Pattern recognition approach for acoustic emission burst detection in a gearbox under different operating conditions
Diverse machines in the mining, energy, and other industrial sectors are subject to variable operating conditions (OCs) such as rotational speed and load. Therefore, the condition monitoring techniques must be adapted to face this scenario. Within these techniques, the acoustic emission (AE) technol...
Saved in:
Published in: | Journal of vibration and control Vol. 25; no. 17; pp. 2295 - 2304 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
London, England
SAGE Publications
01-09-2019
SAGE PUBLICATIONS, INC |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Diverse machines in the mining, energy, and other industrial sectors are subject to variable operating conditions (OCs) such as rotational speed and load. Therefore, the condition monitoring techniques must be adapted to face this scenario. Within these techniques, the acoustic emission (AE) technology has been successfully used as a technique for condition monitoring of components such as gears and bearings. An AE analysis involves the detection of transients within the signals, which are called AE bursts. Traditional methods for AE burst detection are based on the definition of threshold values. When the machine under study works under variable rotational speed and load, threshold-based methods could produce inadequate results due to the influence of these OCs on the AE. This paper presents a novel burst detection method based on pattern recognition using an artificial neural network (ANN) for classification. The results of the method were compared to an adaptive threshold method. Experimental data were measured in a planetary gearbox test rig under different OCs. The results showed that both methods perform similarly when signals measured under constant OCs are considered. However, when signals are measured under different OCs, the ANN method performs better. Thus, the comparative analysis showed the good potential of the approach to improve an AE analysis of variable speed and/or load machines. |
---|---|
AbstractList | Diverse machines in the mining, energy, and other industrial sectors are subject to variable operating conditions (OCs) such as rotational speed and load. Therefore, the condition monitoring techniques must be adapted to face this scenario. Within these techniques, the acoustic emission (AE) technology has been successfully used as a technique for condition monitoring of components such as gears and bearings. An AE analysis involves the detection of transients within the signals, which are called AE bursts. Traditional methods for AE burst detection are based on the definition of threshold values. When the machine under study works under variable rotational speed and load, threshold-based methods could produce inadequate results due to the influence of these OCs on the AE. This paper presents a novel burst detection method based on pattern recognition using an artificial neural network (ANN) for classification. The results of the method were compared to an adaptive threshold method. Experimental data were measured in a planetary gearbox test rig under different OCs. The results showed that both methods perform similarly when signals measured under constant OCs are considered. However, when signals are measured under different OCs, the ANN method performs better. Thus, the comparative analysis showed the good potential of the approach to improve an AE analysis of variable speed and/or load machines. |
