Early detection of bearing faults using minimum entropy deconvolution adjusted and zero frequency filter

A method based on minimum entropy deconvolution with convolution adjustment and zero frequency filter is presented for the identification of weak faults in rolling element bearings. Localized fault present in rolling element bearings causes periodic impulses in the bearing vibration signal. The zero...

Full description

Saved in:
Bibliographic Details
Published in:Journal of vibration and control Vol. 28; no. 9-10; pp. 1011 - 1024
Main Authors: Kumar, Keshav, Shukla, Sumitra, Singh, Sachin K
Format: Journal Article
Language:English
Published: London, England SAGE Publications 01-05-2022
SAGE PUBLICATIONS, INC
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A method based on minimum entropy deconvolution with convolution adjustment and zero frequency filter is presented for the identification of weak faults in rolling element bearings. Localized fault present in rolling element bearings causes periodic impulses in the bearing vibration signal. The zero frequency filtering of the bearing vibration signal keeps only the localized disturbances at the impulse locations while attenuating the non-impulsive components of the signal. The effectiveness of zero frequency filtering depends on the strength of impulses present in the measured faulty bearing signal in time domain. In the present work, Minimum entropy deconvolution adjusted is used as a preprocessor to improve the strength of impulses in the measured time-domain bearing signal. The effectiveness of the proposed algorithm is tested with simulated signals for the faulty bearing vibration at different levels of added Gaussian noise. The algorithm is also validated using experimental bearing vibration dataset. Results from the proposed algorithm are compared with the results of the zero frequency filter and local mean subtraction-based technique for rolling element bearings’ fault identification. The proposed algorithm performs better detection in case of a weak fault signal.
AbstractList A method based on minimum entropy deconvolution with convolution adjustment and zero frequency filter is presented for the identification of weak faults in rolling element bearings. Localized fault present in rolling element bearings causes periodic impulses in the bearing vibration signal. The zero frequency filtering of the bearing vibration signal keeps only the localized disturbances at the impulse locations while attenuating the non-impulsive components of the signal. The effectiveness of zero frequency filtering depends on the strength of impulses present in the measured faulty bearing signal in time domain. In the present work, Minimum entropy deconvolution adjusted is used as a preprocessor to improve the strength of impulses in the measured time-domain bearing signal. The effectiveness of the proposed algorithm is tested with simulated signals for the faulty bearing vibration at different levels of added Gaussian noise. The algorithm is also validated using experimental bearing vibration dataset. Results from the proposed algorithm are compared with the results of the zero frequency filter and local mean subtraction-based technique for rolling element bearings’ fault identification. The proposed algorithm performs better detection in case of a weak fault signal.
