Pattern recognition approach for acoustic emission burst detection in a gearbox under different operating conditions

Diverse machines in the mining, energy, and other industrial sectors are subject to variable operating conditions (OCs) such as rotational speed and load. Therefore, the condition monitoring techniques must be adapted to face this scenario. Within these techniques, the acoustic emission (AE) technol...

Full description

Saved in:
Bibliographic Details
Published in:Journal of vibration and control Vol. 25; no. 17; pp. 2295 - 2304
Main Authors: Leaman, Félix, Vicuña, Cristián Molina, Baltes, Ralph, Clausen, Elisabeth
Format: Journal Article
Language:English
Published: London, England SAGE Publications 01-09-2019
SAGE PUBLICATIONS, INC
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Diverse machines in the mining, energy, and other industrial sectors are subject to variable operating conditions (OCs) such as rotational speed and load. Therefore, the condition monitoring techniques must be adapted to face this scenario. Within these techniques, the acoustic emission (AE) technology has been successfully used as a technique for condition monitoring of components such as gears and bearings. An AE analysis involves the detection of transients within the signals, which are called AE bursts. Traditional methods for AE burst detection are based on the definition of threshold values. When the machine under study works under variable rotational speed and load, threshold-based methods could produce inadequate results due to the influence of these OCs on the AE. This paper presents a novel burst detection method based on pattern recognition using an artificial neural network (ANN) for classification. The results of the method were compared to an adaptive threshold method. Experimental data were measured in a planetary gearbox test rig under different OCs. The results showed that both methods perform similarly when signals measured under constant OCs are considered. However, when signals are measured under different OCs, the ANN method performs better. Thus, the comparative analysis showed the good potential of the approach to improve an AE analysis of variable speed and/or load machines.
AbstractList Diverse machines in the mining, energy, and other industrial sectors are subject to variable operating conditions (OCs) such as rotational speed and load. Therefore, the condition monitoring techniques must be adapted to face this scenario. Within these techniques, the acoustic emission (AE) technology has been successfully used as a technique for condition monitoring of components such as gears and bearings. An AE analysis involves the detection of transients within the signals, which are called AE bursts. Traditional methods for AE burst detection are based on the definition of threshold values. When the machine under study works under variable rotational speed and load, threshold-based methods could produce inadequate results due to the influence of these OCs on the AE. This paper presents a novel burst detection method based on pattern recognition using an artificial neural network (ANN) for classification. The results of the method were compared to an adaptive threshold method. Experimental data were measured in a planetary gearbox test rig under different OCs. The results showed that both methods perform similarly when signals measured under constant OCs are considered. However, when signals are measured under different OCs, the ANN method performs better. Thus, the comparative analysis showed the good potential of the approach to improve an AE analysis of variable speed and/or load machines.