Author | Leaman, Félix Baltes, Ralph Clausen, Elisabeth Vicuña, Cristián Molina |
Author_xml | – sequence: 1 givenname: Félix orcidid: 0000-0003-1009-5368 surname: Leaman fullname: Leaman, Félix email: fleaman@amt.rwth-aachen.de – sequence: 2 givenname: Cristián Molina surname: Vicuña fullname: Vicuña, Cristián Molina – sequence: 3 givenname: Ralph surname: Baltes fullname: Baltes, Ralph – sequence: 4 givenname: Elisabeth surname: Clausen fullname: Clausen, Elisabeth |
BookMark | eNp1kM1LAzEQxYNUsK3ePQY8r-Zjs9kcpagVCnrQ85LNTtYUm6xJFvS_d9sKguBpBt7vvWHeAs188IDQJSXXlEp5Q4mUoqw4VbVgglcnaE5lSQum6mo27ZNc7PUztEhpSwgpS0rmKD_rnCF6HMGE3rvsgsd6GGLQ5g3bELE2YUzZGQw7l9JebseYMu4ggzngbnLgHnRswycefQcRd85aiOAzDgNEnZ3vsQm-O-Snc3Rq9XuCi5-5RK_3dy-rdbF5enhc3W4Kw4nKhagV76QAKYzggtFaM8Wk4rKstBWWMmEkF4TTWurWWlt1qmvb1gpWMdLSmi_R1TF3eudjhJSbbRijn042jNWEK0VYOVHkSJkYUopgmyG6nY5fDSXNvtvmb7eTpThaku7hN_Rf_hvicHw2 |
CitedBy_id | crossref_primary_10_1016_j_mineng_2021_107131 crossref_primary_10_1177_10775463231177101 crossref_primary_10_1016_j_engappai_2023_106819 |
Cites_doi | 10.1109/TSA.2005.851998 10.1016/j.ymssp.2015.08.028 10.1016/j.triboint.2004.10.007 10.1016/j.ymssp.2016.09.004 10.1109/RAMS.2013.6517715 10.1177/1077546318802988 10.1115/1.2829503 10.1016/j.proeng.2015.08.096 10.1016/j.apacoust.2009.04.007 10.1016/j.apacoust.2013.04.017 10.1016/S0890-6955(00)00057-2 10.1016/j.proeng.2015.12.667 10.1016/j.ymssp.2005.09.015 10.1016/j.ymssp.2017.04.040 |
ContentType | Journal Article |
Copyright | The Author(s) 2019 |
Copyright_xml | – notice: The Author(s) 2019 |
DBID | AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1177/1077546319852536 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1741-2986 |
EndPage | 2304 |
ExternalDocumentID | 10_1177_1077546319852536 10.1177_1077546319852536 |
GroupedDBID | -MK -TM -TN -~X .2G .2N 01A 0R~ 1~K 29L 31S 31X 31Y 31Z 4.4 54M 5GY 5VS AACKU AACTG AADUE AAGGD AAJOX AAJPV AAMGE AANSI AAPEO AAQDB AARIX AATAA AATBZ AAYTG ABAWP ABCCA ABDWY ABEIX ABFWQ ABHKI ABHQH ABJNI ABKRH ABLUO ABPNF ABQKF ABQXT ABRHV ABYTW ACDXX ACGBL ACGFS ACGOD ACIWK ACLZU ACOFE ACOXC ACROE ACSIQ ACTQU ACUAV ACUIR ACXKE ADEIA ADRRZ ADTBJ ADUKL AEDFJ AENEX AEPTA AEQLS AESZF AEUHG AEUIJ AEWDL AEWHI AEXNY AFEET AFFNX AFKBI AFKRG AFMOU AFQAA AFUIA AGKLV AGNHF AGWFA AHHFK AI. AIOMO AIZZC AJEFB AJUZI ALJHS ALMA_UNASSIGNED_HOLDINGS ANDLU ARTOV ASPBG AUTPY AUVAJ AVWKF AYAKG AZFZN B8O B8Z B93 B94 BBRGL BDDNI BKOMP BPACV CAG CBRKF CFDXU COF CORYS CS3 DD0 DE- DH. DO- DOPDO DU5 DV7 D~Y EBS EJD FEDTE FHBDP GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION HF~ HVGLF HZ~ IAO IEA IGS IVC J8X JCYGO K.F M4V N9A O9- P.B P2P PQQKQ Q1R Q7X Q82 Q83 RIG ROL S01 SBI SCNPE SFB SFC SFK SFT SGA SGP SGV SGX SGZ SPJ SPP SPV SQCSI STM VH1 ZPPRI ZRKOI AAYXX ACJER ADVBO AGWNL CITATION H13 7SC 7SP 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c309t-5893d75e75c535218a292793746af5f125c73503187abfff6d9dbbbf52620b183 |
IEDL.DBID | ARPSY |
ISSN | 1077-5463 |
