations while attenuating the non-impulsive components of the signal. The effectiveness of zero frequency filtering depends on the strength of impulses present in the measured faulty bearing signal in time domain. In the present work, Minimum entropy deconvolution adjusted is used as a preprocessor to improve the strength of impulses in the measured time-domain bearing signal. The effectiveness of the proposed algorithm is tested with simulated signals for the faulty bearing vibration at different levels of added Gaussian noise. The algorithm is also validated using experimental bearing vibration dataset. Results from the proposed algorithm are compared with the results of the zero frequency filter and local mean subtraction-based technique for rolling element bearings’ fault identification. The proposed algorithm performs better detection in case of a weak fault signal. |
---|---|
AbstractList | A method based on minimum entropy deconvolution with convolution adjustment and zero frequency filter is presented for the identification of weak faults in rolling element bearings. Localized fault present in rolling element bearings causes periodic impulses in the bearing vibration signal. The zero frequency filtering of the bearing vibration signal keeps only the localized disturbances at the impulse locations while attenuating the non-impulsive components of the signal. The effectiveness of zero frequency filtering depends on the strength of impulses present in the measured faulty bearing signal in time domain. In the present work, Minimum entropy deconvolution adjusted is used as a preprocessor to improve the strength of impulses in the measured time-domain bearing signal. The effectiveness of the proposed algorithm is tested with simulated signals for the faulty bearing vibration at different levels of added Gaussian noise. The algorithm is also validated using experimental bearing vibration dataset. Results from the proposed algorithm are compared with the results of the zero frequency filter and local mean subtraction-based technique for rolling element bearings’ fault identification. The proposed algorithm performs better detection in case of a weak fault signal. |
Author | Kumar, Keshav Singh, Sachin K Shukla, Sumitra |
Author_xml | – sequence: 1 givenname: Keshav surname: Kumar fullname: Kumar, Keshav organization: Department of Electronics Engineering – sequence: 2 givenname: Sumitra surname: Shukla fullname: Shukla, Sumitra organization: Department of Electronics Engineering – sequence: 3 givenname: Sachin K orcidid: 0000-0002-9754-5415 surname: Singh fullname: Singh, Sachin K email: sachinsingh47@gmail.com organization: Department of Electronics Engineering |
BookMark | eNp1UEtLAzEQDqJgW717DHhezWTTZPcopT6g4EXPSzaPumU3qUlWqL_erBUEwdPM8D1m5pujU-edQegKyA2AELdAhFgyXlJSV7zk1QmagWBQ0Dye5j7DxYSfo3mMO0IIY0Bm6G0tQ3_A2iSjUucd9ha3RobObbGVY58iHuM0DJ3rhnHAxqXg95NCeffh-_FbJfVujMloLJ3GnyZ4bIN5H41TB2y7Pplwgc6s7KO5_KkL9Hq_flk9Fpvnh6fV3aZQJalTUfH8hpCas7LWVktqdalaTXRVi6oFCpxLKVSrRA1yaUqguhKVoUwApxygXKDro-8--HxATM3Oj8HllQ3ly8zglLHMIkeWCj7GYGyzD90gw6EB0kx5Nn_zzJLiKIlya35N_-V_AUrreAA |
CitedBy_id | crossref_primary_10_1007_s40430_023_04276_w crossref_primary_10_1177_10775463231176383 crossref_primary_10_1177_10775463221131843 crossref_primary_10_3390_e25081171 crossref_primary_10_1109_JSEN_2023_3283946 crossref_primary_10_1177_16878132221145343 crossref_primary_10_3390_machines12060389 crossref_primary_10_1177_10775463231207120 crossref_primary_10_1177_10775463231208818 |