Author Kumar, Keshav
Singh, Sachin K
Shukla, Sumitra
Author_xml – sequence: 1
  givenname: Keshav
  surname: Kumar
  fullname: Kumar, Keshav
  organization: Department of Electronics Engineering
– sequence: 2
  givenname: Sumitra
  surname: Shukla
  fullname: Shukla, Sumitra
  organization: Department of Electronics Engineering
– sequence: 3
  givenname: Sachin K
  orcidid: 0000-0002-9754-5415
  surname: Singh
  fullname: Singh, Sachin K
  email: sachinsingh47@gmail.com
  organization: Department of Electronics Engineering
BookMark eNp1UEtLAzEQDqJgW717DHhezWTTZPcopT6g4EXPSzaPumU3qUlWqL_erBUEwdPM8D1m5pujU-edQegKyA2AELdAhFgyXlJSV7zk1QmagWBQ0Dye5j7DxYSfo3mMO0IIY0Bm6G0tQ3_A2iSjUucd9ha3RobObbGVY58iHuM0DJ3rhnHAxqXg95NCeffh-_FbJfVujMloLJ3GnyZ4bIN5H41TB2y7Pplwgc6s7KO5_KkL9Hq_flk9Fpvnh6fV3aZQJalTUfH8hpCas7LWVktqdalaTXRVi6oFCpxLKVSrRA1yaUqguhKVoUwApxygXKDro-8--HxATM3Oj8HllQ3ly8zglLHMIkeWCj7GYGyzD90gw6EB0kx5Nn_zzJLiKIlya35N_-V_AUrreAA
CitedBy_id crossref_primary_10_1007_s40430_023_04276_w
crossref_primary_10_1177_10775463231176383
crossref_primary_10_1177_10775463221131843
crossref_primary_10_3390_e25081171
crossref_primary_10_1109_JSEN_2023_3283946
crossref_primary_10_1177_16878132221145343
crossref_primary_10_3390_machines12060389
crossref_primary_10_1177_10775463231207120
crossref_primary_10_1177_10775463231208818
Cites_doi 10.1002/9780470977668
10.1080/00031305.2014.917055
10.1016/j.ymssp.2007.08.006
10.1016/j.asoc.2010.08.011
10.1115/1.1850534
10.1109/79.91217
10.1016/j.ymssp.2015.04.021
10.1016/j.jsv.2015.12.052
10.1006/mssp.2000.1290
10.1016/j.bspc.2019.101762
10.1016/j.ymssp.2011.07.006
10.1016/S0301-679X(99)00077-8
10.1016/0016-7142(78)90005-4
10.1016/j.matpr.2017.02.054
10.1016/j.triboint.2019.106088
10.1016/j.ymssp.2006.12.004
10.1016/j.jsv.2014.11.015
10.1016/j.ymssp.2012.06.010
10.1016/j.measurement.2015.03.041
10.1016/j.jsv.2018.01.022
10.1016/j.ymssp.2016.12.036
10.1016/j.ymssp.2015.03.030
10.1006/mssp.1996.0001
10.1016/j.ymssp.2017.07.037
10.1016/j.ymssp.2015.02.008
10.1016/S0963-8695(01)00044-5
10.1016/j.ymssp.2013.02.016
10.1016/j.measurement.2017.02.033
10.1109/TASL.2008.2004526
10.1016/S0301-679X(02)00063-4
10.1016/j.ymssp.2016.05.036
ContentType Journal Article
Copyright The Author(s) 2021
Copyright_xml – notice: The Author(s) 2021
DBID AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1177/1077546320986368
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1741-2986
EndPage 1024
ExternalDocumentID 10_1177_1077546320986368
10.1177_1077546320986368
GroupedDBID -MK
-TM
-TN
-~X
.2G
.2N
01A
0R~
1~K
29L
31S
31X
31Y
31Z
4.4
54M
5GY
5VS
AACKU
AACTG
AADUE
AAGGD
AAJOX
AAJPV
AAMGE
AANSI
AAPEO
AAQDB
AARIX
AATAA
AATBZ
AAYTG
ABAWP
ABCCA
ABDWY
ABEIX
ABFWQ
ABHKI
ABHQH
ABJNI
ABKRH
ABLUO
ABPNF
ABQKF
ABQXT
ABRHV
ABYTW
ACDXX
ACGBL
ACGFS
ACGOD
ACIWK
ACLZU
ACOFE
ACOXC
ACROE
ACSIQ
ACTQU
ACUAV
ACUIR
ACXKE
ADEIA
ADRRZ
ADTBJ
ADUKL
AEDFJ
AENEX
AEPTA
AEQLS
AESZF
AEUHG
AEUIJ
AEWDL
AEWHI
AEXNY
AFEET
AFFNX
AFKBI
AFKRG
AFMOU
AFQAA
AFUIA
AGKLV
AGNHF
AGWFA
AHHFK
AI.
AIOMO
AIZZC
AJEFB
AJUZI
ALJHS
ALMA_UNASSIGNED_HOLDINGS
ANDLU
ARTOV
ASPBG
AUTPY
AUVAJ
AVWKF
AYAKG
AZFZN
B8O
B8Z
B93
B94
BBRGL
BDDNI
BKOMP
BPACV
CAG
CBRKF
CFDXU
COF
CORYS
CS3
DD0
DE-
DH.