Author Leaman, Félix
Baltes, Ralph
Clausen, Elisabeth
Vicuña, Cristián Molina
Author_xml – sequence: 1
  givenname: Félix
  orcidid: 0000-0003-1009-5368
  surname: Leaman
  fullname: Leaman, Félix
  email: fleaman@amt.rwth-aachen.de
– sequence: 2
  givenname: Cristián Molina
  surname: Vicuña
  fullname: Vicuña, Cristián Molina
– sequence: 3
  givenname: Ralph
  surname: Baltes
  fullname: Baltes, Ralph
– sequence: 4
  givenname: Elisabeth
  surname: Clausen
  fullname: Clausen, Elisabeth
BookMark eNp1kM1LAzEQxYNUsK3ePQY8r-Zjs9kcpagVCnrQ85LNTtYUm6xJFvS_d9sKguBpBt7vvWHeAs188IDQJSXXlEp5Q4mUoqw4VbVgglcnaE5lSQum6mo27ZNc7PUztEhpSwgpS0rmKD_rnCF6HMGE3rvsgsd6GGLQ5g3bELE2YUzZGQw7l9JebseYMu4ggzngbnLgHnRswycefQcRd85aiOAzDgNEnZ3vsQm-O-Snc3Rq9XuCi5-5RK_3dy-rdbF5enhc3W4Kw4nKhagV76QAKYzggtFaM8Wk4rKstBWWMmEkF4TTWurWWlt1qmvb1gpWMdLSmi_R1TF3eudjhJSbbRijn042jNWEK0VYOVHkSJkYUopgmyG6nY5fDSXNvtvmb7eTpThaku7hN_Rf_hvicHw2
CitedBy_id crossref_primary_10_1016_j_mineng_2021_107131
crossref_primary_10_1177_10775463231177101
crossref_primary_10_1016_j_engappai_2023_106819
Cites_doi 10.1109/TSA.2005.851998
10.1016/j.ymssp.2015.08.028
10.1016/j.triboint.2004.10.007
10.1016/j.ymssp.2016.09.004
10.1109/RAMS.2013.6517715
10.1177/1077546318802988
10.1115/1.2829503
10.1016/j.proeng.2015.08.096
10.1016/j.apacoust.2009.04.007
10.1016/j.apacoust.2013.04.017
10.1016/S0890-6955(00)00057-2
10.1016/j.proeng.2015.12.667
10.1016/j.ymssp.2005.09.015
10.1016/j.ymssp.2017.04.040
ContentType Journal Article
Copyright The Author(s) 2019
Copyright_xml – notice: The Author(s) 2019
DBID AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1177/1077546319852536
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1741-2986
EndPage 2304
ExternalDocumentID 10_1177_1077546319852536
10.1177_1077546319852536
GroupedDBID -MK
-TM
-TN
-~X
.2G
.2N
01A
0R~
1~K
29L
31S
31X
31Y
31Z
4.4
54M
5GY
5VS
AACKU
AACTG
AADUE
AAGGD
AAJOX
AAJPV
AAMGE
AANSI
AAPEO
AAQDB
AARIX
AATAA
AATBZ
AAYTG
ABAWP
ABCCA
ABDWY
ABEIX
ABFWQ
ABHKI
ABHQH
ABJNI
ABKRH
ABLUO
ABPNF
ABQKF
ABQXT
ABRHV
ABYTW
ACDXX
ACGBL
ACGFS
ACGOD
ACIWK
ACLZU
ACOFE
ACOXC
ACROE
ACSIQ
ACTQU
ACUAV
ACUIR
ACXKE
ADEIA
ADRRZ
ADTBJ
ADUKL
AEDFJ
AENEX
AEPTA
AEQLS
AESZF
AEUHG
AEUIJ
AEWDL
AEWHI
AEXNY
AFEET
AFFNX
AFKBI
AFKRG
AFMOU
AFQAA
AFUIA
AGKLV
AGNHF
AGWFA
AHHFK
AI.
AIOMO
AIZZC
AJEFB
AJUZI
ALJHS
ALMA_UNASSIGNED_HOLDINGS
ANDLU
ARTOV
ASPBG
AUTPY
AUVAJ
AVWKF
AYAKG
AZFZN
B8O
B8Z
B93
B94
BBRGL
BDDNI
BKOMP
BPACV
CAG
CBRKF
CFDXU
COF
CORYS
CS3
DD0
DE-
DH.
DO-
DOPDO
DU5
DV7
D~Y
EBS
EJD
FEDTE
FHBDP
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
HF~
HVGLF
HZ~
IAO
IEA
IGS
IVC
J8X
JCYGO
K.F
M4V
N9A
O9-
P.B
P2P
PQQKQ
Q1R
Q7X
Q82
Q83
RIG
ROL
S01
SBI
SCNPE
SFB
SFC
SFK
SFT
SGA
SGP
SGV
SGX
SGZ
SPJ
SPP
SPV
SQCSI
STM
VH1
ZPPRI
ZRKOI
AAYXX
ACJER
ADVBO
AGWNL
CITATION
H13
7SC
7SP
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c309t-5893d75e75c535218a292793746af5f125c73503187abfff6d9dbbbf52620b183
IEDL.DBID ARPSY
ISSN 1077-5463
IngestDate Wed Nov 06 09:03:35 EST 2024
Fri Nov 22 01:55:35 EST 2024
Tue Jul 16 20:49:15 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords planetary gearbox
Acoustic emission
artificial neural network
variable load and rotational speed
pattern recognition
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c309t-5893d75e75c535218a292793746af5f125c73503187abfff6d9dbbbf52620b183
ORCID 0000-0003-1009-5368
PQID 2280399024