Cites_doi | 10.1002/9780470977668 10.1080/00031305.2014.917055 10.1016/j.ymssp.2007.08.006 10.1016/j.asoc.2010.08.011 10.1115/1.1850534 10.1109/79.91217 10.1016/j.ymssp.2015.04.021 10.1016/j.jsv.2015.12.052 10.1006/mssp.2000.1290 10.1016/j.bspc.2019.101762 10.1016/j.ymssp.2011.07.006 10.1016/S0301-679X(99)00077-8 10.1016/0016-7142(78)90005-4 10.1016/j.matpr.2017.02.054 10.1016/j.triboint.2019.106088 10.1016/j.ymssp.2006.12.004 10.1016/j.jsv.2014.11.015 10.1016/j.ymssp.2012.06.010 10.1016/j.measurement.2015.03.041 10.1016/j.jsv.2018.01.022 10.1016/j.ymssp.2016.12.036 10.1016/j.ymssp.2015.03.030 10.1006/mssp.1996.0001 10.1016/j.ymssp.2017.07.037 10.1016/j.ymssp.2015.02.008 10.1016/S0963-8695(01)00044-5 10.1016/j.ymssp.2013.02.016 10.1016/j.measurement.2017.02.033 10.1109/TASL.2008.2004526 10.1016/S0301-679X(02)00063-4 10.1016/j.ymssp.2016.05.036 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 |
Copyright_xml | – notice: The Author(s) 2021 |
DBID | AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1177/1077546320986368 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1741-2986 |
EndPage | 1024 |
ExternalDocumentID | 10_1177_1077546320986368 10.1177_1077546320986368 |
GroupedDBID | -MK -TM -TN -~X .2G .2N 01A 0R~ 1~K 29L 31S 31X 31Y 31Z 4.4 54M 5GY 5VS AACKU AACTG AADUE AAGGD AAJOX AAJPV AAMGE AANSI AAPEO AAQDB AARIX AATAA AATBZ AAYTG ABAWP ABCCA ABDWY ABEIX ABFWQ ABHKI ABHQH ABJNI ABKRH ABLUO ABPNF ABQKF ABQXT ABRHV ABYTW ACDXX ACGBL ACGFS ACGOD ACIWK ACLZU ACOFE ACOXC ACROE ACSIQ ACTQU ACUAV ACUIR ACXKE ADEIA ADRRZ ADTBJ ADUKL AEDFJ AENEX AEPTA AEQLS AESZF AEUHG AEUIJ AEWDL AEWHI AEXNY AFEET AFFNX AFKBI AFKRG AFMOU AFQAA AFUIA AGKLV AGNHF AGWFA AHHFK AI. AIOMO AIZZC AJEFB AJUZI ALJHS ALMA_UNASSIGNED_HOLDINGS ANDLU ARTOV ASPBG AUTPY AUVAJ AVWKF AYAKG AZFZN B8O B8Z B93 B94 BBRGL BDDNI BKOMP BPACV CAG CBRKF CFDXU COF CORYS CS3 DD0 DE- DH. DO- DOPDO DU5 DV7 D~Y EBS EJD FEDTE FHBDP GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION HF~ HVGLF HZ~ IAO IEA IGS IVC J8X JCYGO K.F M4V N9A O9- P.B P2P PQQKQ Q1R Q7X Q82 Q83 RIG ROL S01 SBI SCNPE SFB SFC SFK SFT SGA SGP SGV SGX SGZ SPJ SPP SPV SQCSI STM VH1 ZPPRI ZRKOI AAYXX ACJER ADVBO AGWNL CITATION H13 7SC 7SP 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c309t-867757ad6439dfda2fd3cbd0d8978b12166aa7cbc791a5e312d878e2471626113 |
IEDL.DBID | ARPSY |
ISSN | 1077-5463 |
IngestDate | Mon Nov 04 11:24:53 EST 2024 Fri Nov 22 01:36:53 EST 2024 Tue Jul 16 20:46:00 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9-10 |
Keywords | weak fault detection distant location of vibration sensor Bearing fault zero frequency resonator convolution adjustment minimum entropy deconvolution |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c309t-867757ad6439dfda2fd3cbd0d8978b12166aa7cbc791a5e312d878e2471626113 |
ORCID | 0000-0002-9754-5415 |
PQID | 2656116244 |
PQPubID | 30643 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2656116244 crossref_primary_10_1177_1077546320986368 sage_journals_10_1177_1077546320986368 |
PublicationCentury | 2000 |
PublicationDate | 2022-05-01 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London, England |
PublicationPlace_xml | – name: London, England – name: Thousand Oaks |
PublicationTitle | Journal of vibration and control |
PublicationYear | 2022 |
Publisher | SAGE Publications SAGE PUBLICATIONS, INC |
Publisher_xml | – name: SAGE Publications – name: SAGE PUBLICATIONS, INC |