DO-
DOPDO
DU5
DV7
D~Y
EBS
EJD
FEDTE
FHBDP
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
HF~
HVGLF
HZ~
IAO
IEA
IGS
IVC
J8X
JCYGO
K.F
M4V
N9A
O9-
P.B
P2P
PQQKQ
Q1R
Q7X
Q82
Q83
RIG
ROL
S01
SBI
SCNPE
SFB
SFC
SFK
SFT
SGA
SGP
SGV
SGX
SGZ
SPJ
SPP
SPV
SQCSI
STM
VH1
ZPPRI
ZRKOI
AAYXX
ACJER
ADVBO
AGWNL
CITATION
H13
7SC
7SP
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c309t-867757ad6439dfda2fd3cbd0d8978b12166aa7cbc791a5e312d878e2471626113
IEDL.DBID ARPSY
ISSN 1077-5463
IngestDate Mon Nov 04 11:24:53 EST 2024
Fri Nov 22 01:36:53 EST 2024
Tue Jul 16 20:46:00 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 9-10
Keywords weak fault detection
distant location of vibration sensor
Bearing fault
zero frequency resonator
convolution adjustment
minimum entropy deconvolution
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c309t-867757ad6439dfda2fd3cbd0d8978b12166aa7cbc791a5e312d878e2471626113
ORCID 0000-0002-9754-5415
PQID 2656116244
PQPubID 30643
PageCount 14
ParticipantIDs proquest_journals_2656116244
crossref_primary_10_1177_1077546320986368
sage_journals_10_1177_1077546320986368
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace London, England
PublicationPlace_xml – name: London, England
– name: Thousand Oaks
PublicationTitle Journal of vibration and control
PublicationYear 2022
Publisher SAGE Publications
SAGE PUBLICATIONS, INC
Publisher_xml – name: SAGE Publications
– name: SAGE PUBLICATIONS, INC
References Yunusa-Kaltungo, Sinha, Nembhard 2015; 70
El-Thalji, Jantunen 2015; 60–61
Zhou, Chen, Dong 2012; 26
Murty, Yegnanarayana 2008; 16
Kumar, Shukla, Singh 2018; 419
Rai, Mohanty 2007; 21
Gupta, Pradhan 2017; 4
Kankar, Sharma, Harsha 2011; 11
Zhang, Li, Chen 2015; 64–65
Halim, Choudhury, Shah 2008; 22
Al-Bugharbee, Trendafilova 2016; 369
Baillie, Mathew 1996; 10
Holm-Hansen, Gao, Zhang 2004; 126
Westfall 2014; 68
McDonald, Zhao 2017; 82
Nikolaou, Antoniadis 2002; 35
Smith, Randall 2015; 64–65
Dong, Chen, Zhao 2015; 339
Wiggins 1978; 16
Tandon, Choudhury 1999; 32
Liang, Iwnicki, Zhao 2013; 39
McDonald, Zhao, Zuo 2012; 33
Peeters, Guillaume, Helsen 2017; 91
Tian, Gu, Rehab 2018; 100
Sachan, Shukla, Singh 2020; 143
Rioul, Vetterli 1991; 8
Prabhakar, Mohanty, Sekhar 2002; 35
Shukla, Singh, Mitra 2020; 57
Mcfadden, Toozhy 2000; 14
Mishra, Samantaray, Chakraborty 2017; 103
bibr13-1077546320986368
bibr5-1077546320986368
bibr26-1077546320986368
bibr4-1077546320986368
bibr27-1077546320986368
bibr14-1077546320986368
bibr22-1077546320986368
bibr9-1077546320986368
bibr18-1077546320986368
bibr12-1077546320986368
bibr17-1077546320986368
bibr8-1077546320986368
bibr3-1077546320986368
bibr25-1077546320986368
bibr21-1077546320986368
bibr30-1077546320986368
bibr7-1077546320986368
bibr24-1077546320986368
bibr29-1077546320986368
bibr2-1077546320986368
bibr11-1077546320986368
bibr16-1077546320986368
bibr20-1077546320986368
bibr33-1077546320986368
bibr1-1077546320986368
bibr31-1077546320986368
bibr23-1077546320986368
bibr28-1077546320986368
bibr6-1077546320986368
bibr10-1077546320986368
bibr15-1077546320986368
bibr19-1077546320986368
bibr32-1077546320986368
References_xml – volume: 11
  start-page: 2300
  year: 2011
  end-page: 2312
  article-title: Fault diagnosis of ball bearings using continuous wavelet transform
  publication-title: Applied Soft Computing