IngestDate | Wed Nov 06 09:03:35 EST 2024 Fri Nov 22 01:55:35 EST 2024 Tue Jul 16 20:49:15 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Keywords | planetary gearbox Acoustic emission artificial neural network variable load and rotational speed pattern recognition |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c309t-5893d75e75c535218a292793746af5f125c73503187abfff6d9dbbbf52620b183 |
ORCID | 0000-0003-1009-5368 |
PQID | 2280399024 |
PQPubID | 30643 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2280399024 crossref_primary_10_1177_1077546319852536 sage_journals_10_1177_1077546319852536 |
PublicationCentury | 2000 |
PublicationDate | 20190900 2019-09-00 20190901 |
PublicationDateYYYYMMDD | 2019-09-01 |
PublicationDate_xml | – month: 9 year: 2019 text: 20190900 |
PublicationDecade | 2010 |
PublicationPlace | London, England |
PublicationPlace_xml | – name: London, England – name: Thousand Oaks |
PublicationTitle | Journal of vibration and control |
PublicationYear | 2019 |
Publisher | SAGE Publications SAGE PUBLICATIONS, INC |
Publisher_xml | – name: SAGE Publications – name: SAGE PUBLICATIONS, INC |
References | Vicuña, Höweler 2017; 97 Vicuña 2014; 77 Loutas, Sotiriades, Kalaitzoglou 2009; 70 Mazal, Vlasic, Koula 2015; 133 Tan, Mba 2005; 38 Singh, Houser, Vijayakar 1999; 121 Bello, Daudet, Abdallah 2005; 13 Leaman, Niedringhaus, Hinderer 2019; 25 Barile, Casavola, Pappalettera 2015; 114 Kharrad, Ramasso, Placet 2016; 70–71 Bai, Gagar, Foote 2017; 84 Tan, Irving, Mba 2007; 21 Boughorbei, Jarray, El-Anbari 2017; 12 Wang, Willett, Deaguiar 2001; 41 bibr22-1077546319852536 bibr3-1077546319852536 bibr20-1077546319852536 bibr7-1077546319852536 bibr1-1077546319852536 bibr12-1077546319852536 bibr18-1077546319852536 bibr16-1077546319852536 bibr9-1077546319852536 bibr14-1077546319852536 bibr15-1077546319852536 bibr4-1077546319852536 bibr10-1077546319852536 bibr21-1077546319852536 Boughorbei S (bibr5-1077546319852536) 2017; 12 bibr2-1077546319852536 bibr17-1077546319852536 bibr19-1077546319852536 bibr11-1077546319852536 bibr6-1077546319852536 bibr13-1077546319852536 bibr8-1077546319852536 |
References_xml | – volume: 41 start-page: 283 issue: 2 year: 2001 end-page: 309 article-title: Neural network detection of grinding burn from acoustic emission publication-title: International Journal of Machine Tools and Manufacture contributor: fullname: Deaguiar – volume: 13 start-page: 1035 issue: 5 year: 2005 end-page: 1047 article-title: A tutorial on onset detection in music signals publication-title: IEEE Transactions on Speech and Audio Processing contributor: fullname: Abdallah – volume: 97 start-page: 44 year: 2017 end-page: 58 article-title: A method for reduction of acoustic emission (AE) data with application in machine failure detection and diagnosis publication-title: Mechanical Systems and Signal Processing contributor: fullname: Höweler – volume: 38 start-page: 469 issue: 5 year: 2005 end-page: 480 article-title: Identification of the acoustic emission source during a comparative study on diagnosis of a spur gearbox publication-title: Tribology International contributor: fullname: Mba – volume: 25 start-page: 895 issue: 4 year: 2019 end-page: 906 article-title: Evaluation of acoustic emission burst detection methods in a gearbox under different operating conditions publication-title: Journal of Vibration and Control contributor: fullname: Hinderer – volume: 121 start-page: 587 issue: 4 year: 1999 end-page: 593 