References | Yunusa-Kaltungo, Sinha, Nembhard 2015; 70 El-Thalji, Jantunen 2015; 60–61 Zhou, Chen, Dong 2012; 26 Murty, Yegnanarayana 2008; 16 Kumar, Shukla, Singh 2018; 419 Rai, Mohanty 2007; 21 Gupta, Pradhan 2017; 4 Kankar, Sharma, Harsha 2011; 11 Zhang, Li, Chen 2015; 64–65 Halim, Choudhury, Shah 2008; 22 Al-Bugharbee, Trendafilova 2016; 369 Baillie, Mathew 1996; 10 Holm-Hansen, Gao, Zhang 2004; 126 Westfall 2014; 68 McDonald, Zhao 2017; 82 Nikolaou, Antoniadis 2002; 35 Smith, Randall 2015; 64–65 Dong, Chen, Zhao 2015; 339 Wiggins 1978; 16 Tandon, Choudhury 1999; 32 Liang, Iwnicki, Zhao 2013; 39 McDonald, Zhao, Zuo 2012; 33 Peeters, Guillaume, Helsen 2017; 91 Tian, Gu, Rehab 2018; 100 Sachan, Shukla, Singh 2020; 143 Rioul, Vetterli 1991; 8 Prabhakar, Mohanty, Sekhar 2002; 35 Shukla, Singh, Mitra 2020; 57 Mcfadden, Toozhy 2000; 14 Mishra, Samantaray, Chakraborty 2017; 103 bibr13-1077546320986368 bibr5-1077546320986368 bibr26-1077546320986368 bibr4-1077546320986368 bibr27-1077546320986368 bibr14-1077546320986368 bibr22-1077546320986368 bibr9-1077546320986368 bibr18-1077546320986368 bibr12-1077546320986368 bibr17-1077546320986368 bibr8-1077546320986368 bibr3-1077546320986368 bibr25-1077546320986368 bibr21-1077546320986368 bibr30-1077546320986368 bibr7-1077546320986368 bibr24-1077546320986368 bibr29-1077546320986368 bibr2-1077546320986368 bibr11-1077546320986368 bibr16-1077546320986368 bibr20-1077546320986368 bibr33-1077546320986368 bibr1-1077546320986368 bibr31-1077546320986368 bibr23-1077546320986368 bibr28-1077546320986368 bibr6-1077546320986368 bibr10-1077546320986368 bibr15-1077546320986368 bibr19-1077546320986368 bibr32-1077546320986368 |
References_xml | – volume: 11 start-page: 2300 year: 2011 end-page: 2312 article-title: Fault diagnosis of ball bearings using continuous wavelet transform publication-title: Applied Soft Computing contributor: fullname: Harsha – volume: 35 start-page: 793 year: 2002 end-page: 800 article-title: Application of discrete wavelet transform for detection of ball bearing race faults publication-title: Tribology International contributor: fullname: Sekhar – volume: 33 start-page: 237 year: 2012 end-page: 255 article-title: Maximum correlated kurtosis deconvolution and application on gear tooth chip fault detection publication-title: Mechanical Systems and Signal Processing contributor: fullname: Zuo – volume: 64–65 start-page: 100 year: 2015 end-page: 131 article-title: Rolling element bearing diagnostics using the case western reserve university data: A benchmark study publication-title: Mechanical Systems and Signal Processing contributor: fullname: Randall – volume: 369 start-page: 246 year: 2016 end-page: 265 article-title: A fault diagnosis methodology for rolling element bearings based on advanced signal pretreatment and autoregressive modelling publication-title: Journal of Sound and Vibration contributor: fullname: Trendafilova – volume: 419 start-page: 436 year: 2018 end-page: 451 article-title: A combined approach for weak fault signature extraction of rolling element bearing using Hilbert envelop and zero frequency resonator publication-title: Journal of Sound and Vibration contributor: fullname: Singh – volume: 339 start-page: 396 year: 2015 end-page: 418 article-title: A frequency-shifted bispectrum for rolling element bearing diagnosis publication-title: Journal of Sound and Vibration contributor: fullname: Zhao – volume: 14 start-page: 891 issue: 6 year: 2000 end-page: 906 article-title: Application of synchronous averaging to vibration monitoring of rolling element bearings publication-title: Mechanical Systems and Signal Processing contributor: fullname: Toozhy – volume: 32 start-page: 469 year: 1999 end-page: 480 article-title: A review of vibration and acoustic