  contributor:
    fullname: Harsha
– volume: 35
  start-page: 793
  year: 2002
  end-page: 800
  article-title: Application of discrete wavelet transform for detection of ball bearing race faults
  publication-title: Tribology International
  contributor:
    fullname: Sekhar
– volume: 33
  start-page: 237
  year: 2012
  end-page: 255
  article-title: Maximum correlated kurtosis deconvolution and application on gear tooth chip fault detection
  publication-title: Mechanical Systems and Signal Processing
  contributor:
    fullname: Zuo
– volume: 64–65
  start-page: 100
  year: 2015
  end-page: 131
  article-title: Rolling element bearing diagnostics using the case western reserve university data: A benchmark study
  publication-title: Mechanical Systems and Signal Processing
  contributor:
    fullname: Randall
– volume: 369
  start-page: 246
  year: 2016
  end-page: 265
  article-title: A fault diagnosis methodology for rolling element bearings based on advanced signal pretreatment and autoregressive modelling
  publication-title: Journal of Sound and Vibration
  contributor:
    fullname: Trendafilova
– volume: 419
  start-page: 436
  year: 2018
  end-page: 451
  article-title: A combined approach for weak fault signature extraction of rolling element bearing using Hilbert envelop and zero frequency resonator
  publication-title: Journal of Sound and Vibration
  contributor:
    fullname: Singh
– volume: 339
  start-page: 396
  year: 2015
  end-page: 418
  article-title: A frequency-shifted bispectrum for rolling element bearing diagnosis
  publication-title: Journal of Sound and Vibration
  contributor:
    fullname: Zhao
– volume: 14
  start-page: 891
  issue: 6
  year: 2000
  end-page: 906
  article-title: Application of synchronous averaging to vibration monitoring of rolling element bearings
  publication-title: Mechanical Systems and Signal Processing
  contributor:
    fullname: Toozhy
– volume: 32
  start-page: 469
  year: 1999
  end-page: 480
  article-title: A review of vibration and acoustic measurement methods for the detection of defects in rolling element bearings
  publication-title: Tribology International
  contributor:
    fullname: Choudhury
– volume: 10
  start-page: 1
  issue: 1
  year: 1996
  end-page: 17
  article-title: A comparison of autoregressive modeling techniques for fault diagnosis of rolling element bearings
  publication-title: Mechanical Systems and Signal Processing
  contributor:
    fullname: Mathew
– volume: 100
  start-page: 167
  year: 2018
  end-page: 187
  article-title: A robust detector for rolling element bearing condition monitoring based on the modulation signal bispectrum and its performance evaluation against the kurtogram
  publication-title: Mechanical Systems and Signal Processing
  contributor:
    fullname: Rehab
– volume: 68
  start-page: 191
  issue: 3
  year: 2014
  end-page: 195
  article-title: Kurtosis as peakedness, 1905–2014
  publication-title: R.I.P. The American Statistician
  contributor:
    fullname: Westfall
– volume: 8
  start-page: 14
  issue: 4
  year: 1991
  end-page: 31
  article-title: Wavelets and signal processing
  publication-title: IEEE Signal Processing Magazine
  contributor:
    fullname: Vetterli
– volume: 64–65
  start-page: 162