article-title: Detecting gear tooth breakage using acoustic emission: A feasibility and sensor placement study publication-title: Journal of Mechanical Design contributor: fullname: Vijayakar – volume: 84 start-page: 717 issue: A year: 2017 end-page: 730 article-title: Comparison of alternatives to amplitude thresholding for onset detection of acoustic emission signals publication-title: Mechanical Systems and Signal Processing contributor: fullname: Foote – volume: 12 start-page: 0177678 issue: 6 year: 2017 article-title: Optimal classifier for imbalanced data using Matthews Correlation Coefficient metric publication-title: PLoS ONE contributor: fullname: El-Anbari – volume: 114 start-page: 487 year: 2015 end-page: 492 article-title: Fatigue damage monitoring by means of acoustic emission and thermography in Ti grade 5 specimens publication-title: Procedia Engineering contributor: fullname: Pappalettera – volume: 21 start-page: 208 issue: 1 year: 2007 end-page: 233 article-title: A comparative experimental study on the diagnostic and prognostic capabilities of acoustics emission, vibration and spectrometric oil analysis for spur gears publication-title: Mechanical Systems and Signal Processing contributor: fullname: Mba – volume: 70 start-page: 1148 issue: 9 year: 2009 end-page: 1159 article-title: Condition monitoring of a single-stage gearbox with artificially induced gear cracks utilizing on-line vibration and acoustic emission measurements publication-title: Applied Acoustics contributor: fullname: Kalaitzoglou – volume: 133 start-page: 379 year: 2015 end-page: 388 article-title: Use of acoustic emission method for identification of fatigue micro-cracks creation publication-title: Procedia Engineering contributor: fullname: Koula – volume: 77 start-page: 150 year: 2014 end-page: 158 article-title: Effects of operating conditions on the acoustic emissions (AE) from planetary gearboxes publication-title: Applied Acoustics contributor: fullname: Vicuña – volume: 70–71 start-page: 1038 year: 2016 end-page: 1055 article-title: A signal processing approach for enhanced acoustic emission data analysis in high activity systems: Application to organic matrix composites publication-title: Mechanical Systems and Signal Processing contributor: fullname: Placet – ident: bibr3-1077546319852536 doi: 10.1109/TSA.2005.851998 – ident: bibr10-1077546319852536 doi: 10.1016/j.ymssp.2015.08.028 – ident: bibr18-1077546319852536 doi: 10.1016/j.triboint.2004.10.007 – ident: bibr1-1077546319852536 doi: 10.1016/j.ymssp.2016.09.004 – ident: bibr8-1077546319852536 – ident: bibr9-1077546319852536 doi: 10.1109/RAMS.2013.6517715 – ident: bibr13-1077546319852536 doi: 10.1177/1077546318802988 – ident: bibr17-1077546319852536 doi: 10.1115/1.2829503 – ident: bibr2-1077546319852536 doi: 10.1016/j.proeng.2015.08.096 – ident: bibr4-1077546319852536 – ident: bibr14-1077546319852536 doi: 10.1016/j.apacoust.2009.04.007 – ident: bibr11-1077546319852536 – ident: bibr20-1077546319852536 doi: 10.1016/j.apacoust.2013.04.017 – ident: bibr6-1077546319852536 – ident: bibr22-1077546319852536 doi: 10.1016/S0890-6955(00)00057-2 – volume: 12 start-page: 0177678 issue: 6 year: 2017 ident: bibr5-1077546319852536 publication-title: PLoS ONE contributor: fullname: Boughorbei S – ident: bibr15-1077546319852536 doi: 10.1016/j.proeng.2015.12.667 – ident: bibr19-1077546319852536 doi: 10.1016/j.ymssp.2005.09.015 – ident: bibr12-1077546319852536 – ident: bibr16-1077546319852536 – ident: bibr21-1077546319852536 doi: 10.1016/j.ymssp.2017.04.040 – ident: bibr7-1077546319852536 |