measurement methods for the detection of defects in rolling element bearings publication-title: Tribology International contributor: fullname: Choudhury – volume: 10 start-page: 1 issue: 1 year: 1996 end-page: 17 article-title: A comparison of autoregressive modeling techniques for fault diagnosis of rolling element bearings publication-title: Mechanical Systems and Signal Processing contributor: fullname: Mathew – volume: 100 start-page: 167 year: 2018 end-page: 187 article-title: A robust detector for rolling element bearing condition monitoring based on the modulation signal bispectrum and its performance evaluation against the kurtogram publication-title: Mechanical Systems and Signal Processing contributor: fullname: Rehab – volume: 68 start-page: 191 issue: 3 year: 2014 end-page: 195 article-title: Kurtosis as peakedness, 1905–2014 publication-title: R.I.P. The American Statistician contributor: fullname: Westfall – volume: 8 start-page: 14 issue: 4 year: 1991 end-page: 31 article-title: Wavelets and signal processing publication-title: IEEE Signal Processing Magazine contributor: fullname: Vetterli – volume: 64–65 start-page: 162 year: 2015 end-page: 187 article-title: Weak fault signature extraction of rotating machinery using flexible analytic wavelet transform publication-title: Mechanical Systems and Signal Processing contributor: fullname: Chen – volume: 26 start-page: 229 year: 2012 end-page: 243 article-title: Application of the horizontal slice of cyclic bispectrum in rolling element bearings diagnosis publication-title: Mechanical Systems and Signal Processing contributor: fullname: Dong – volume: 82 start-page: 461 year: 2017 end-page: 477 article-title: Multipoint optimal minimum entropy deconvolutionand convolution fix: Application to vibration fault detection publication-title: Mechanical Systems and Signal Processing contributor: fullname: Zhao – volume: 103 start-page: 77 year: 2017 end-page: 86 article-title: Rolling element bearing fault diagnosis under slow speed operation using wavelet de-noising publication-title: Measurement contributor: fullname: Chakraborty – volume: 91 start-page: 354 year: 2017 end-page: 381 article-title: A comparison of cepstral editing methods as signal pre-processing techniques for vibration-based bearing fault detection publication-title: Mechanical Systems and Signal Processing contributor: fullname: Helsen – volume: 70 start-page: 47 year: 2015 end-page: 61 article-title: Use of composite higher order spectra for faults diagnosis of rotating machines with different foundation flexibilities publication-title: Measurement contributor: fullname: Nembhard – volume: 16 start-page: 21 year: 1978 end-page: 35 article-title: Minimum entropy deconvolution publication-title: Geoexploration contributor: fullname: Wiggins – volume: 16 start-page: 1602 issue: 8 year: 2008 end-page: 1613 article-title: Epoch extraction from speech signals publication-title: IEEE Transactions on Audio, Speech, and Language Processing contributor: fullname: Yegnanarayana – volume: 57 start-page: 101762 year: 2020 article-title: An efficient heart sound segmentation approach using kurtosis and zero frequency filter features publication-title: Biomedical Signal Processing and Control contributor: fullname: Mitra – volume: 22 start-page: 261 year: 2008 end-page: 278 article-title: Time domain averaging across all scales: a novel method for detection of gearbox faults publication-title: Mechanical Systems and Signal Processing contributor: fullname: Shah – volume: 21 start-page: 2607 year: 2007 