  year: 2015
  end-page: 187
  article-title: Weak fault signature extraction of rotating machinery using flexible analytic wavelet transform
  publication-title: Mechanical Systems and Signal Processing
  contributor:
    fullname: Chen
– volume: 26
  start-page: 229
  year: 2012
  end-page: 243
  article-title: Application of the horizontal slice of cyclic bispectrum in rolling element bearings diagnosis
  publication-title: Mechanical Systems and Signal Processing
  contributor:
    fullname: Dong
– volume: 82
  start-page: 461
  year: 2017
  end-page: 477
  article-title: Multipoint optimal minimum entropy deconvolutionand convolution fix: Application to vibration fault detection
  publication-title: Mechanical Systems and Signal Processing
  contributor:
    fullname: Zhao
– volume: 103
  start-page: 77
  year: 2017
  end-page: 86
  article-title: Rolling element bearing fault diagnosis under slow speed operation using wavelet de-noising
  publication-title: Measurement
  contributor:
    fullname: Chakraborty
– volume: 91
  start-page: 354
  year: 2017
  end-page: 381
  article-title: A comparison of cepstral editing methods as signal pre-processing techniques for vibration-based bearing fault detection
  publication-title: Mechanical Systems and Signal Processing
  contributor:
    fullname: Helsen
– volume: 70
  start-page: 47
  year: 2015
  end-page: 61
  article-title: Use of composite higher order spectra for faults diagnosis of rotating machines with different foundation flexibilities
  publication-title: Measurement
  contributor:
    fullname: Nembhard
– volume: 16
  start-page: 21
  year: 1978
  end-page: 35
  article-title: Minimum entropy deconvolution
  publication-title: Geoexploration
  contributor:
    fullname: Wiggins
– volume: 16
  start-page: 1602
  issue: 8
  year: 2008
  end-page: 1613
  article-title: Epoch extraction from speech signals
  publication-title: IEEE Transactions on Audio, Speech, and Language Processing
  contributor:
    fullname: Yegnanarayana
– volume: 57
  start-page: 101762
  year: 2020
  article-title: An efficient heart sound segmentation approach using kurtosis and zero frequency filter features
  publication-title: Biomedical Signal Processing and Control
  contributor:
    fullname: Mitra
– volume: 22
  start-page: 261
  year: 2008
  end-page: 278
  article-title: Time domain averaging across all scales: a novel method for detection of gearbox faults
  publication-title: Mechanical Systems and Signal Processing
  contributor:
    fullname: Shah
– volume: 21
  start-page: 2607
  year: 2007
  end-page: 2615
  article-title: Bearing fault diagnosis using FFT of intrinsic mode functions in Hilbert–Huang transform
  publication-title: Mechanical Systems and Signal Processing
  contributor:
    fullname: Mohanty
– volume: 143
  start-page: 106088
  year: 2020
  article-title: Two level de-noising algorithm for early detection of bearing fault using wavelet transform and zero frequency filter
  publication-title: Tribology International
  contributor:
    fullname: Singh
– volume: 4
  start-page: 2085
  year: 2017
  end-page: 2094
  article-title: Fault detection analysis in rolling element bearing: a review
  publication-title: Materials Today: Proceedings
  contributor:
    fullname: Pradhan