PQPubID 30643
PageCount 10
ParticipantIDs proquest_journals_2280399024
crossref_primary_10_1177_1077546319852536
sage_journals_10_1177_1077546319852536
PublicationCentury 2000
PublicationDate 20190900
2019-09-00
20190901
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 9
  year: 2019
  text: 20190900
PublicationDecade 2010
PublicationPlace London, England
PublicationPlace_xml – name: London, England
– name: Thousand Oaks
PublicationTitle Journal of vibration and control
PublicationYear 2019
Publisher SAGE Publications
SAGE PUBLICATIONS, INC
Publisher_xml – name: SAGE Publications
– name: SAGE PUBLICATIONS, INC
References Vicuña, Höweler 2017; 97
Vicuña 2014; 77
Loutas, Sotiriades, Kalaitzoglou 2009; 70
Mazal, Vlasic, Koula 2015; 133
Tan, Mba 2005; 38
Singh, Houser, Vijayakar 1999; 121
Bello, Daudet, Abdallah 2005; 13
Leaman, Niedringhaus, Hinderer 2019; 25
Barile, Casavola, Pappalettera 2015; 114
Kharrad, Ramasso, Placet 2016; 70–71
Bai, Gagar, Foote 2017; 84
Tan, Irving, Mba 2007; 21
Boughorbei, Jarray, El-Anbari 2017; 12
Wang, Willett, Deaguiar 2001; 41
bibr22-1077546319852536
bibr3-1077546319852536
bibr20-1077546319852536
bibr7-1077546319852536
bibr1-1077546319852536
bibr12-1077546319852536
bibr18-1077546319852536
bibr16-1077546319852536
bibr9-1077546319852536
bibr14-1077546319852536
bibr15-1077546319852536
bibr4-1077546319852536
bibr10-1077546319852536
bibr21-1077546319852536
Boughorbei S (bibr5-1077546319852536) 2017; 12
bibr2-1077546319852536
bibr17-1077546319852536
bibr19-1077546319852536
bibr11-1077546319852536
bibr6-1077546319852536
bibr13-1077546319852536
bibr8-1077546319852536
References_xml – volume: 41
  start-page: 283
  issue: 2
  year: 2001
  end-page: 309
  article-title: Neural network detection of grinding burn from acoustic emission
  publication-title: International Journal of Machine Tools and Manufacture
  contributor:
    fullname: Deaguiar
– volume: 13
  start-page: 1035
  issue: 5
  year: 2005
  end-page: 1047
  article-title: A tutorial on onset detection in music signals
  publication-title: IEEE Transactions on Speech and Audio Processing
  contributor:
    fullname: Abdallah
– volume: 97
  start-page: 44
  year: 2017
  end-page: 58
  article-title: A method for reduction of acoustic emission (AE) data with application in machine failure detection and diagnosis
  publication-title: Mechanical Systems and Signal Processing
  contributor:
    fullname: Höweler
– volume: 38
  start-page: 469
  issue: 5
  year: 2005
  end-page: 480
  article-title: Identification of the acoustic emission source during a comparative study on diagnosis of a spur gearbox
  publication-title: Tribology International
  contributor:
    fullname: Mba
– volume: 25
  start-page: 895
  issue: 4
  year: 2019
  end-page: 906
  article-title: Evaluation of acoustic emission burst detection methods in a gearbox under different operating conditions
  publication-title: Journal of Vibration and Control
  contributor:
    fullname: Hinderer
– volume: 121
  start-page: 587
  issue: 4
  year: 1999
  end-page: 593
  article-title: Detecting gear tooth breakage using acoustic emission: A feasibility and sensor placement study
  publication-title: Journal of Mechanical Design
  contributor:
    fullname: Vijayakar
– volume: 84
  start-page: 717
  issue: A
  year: 2017
  end-page: 730
  article-title: Comparison of alternatives to amplitude thresholding for onset detection of acoustic emission signals
  publication-title: Mechanical Systems and Signal Processing
