Bernstein Inequality for Multivariate Functions with Smooth Fourier Images
Let K be a compact set in ℝ n with ( O )-property and let 1 ≤ p ≤ ∞ . Then there exists a constant C K < ∞ independent of f and α and such that ‖ D α f ‖ p ≤ C K sup ξ ∈ K ξ α ‖ f ‖ H p , K , 3 for all α ∈ Z + n and f ∈ H p , K , 3 , where H p , K , 3 = f ∈ L p R n : supp f ^ ⊂ K , D 3 , 3 , ⋯ ,...
Saved in:
Published in: | Ukrainian mathematical journal Vol. 74; no. 11; pp. 1780 - 1794 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
New York
Springer US
01-04-2023
Springer Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let
K
be a compact set in ℝ
n
with (
O
)-property and let 1 ≤
p
≤ ∞
.
Then there exists a constant
C
K
<
∞ independent of
f
and
α
and such that
‖
D
α
f
‖
p
≤
C
K
sup
ξ
∈
K
ξ
α
‖
f
‖
H
p
,
K
,
3
for
all
α
∈
Z
+
n
and
f
∈
H
p
,
K
,
3
,
where
H
p
,
K
,
3
=
f
∈
L
p
R
n
:
supp
f
^
⊂
K
,
D
3
,
3
,
⋯
,
3
f
^
∈
C
R
n
,
‖
f
‖
H
p
,
K
,
3
=
‖
D
3
,
3
,
⋯
,
3
f
^
‖
∞
,
and
f
^
is the Fourier transform of
f.
Note that
K
is said to have the (
O
)-property if there exists a constant
C >
0 such that
sup
x
∈
K
x
α
+
e
j
≥
C
sup
x
∈
K
x
α
for
all
α
∈
Z
+
n
and
j
=
1
,
2
,
⋯
,
n
. |
---|---|
ISSN: | 0041-5995 1573-9376 |
DOI: | 10.1007/s11253-023-02170-1 |