– volume: 60–61
  start-page: 252
  year: 2015
  end-page: 272
  article-title: A summary of fault modelling and predictive health monitoring of rolling element bearings
  publication-title: Mechanical Systems and Signal Processing
  contributor:
    fullname: Jantunen
– volume: 126
  start-page: 740
  issue: 4
  year: 2004
  end-page: 745
  article-title: Customized wavelet for bearing defect detection
  publication-title: ASME Journal of dynamic systems, measurement and control
  contributor:
    fullname: Zhang
– volume: 35
  start-page: 197
  year: 2002
  end-page: 205
  article-title: Rolling element bearing fault diagnosis using wavelet packets
  publication-title: NDT & E International
  contributor:
    fullname: Antoniadis
– volume: 39
  start-page: 342
  year: 2013
  end-page: 360
  article-title: Application of power spectrum, cepstrum, higher order spectrum and neural network analyses for induction motor fault diagnosis
  publication-title: Mechanical Systems and Signal Processing
  contributor:
    fullname: Zhao
– ident: bibr23-1077546320986368
  doi: 10.1002/9780470977668
– ident: bibr31-1077546320986368
  doi: 10.1080/00031305.2014.917055
– ident: bibr7-1077546320986368
  doi: 10.1016/j.ymssp.2007.08.006
– ident: bibr10-1077546320986368
  doi: 10.1016/j.asoc.2010.08.011
– ident: bibr8-1077546320986368
  doi: 10.1115/1.1850534
– ident: bibr24-1077546320986368
  doi: 10.1109/79.91217
– ident: bibr27-1077546320986368
  doi: 10.1016/j.ymssp.2015.04.021
– ident: bibr2-1077546320986368
  doi: 10.1016/j.jsv.2015.12.052
– ident: bibr16-1077546320986368
  doi: 10.1006/mssp.2000.1290
– ident: bibr26-1077546320986368
  doi: 10.1016/j.bspc.2019.101762
– ident: bibr33-1077546320986368
  doi: 10.1016/j.ymssp.2011.07.006
– ident: bibr12-1077546320986368
– ident: bibr28-1077546320986368
  doi: 10.1016/S0301-679X(99)00077-8
– ident: bibr30-1077546320986368
  doi: 10.1016/0016-7142(78)90005-4
– ident: bibr6-1077546320986368
  doi: 10.1016/j.matpr.2017.02.054
– ident: bibr25-1077546320986368
  doi: 10.1016/j.triboint.2019.106088
– ident: bibr22-1077546320986368
  doi: 10.1016/j.ymssp.2006.12.004
– ident: bibr4-1077546320986368
  doi: 10.1016/j.jsv.2014.11.015
– ident: bibr14-1077546320986368
  doi: 10.1016/j.ymssp.2012.06.010
– ident: bibr9-1077546320986368
  doi: 10.1016/j.measurement.2015.03.041
– ident: bibr11-1077546320986368
  doi: 10.1016/j.jsv.2018.01.022
– ident: bibr20-1077546320986368
  doi: 10.1016/j.ymssp.2016.12.036
– ident: bibr32-1077546320986368
  doi: 10.1016/j.ymssp.2015.03.030
– ident: bibr1-1077546320986368
  doi: 10.1006/mssp.1996.0001
– ident: bibr29-1077546320986368
  doi: 10.1016/j.ymssp.2017.07.037
– ident: bibr5-1077546320986368
  doi: 10.1016/j.ymssp.2015.02.008
– ident: bibr19-1077546320986368
  doi: 10.1016/S0963-8695(01)00044-5
– ident: bibr3-1077546320986368
– ident: bibr13-1077546320986368
  doi: 10.1016/j.ymssp.2013.02.016
– ident: bibr17-1077546320986368
  doi: 10.1016/j.measurement.2017.02.033
– ident: bibr18-1077546320986368
  doi: 10.1109/TASL.2008.2004526
– ident: bibr21-1077546320986368
  doi: 10.1016/S0301-679X(02)00063-4
– ident: bibr15-1077546320986368
  doi: 10.1016/j.ymssp.2016.05.036
SSID ssj0004410
Score 2.4116378
