Bernstein Inequality for Multivariate Functions with Smooth Fourier Images

Let K be a compact set in ℝ n with ( O )-property and let 1 ≤ p ≤ ∞ . Then there exists a constant C K < ∞ independent of f and α and such that ‖ D α f ‖ p ≤ C K sup ξ ∈ K ξ α ‖ f ‖ H p , K , 3 for all α ∈ Z + n and f ∈ H p , K , 3 , where H p , K , 3 = f ∈ L p R n : supp f ^ ⊂ K , D 3 , 3 , ⋯ ,...

Full description

Saved in:
Bibliographic Details
Published in:Ukrainian mathematical journal Vol. 74; no. 11; pp. 1780 - 1794
Main Authors: Bang, Ha Huy, Huy, Vu Nhat
Format: Journal Article
Language:English
Published: New York Springer US 01-04-2023
Springer
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Let K be a compact set in ℝ n with ( O )-property and let 1 ≤ p ≤ ∞ . Then there exists a constant C K < ∞ independent of f and α and such that ‖ D α f ‖ p ≤ C K sup ξ ∈ K ξ α ‖ f ‖ H p , K , 3 for all α ∈ Z + n and f ∈ H p , K , 3 , where H p , K , 3 = f ∈ L p R n : supp f ^ ⊂ K , D 3 , 3 , ⋯ , 3 f ^ ∈ C R n , ‖ f ‖ H p , K , 3 = ‖ D 3 , 3 , ⋯ , 3 f ^ ‖ ∞ , and f ^ is the Fourier transform of f. Note that K is said to have the ( O )-property if there exists a constant C > 0 such that sup x ∈ K x α + e j ≥ C sup x ∈ K x α for all α ∈ Z + n and j = 1 , 2 , ⋯ , n .
ISSN:0041-5995
1573-9376
DOI:10.1007/s11253-023-02170-1