  contributor:
    fullname: Foote
– volume: 12
  start-page: 0177678
  issue: 6
  year: 2017
  article-title: Optimal classifier for imbalanced data using Matthews Correlation Coefficient metric
  publication-title: PLoS ONE
  contributor:
    fullname: El-Anbari
– volume: 114
  start-page: 487
  year: 2015
  end-page: 492
  article-title: Fatigue damage monitoring by means of acoustic emission and thermography in Ti grade 5 specimens
  publication-title: Procedia Engineering
  contributor:
    fullname: Pappalettera
– volume: 21
  start-page: 208
  issue: 1
  year: 2007
  end-page: 233
  article-title: A comparative experimental study on the diagnostic and prognostic capabilities of acoustics emission, vibration and spectrometric oil analysis for spur gears
  publication-title: Mechanical Systems and Signal Processing
  contributor:
    fullname: Mba
– volume: 70
  start-page: 1148
  issue: 9
  year: 2009
  end-page: 1159
  article-title: Condition monitoring of a single-stage gearbox with artificially induced gear cracks utilizing on-line vibration and acoustic emission measurements
  publication-title: Applied Acoustics
  contributor:
    fullname: Kalaitzoglou
– volume: 133
  start-page: 379
  year: 2015
  end-page: 388
  article-title: Use of acoustic emission method for identification of fatigue micro-cracks creation
  publication-title: Procedia Engineering
  contributor:
    fullname: Koula
– volume: 77
  start-page: 150
  year: 2014
  end-page: 158
  article-title: Effects of operating conditions on the acoustic emissions (AE) from planetary gearboxes
  publication-title: Applied Acoustics
  contributor:
    fullname: Vicuña
– volume: 70–71
  start-page: 1038
  year: 2016
  end-page: 1055
  article-title: A signal processing approach for enhanced acoustic emission data analysis in high activity systems: Application to organic matrix composites
  publication-title: Mechanical Systems and Signal Processing
  contributor:
    fullname: Placet
– ident: bibr3-1077546319852536
  doi: 10.1109/TSA.2005.851998
– ident: bibr10-1077546319852536
  doi: 10.1016/j.ymssp.2015.08.028
– ident: bibr18-1077546319852536
  doi: 10.1016/j.triboint.2004.10.007
– ident: bibr1-1077546319852536
  doi: 10.1016/j.ymssp.2016.09.004
– ident: bibr8-1077546319852536
– ident: bibr9-1077546319852536
  doi: 10.1109/RAMS.2013.6517715
– ident: bibr13-1077546319852536
  doi: 10.1177/1077546318802988
– ident: bibr17-1077546319852536
  doi: 10.1115/1.2829503
– ident: bibr2-1077546319852536
  doi: 10.1016/j.proeng.2015.08.096
– ident: bibr4-1077546319852536
– ident: bibr14-1077546319852536
  doi: 10.1016/j.apacoust.2009.04.007
– ident: bibr11-1077546319852536
– ident: bibr20-1077546319852536
  doi: 10.1016/j.apacoust.2013.04.017
– ident: bibr6-1077546319852536
– ident: bibr22-1077546319852536
  doi: 10.1016/S0890-6955(00)00057-2
– volume: 12
  start-page: 0177678
  issue: 6
  year: 2017
  ident: bibr5-1077546319852536
  publication-title: PLoS ONE
  contributor:
    fullname: Boughorbei S
– ident: bibr15-1077546319852536
  doi: 10.1016/j.proeng.2015.12.667
– ident: bibr19-1077546319852536
  doi: 10.1016/j.ymssp.2005.09.015
– ident: bibr12-1077546319852536
– ident: bibr16-1077546319852536
– ident: bibr21-1077546319852536
  doi: 10.1016/j.ymssp.2017.04.040
– ident: bibr7-1077546319852536
SSID ssj0004410
Score 2.280642
Snippet Diverse machines in the mining, energy, and other industrial sectors are subject to variable operating conditions (OCs) such as rotational speed and load....