Snippet A method based on minimum entropy deconvolution with convolution adjustment and zero frequency filter is presented for the identification of weak faults in...
SourceID proquest
crossref
sage
SourceType Aggregation Database
Publisher
StartPage 1011
SubjectTerms Algorithms
Bearing strength
Bearings
Deconvolution
Entropy
Fault detection
Frequency filters
Impulses
Random noise
Roller bearings
Subtraction
Time domain analysis
Time measurement
Vibration
Title Early detection of bearing faults using minimum entropy deconvolution adjusted and zero frequency filter
URI https://journals.sagepub.com/doi/full/10.1177/1077546320986368
https://www.proquest.com/docview/2656116244
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwvV1LS8QwEB58IOjBt7i-yEEED9EmzbbZk4gPPIn4AD2VaZL6wO0uu-1Bf72Zbsv6QPDkqdCmnTaTaSYz33wB2EXjMHBRykNtkKs0MFzbADm2nfKzQ2bbVQb_4ia-vNenZ0STkze1MHUPDg8IVuXfqPpZk3VTNPqwTjL6IxG3RaEMOjoKI31UFt1kFO1uNtWgM5SeLruU2TaEh3zjTXXbJEwTcZ5frE0fX1_dPIwrKVXNXxDHnASME5s_ZH6dyMbe6SdAWDVHnS_899ctwnztzbLj0fBbggmXL8PcJ47DZZipMKZmuAJPFZkys66o4F8562Us9Ybmm7EMy9diyAiF_8iI7qRbdhkFnnt9uoOw8bWNMLQvJcVoGeaWvbtBj2WDER78jWXPlPxfhbvzs9uTC15v9MBNGHQKTpx67RgteUc2sygzG5rUBlb7NW4qpIgixNikJu4IP4hCIa2OtZOK6K8iIcI1mMp7uVsH5mSGMlCo0HuCAh2qKLB-1WRCG-uOkS3Yb7SW9Ed8HomoKc-_93sLthq1Jo3mEukdYOHFKtWCPVLj-NJvz9n4a8NNmJVUXVHhKbdgqhiUbhsmh7bcqQfqByA2_XY
link.rule.ids 315,782,786,27927,27934,27935,44982,45370
linkProvider SAGE Publications
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NTxsxEB1BEKI9QPmoGhqoDwiJwyJ_Ze0coxIUREBVAQlOq1nbC1TNJkqyh_bXY282CbRCQuK8ttfyzO48e948AxygcUhdnEZCG4xkSk2kLcUIm0766JDZZpnB716py1t90gkyOfOrvqoVHB8HWpWfUfmznn_dZZ140GyLBactHYtYL8OKbApFa7DS_vnj6m5RFCkrKQKlotBhkaP8b4yXMWkBNJ9xu8pwc7rxjol-gvUKY5L21Ck2YcnlW_DxmfLgFqyWzE8z3oaHUuKYWDcpSVk5GWQk9e7vm5EMi9-TMQnc-HsSREj6RZ-E4-DBMPQIjPXKcwnaX0U4OSWYW_LXjQYkG01Z2n9I9hhS8jtwc9q5_t6NqusXIiNoaxIFpbumQhswi80s8swKk1pqtd95poyzOEZUJjWqxbxpBeNWK-24DKJUMWPiM9TyQe6-AHE8Q04lSvT4jKFDGVPr9zJGWKVbhtfhaGaAZDhV2UhYJUT-7zrWoTGzUDIzQsI9LGX-tVLW4TBYZPHotXF239rwG6x1ry96Se_s8vwrfOCh_qFkPDagNhkVbg-Wx7bYr_zvCQb91VY
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB5BESs48FoQ5ekDQtpDlthxE-fAAQEVCIQQsNLuKZr4wUOQVm1zgF-PJ01VHkJaiVMOfsTyjD1jzzefAXZQWwxtnAeR0hjIPNSBMiEG2LLSWwdnWlUE_-Q6ufirjo6JJmd_lAtTz2D_N8Gq_IiqzZpWd9e4vTrG6L_E2xZHIkxVHMVqEqakTJVowNTB1eX1v3FipKzpCJIkoAbjOOWnPt7bpbGz-QbfVZmc9vw3B7sAc7WvyQ6GyrEIE7ZYgtk3DIRLMF0hQHX_J9xVVMfM2EEFzipYx7HcLwNfjTksHwd9Rhj5W0ZkJE_lE6Nr4U6XWhByvdZghuahpBtUhoVhL7bXYa43RGs_M3dPofll-NM-vjk8CepnGAIdhekgIMa7VoKGfBfjDApnIp2b0Ch_As254HGMmOhcJyn3Io64MCpRVkgip4o5j1agUXQKuwrMCocilCjR-2kcLco4NP5MoyOTqFSLJvwaCSHrDtk2Ml4Tkn-cxyZsjKSUjQSRCe-ecv9bKZuwS1IZF33Vz9r_VtyGH5dH7ez89OJsHWYEpUFUwMcNaAx6pd2Eyb4pt2oVfAVYnNfc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Early+detection+of+bearing+faults+using+minimum+entropy+deconvolution+adjusted+and+zero+frequency+filter&rft.jtitle=Journal+of+vibration+and+control&rft.au=Kumar%2C+Keshav&rft.au=Shukla+Sumitra&rft.au=Singh%2C+Sachin+K&rft.date=2022-05-01&rft.pub=SAGE+PUBLICATIONS%2C+INC&rft.issn=1077-5463&rft.eissn=1741-2986&rft.volume=28&rft.issue=9-10&rft.spage=1011&rft.epage=1024&rft_id=info:doi/10.1177%2F1077546320986368&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-5463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-5463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-5463&client=summon