end-page: 2615 article-title: Bearing fault diagnosis using FFT of intrinsic mode functions in Hilbert–Huang transform publication-title: Mechanical Systems and Signal Processing contributor: fullname: Mohanty – volume: 143 start-page: 106088 year: 2020 article-title: Two level de-noising algorithm for early detection of bearing fault using wavelet transform and zero frequency filter publication-title: Tribology International contributor: fullname: Singh – volume: 4 start-page: 2085 year: 2017 end-page: 2094 article-title: Fault detection analysis in rolling element bearing: a review publication-title: Materials Today: Proceedings contributor: fullname: Pradhan – volume: 60–61 start-page: 252 year: 2015 end-page: 272 article-title: A summary of fault modelling and predictive health monitoring of rolling element bearings publication-title: Mechanical Systems and Signal Processing contributor: fullname: Jantunen – volume: 126 start-page: 740 issue: 4 year: 2004 end-page: 745 article-title: Customized wavelet for bearing defect detection publication-title: ASME Journal of dynamic systems, measurement and control contributor: fullname: Zhang – volume: 35 start-page: 197 year: 2002 end-page: 205 article-title: Rolling element bearing fault diagnosis using wavelet packets publication-title: NDT & E International contributor: fullname: Antoniadis – volume: 39 start-page: 342 year: 2013 end-page: 360 article-title: Application of power spectrum, cepstrum, higher order spectrum and neural network analyses for induction motor fault diagnosis publication-title: Mechanical Systems and Signal Processing contributor: fullname: Zhao – ident: bibr23-1077546320986368 doi: 10.1002/9780470977668 – ident: bibr31-1077546320986368 doi: 10.1080/00031305.2014.917055 – ident: bibr7-1077546320986368 doi: 10.1016/j.ymssp.2007.08.006 – ident: bibr10-1077546320986368 doi: 10.1016/j.asoc.2010.08.011 – ident: bibr8-1077546320986368 doi: 10.1115/1.1850534 – ident: bibr24-1077546320986368 doi: 10.1109/79.91217 – ident: bibr27-1077546320986368 doi: 10.1016/j.ymssp.2015.04.021 – ident: bibr2-1077546320986368 doi: 10.1016/j.jsv.2015.12.052 – ident: bibr16-1077546320986368 doi: 10.1006/mssp.2000.1290 – ident: bibr26-1077546320986368 doi: 10.1016/j.bspc.2019.101762 – ident: bibr33-1077546320986368 doi: 10.1016/j.ymssp.2011.07.006 – ident: bibr12-1077546320986368 – ident: bibr28-1077546320986368 doi: 10.1016/S0301-679X(99)00077-8 – ident: bibr30-1077546320986368 doi: 10.1016/0016-7142(78)90005-4 – ident: bibr6-1077546320986368 doi: 10.1016/j.matpr.2017.02.054 – ident: bibr25-1077546320986368 doi: 10.1016/j.triboint.2019.106088 – ident: bibr22-1077546320986368 doi: 10.1016/j.ymssp.2006.12.004 – ident: bibr4-1077546320986368 doi: 10.1016/j.jsv.2014.11.015 – ident: bibr14-1077546320986368 doi: 10.1016/j.ymssp.2012.06.010 – ident: bibr9-1077546320986368 doi: 10.1016/j.measurement.2015.03.041 – ident: bibr11-1077546320986368 doi: 10.1016/j.jsv.2018.01.022 – ident: bibr20-1077546320986368 doi: 10.1016/j.ymssp.2016.12.036 – ident: bibr32-1077546320986368 doi: 10.1016/j.ymssp.2015.03.030 – ident: bibr1-1077546320986368 doi: 10.1006/mssp.1996.0001 – ident: bibr29-1077546320986368 doi: 10.1016/j.ymssp.2017.07.037 – ident: bibr5-1077546320986368 doi: 10.1016/j.ymssp.2015.02.008 – ident: bibr19-1077546320986368 doi: 10.1016/S0963-8695(01)00044-5 – ident: bibr3-1077546320986368 – ident: bibr13-1077546320986368 doi: 10.1016/j.ymssp.2013.02.016 – ident: bibr17-1077546320986368 doi: 10.1016/j.measurement.2017.02.033 – ident: bibr18-1077546320986368 doi: 10.1109/TASL.2008.2004526 – ident: bibr21-1077546320986368 doi: 10.1016/S0301-679X(02)00063-4 – ident: bibr15-1077546320986368 doi: 10.1016/j.ymssp.2016.05.036 |