SourceID proquest
crossref
sage
SourceType Aggregation Database
Publisher
StartPage 2295
SubjectTerms Acoustic emission
Artificial neural networks
Condition monitoring
Gearboxes
Methods
Pattern recognition
Production methods
Title Pattern recognition approach for acoustic emission burst detection in a gearbox under different operating conditions
URI https://journals.sagepub.com/doi/full/10.1177/1077546319852536
https://www.proquest.com/docview/2280399024
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwvV1NS8NAEB1si6AHP6pitcoeRPAQTZPdbHKSoi09SbEKegrZbFY8NCltCvrvnUkTWxXBk6dAvjbJ7E7e7rx5A3DmOdp2kkhYRnBOExTXUorbFlc6NjqJAiei3OHBSN49-bc9kslJq1yY8gvOLolWhU9UOGsa3bQafVUGGXFLwm0edh9fOML1ruf5OFysdldFNWgPhafnY4psx8SHfLeq7LYaNEg4D0dEo3s_HD0vMyl5qV8gpUUNLAObP9r8-iNbotMVQljxj-pv__fb7cBWiWZZd9H9dmEtSZuwuaJx2IT1gmMaz_YgHxZanin7JC1lKas0zRmCZ4beuSguxqgIHS3jMTT5LGc6yQvGWMpe8Qr2gqNTZW-M8t-mrCrxkrNsQgrR2CrDSb5ecNH24bHfe7gZWGXRByt27SC3BAIoLUUiRUzKMx0_cgKHRPy4FxlhEI_F0hXkimSkjDGeDrRSyghS1lfooA6gnmZpcgjMRIhOAiFjLhMupVRc-4EtbCON7fPAbcFFZcFwstD2CDul_Pl3G7SgXZk4rKwYkpQQAjyEOS04J5MuD_12n6O_nngMG4jNSjpbG-r5dJ6cQG2m56dlp_0A8H0A6A
link.rule.ids 315,782,786,27926,27933,27934,44981,45369
linkProvider SAGE Publications
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFH7ohqgHf0zF6dQcRPBQ6dqkaY9DNybOMdwEPZWmacRLO9YO_PN96dp1KoLgqYc2ach7efnSfu97AJeOJU0rCpihGKX6gGIbQlDToEKGSkaBZwU6d7g_5sMX966rZXKWpb6KGUxvNK0KR5QH6-XqzvPEtWabg57jMovZzjrUKV7Qoeudp9H4tUqKpIUUAeeGblD9o_zRx9c9qQKaK9yufLvp7f5joHuwU2BM0lk4xT6sRXEDtleUBxuwkTM_w_QAslGusBmTJZUoiUmpNE4Q0hKMmXnJL6JLw-mPawQNkWZERlnO44rJO7Ygb7hmRPJBdFbajJSFVzKSTLVuM76V4NFbLhhih_Dc605u-0ZRisEIbdPLDIawRnIWcRZqPZi2G1iepaX1qBMophAlhdxmOkDwQCilHOlJIYRiWu9eYNg4glqcxNExEBUgZvAYDymPKOdcUOl6JjMVV6ZLPbsJ16Ux_OlCccNvF6Lk3-e0Ca3SWn5pEF8L_CDsQvDRhCttnerWb_2c_PXBC9jsTx4H_uB--HAKW4ieCsJZC2rZbB6dwXoq5-eFL34CLZDYwg
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFH44h6IHf0zF6dQcRPBQ7dqkaQ8ehnMoigynoKfSNI14acfWgX--73Wtm4ogeOqhTRrykpcvyfe-B3DsOdp2kkhYRnBOGxTXUorbFlc6NjqJAiei2OHrgbx_9rtXJJNzUcXClD04PiNaFbaocNY0u4fanJd3jPgk3TYPR48vHOF6NahzHvg4L-udh_7gZRYYyUs5AiktKjC7p_xRx9d1aQY25_hdxZLTW_9nYzdgrcSarDMdHJuwkKQNWJ1TIGzAUsEAjcdbkPcLpc2UfVKKspRViuMMoS1D31mk_mKUIo4O2RgaZJwzneQFnytlb1iCveLcUdk7o-i0EasSsOQsG5J-M_6V4RZcT5li2_DUu3q8vLbKlAxW7NpBbgmEN1qKRIqYdGHafuQEDknscS8ywiBaiqUryFHISBljPB1opZQRpHuv0H3swGKapckuMBMhdgiEjLlMuJRSce0HtrCNNLbPA7cJp5VBwuFUeSNsl-Lk3_u0Ca3KYmFllJCEfhB-IQhpwglZaPbqt3r2_vrhESz3u73w7ub-dh9WEESVvLMWLOajSXIAtbGeHJbD8QOFNts_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pattern+recognition+approach+for+acoustic+emission+burst+detection+in+a+gearbox+under+different+operating+conditions&rft.jtitle=Journal+of+vibration+and+control&rft.au=Leaman+F%C3%A9lix&rft.au=Vicu%C3%B1a%2C+Cristi%C3%A1n+Molina&rft.au=Baltes%2C+Ralph&rft.au=Clausen%2C+Elisabeth&rft.date=2019-09-01&rft.pub=SAGE+PUBLICATIONS%2C+INC&rft.issn=1077-5463&rft.eissn=1741-2986&rft.volume=25&rft.issue=17&rft.spage=2295&rft.epage=2304&rft_id=info:doi/10.1177%2F1077546319852536&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-5463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-5463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-5463&client=summon