SSID | ssj0004410 |
Score | 2.4116378 |
Snippet | A method based on minimum entropy deconvolution with convolution adjustment and zero frequency filter is presented for the identification of weak faults in... |
SourceID | proquest crossref sage |
SourceType | Aggregation Database Publisher |
StartPage | 1011 |
SubjectTerms | Algorithms Bearing strength Bearings Deconvolution Entropy Fault detection Frequency filters Impulses Random noise Roller bearings Subtraction Time domain analysis Time measurement Vibration |
Title | Early detection of bearing faults using minimum entropy deconvolution adjusted and zero frequency filter |
URI | https://journals.sagepub.com/doi/full/10.1177/1077546320986368 https://www.proquest.com/docview/2656116244 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwvV1LS8QwEB58IOjBt7i-yEEED9EmzbbZk4gPPIn4AD2VaZL6wO0uu-1Bf72Zbsv6QPDkqdCmnTaTaSYz33wB2EXjMHBRykNtkKs0MFzbADm2nfKzQ2bbVQb_4ia-vNenZ0STkze1MHUPDg8IVuXfqPpZk3VTNPqwTjL6IxG3RaEMOjoKI31UFt1kFO1uNtWgM5SeLruU2TaEh3zjTXXbJEwTcZ5frE0fX1_dPIwrKVXNXxDHnASME5s_ZH6dyMbe6SdAWDVHnS_899ctwnztzbLj0fBbggmXL8PcJ47DZZipMKZmuAJPFZkys66o4F8562Us9Ybmm7EMy9diyAiF_8iI7qRbdhkFnnt9uoOw8bWNMLQvJcVoGeaWvbtBj2WDER78jWXPlPxfhbvzs9uTC15v9MBNGHQKTpx67RgteUc2sygzG5rUBlb7NW4qpIgixNikJu4IP4hCIa2OtZOK6K8iIcI1mMp7uVsH5mSGMlCo0HuCAh2qKLB-1WRCG-uOkS3Yb7SW9Ed8HomoKc-_93sLthq1Jo3mEukdYOHFKtWCPVLj-NJvz9n4a8NNmJVUXVHhKbdgqhiUbhsmh7bcqQfqByA2_XY |
link.rule.ids | 315,782,786,27927,27934,27935,44982,45370 |
linkProvider | SAGE Publications |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NTxsxEB1BEKI9QPmoGhqoDwiJwyJ_Ze0coxIUREBVAQlOq1nbC1TNJkqyh_bXY282CbRCQuK8ttfyzO48e948AxygcUhdnEZCG4xkSk2kLcUIm0766JDZZpnB716py1t90gkyOfOrvqoVHB8HWpWfUfmznn_dZZ140GyLBactHYtYL8OKbApFa7DS_vnj6m5RFCkrKQKlotBhkaP8b4yXMWkBNJ9xu8pwc7rxjol-gvUKY5L21Ck2YcnlW_DxmfLgFqyWzE8z3oaHUuKYWDcpSVk5GWQk9e7vm5EMi9-TMQnc-HsSREj6RZ-E4-DBMPQIjPXKcwnaX0U4OSWYW_LXjQYkG01Z2n9I9hhS8jtwc9q5_t6NqusXIiNoaxIFpbumQhswi80s8swKk1pqtd95poyzOEZUJjWqxbxpBeNWK-24DKJUMWPiM9TyQe6-AHE8Q04lSvT4jKFDGVPr9zJGWKVbhtfhaGaAZDhV2UhYJUT-7zrWoTGzUDIzQsI9LGX-tVLW4TBYZPHotXF239rwG6x1ry96Se_s8vwrfOCh_qFkPDagNhkVbg-Wx7bYr_zvCQb91VY |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB5BESs48FoQ5ekDQtpDlthxE-fAAQEVCIQQsNLuKZr4wUOQVm1zgF-PJ01VHkJaiVMOfsTyjD1jzzefAXZQWwxtnAeR0hjIPNSBMiEG2LLSWwdnWlUE_-Q6ufirjo6JJmd_lAtTz2D_N8Gq_IiqzZpWd9e4vTrG6L_E2xZHIkxVHMVqEqakTJVowNTB1eX1v3FipKzpCJIkoAbjOOWnPt7bpbGz-QbfVZmc9vw3B7sAc7WvyQ6GyrEIE7ZYgtk3DIRLMF0hQHX_J9xVVMfM2EEFzipYx7HcLwNfjTksHwd9Rhj5W0ZkJE_lE6Nr4U6XWhByvdZghuahpBtUhoVhL7bXYa43RGs_M3dPofll-NM-vjk8CepnGAIdhekgIMa7VoKGfBfjDApnIp2b0Ch_As254HGMmOhcJyn3Io64MCpRVkgip4o5j1agUXQKuwrMCocilCjR-2kcLco4NP5MoyOTqFSLJvwaCSHrDtk2Ml4Tkn-cxyZsjKSUjQSRCe-ecv9bKZuwS1IZF33Vz9r_VtyGH5dH7ez89OJsHWYEpUFUwMcNaAx6pd2Eyb4pt2oVfAVYnNfc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Early+detection+of+bearing+faults+using+minimum+entropy+deconvolution+adjusted+and+zero+frequency+filter&rft.jtitle=Journal+of+vibration+and+control&rft.au=Kumar%2C+Keshav&rft.au=Shukla+Sumitra&rft.au=Singh%2C+Sachin+K&rft.date=2022-05-01&rft.pub=SAGE+PUBLICATIONS%2C+INC&rft.issn=1077-5463&rft.eissn=1741-2986&rft.volume=28&rft.issue=9-10&rft.spage=1011&rft.epage=1024&rft_id=info:doi/10.1177%2F1077546320986368&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-5463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-5463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-5463&client=summon |