SSID | ssj0004410 |
Score | 2.280642 |
Snippet | Diverse machines in the mining, energy, and other industrial sectors are subject to variable operating conditions (OCs) such as rotational speed and load.... |
SourceID | proquest crossref sage |
SourceType | Aggregation Database Publisher |
StartPage | 2295 |
SubjectTerms | Acoustic emission Artificial neural networks Condition monitoring Gearboxes Methods Pattern recognition Production methods |
Title | Pattern recognition approach for acoustic emission burst detection in a gearbox under different operating conditions |
URI | https://journals.sagepub.com/doi/full/10.1177/1077546319852536 https://www.proquest.com/docview/2280399024 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwvV1NS8NAEB1si6AHP6pitcoeRPAQTZPdbHKSoi09SbEKegrZbFY8NCltCvrvnUkTWxXBk6dAvjbJ7E7e7rx5A3DmOdp2kkhYRnBOExTXUorbFlc6NjqJAiei3OHBSN49-bc9kslJq1yY8gvOLolWhU9UOGsa3bQafVUGGXFLwm0edh9fOML1ruf5OFysdldFNWgPhafnY4psx8SHfLeq7LYaNEg4D0dEo3s_HD0vMyl5qV8gpUUNLAObP9r8-iNbotMVQljxj-pv__fb7cBWiWZZd9H9dmEtSZuwuaJx2IT1gmMaz_YgHxZanin7JC1lKas0zRmCZ4beuSguxqgIHS3jMTT5LGc6yQvGWMpe8Qr2gqNTZW-M8t-mrCrxkrNsQgrR2CrDSb5ecNH24bHfe7gZWGXRByt27SC3BAIoLUUiRUzKMx0_cgKHRPy4FxlhEI_F0hXkimSkjDGeDrRSyghS1lfooA6gnmZpcgjMRIhOAiFjLhMupVRc-4EtbCON7fPAbcFFZcFwstD2CDul_Pl3G7SgXZk4rKwYkpQQAjyEOS04J5MuD_12n6O_nngMG4jNSjpbG-r5dJ6cQG2m56dlp_0A8H0A6A |
link.rule.ids | 315,782,786,27926,27933,27934,44981,45369 |
linkProvider | SAGE Publications |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFH7ohqgHf0zF6dQcRPBQ6dqkaY9DNybOMdwEPZWmacRLO9YO_PN96dp1KoLgqYc2ach7efnSfu97AJeOJU0rCpihGKX6gGIbQlDToEKGSkaBZwU6d7g_5sMX966rZXKWpb6KGUxvNK0KR5QH6-XqzvPEtWabg57jMovZzjrUKV7Qoeudp9H4tUqKpIUUAeeGblD9o_zRx9c9qQKaK9yufLvp7f5joHuwU2BM0lk4xT6sRXEDtleUBxuwkTM_w_QAslGusBmTJZUoiUmpNE4Q0hKMmXnJL6JLw-mPawQNkWZERlnO44rJO7Ygb7hmRPJBdFbajJSFVzKSTLVuM76V4NFbLhhih_Dc605u-0ZRisEIbdPLDIawRnIWcRZqPZi2G1iepaX1qBMophAlhdxmOkDwQCilHOlJIYRiWu9eYNg4glqcxNExEBUgZvAYDymPKOdcUOl6JjMVV6ZLPbsJ16Ux_OlCccNvF6Lk3-e0Ca3SWn5pEF8L_CDsQvDRhCttnerWb_2c_PXBC9jsTx4H_uB--HAKW4ieCsJZC2rZbB6dwXoq5-eFL34CLZDYwg |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFH44h6IHf0zF6dQcRPBQ7dqkaQ8ehnMoigynoKfSNI14acfWgX--73Wtm4ogeOqhTRrykpcvyfe-B3DsOdp2kkhYRnBOGxTXUorbFlc6NjqJAiei2OHrgbx_9rtXJJNzUcXClD04PiNaFbaocNY0u4fanJd3jPgk3TYPR48vHOF6NahzHvg4L-udh_7gZRYYyUs5AiktKjC7p_xRx9d1aQY25_hdxZLTW_9nYzdgrcSarDMdHJuwkKQNWJ1TIGzAUsEAjcdbkPcLpc2UfVKKspRViuMMoS1D31mk_mKUIo4O2RgaZJwzneQFnytlb1iCveLcUdk7o-i0EasSsOQsG5J-M_6V4RZcT5li2_DUu3q8vLbKlAxW7NpBbgmEN1qKRIqYdGHafuQEDknscS8ywiBaiqUryFHISBljPB1opZQRpHuv0H3swGKapckuMBMhdgiEjLlMuJRSce0HtrCNNLbPA7cJp5VBwuFUeSNsl-Lk3_u0Ca3KYmFllJCEfhB-IQhpwglZaPbqt3r2_vrhESz3u73w7ub-dh9WEESVvLMWLOajSXIAtbGeHJbD8QOFNts_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pattern+recognition+approach+for+acoustic+emission+burst+detection+in+a+gearbox+under+different+operating+conditions&rft.jtitle=Journal+of+vibration+and+control&rft.au=Leaman+F%C3%A9lix&rft.au=Vicu%C3%B1a%2C+Cristi%C3%A1n+Molina&rft.au=Baltes%2C+Ralph&rft.au=Clausen%2C+Elisabeth&rft.date=2019-09-01&rft.pub=SAGE+PUBLICATIONS%2C+INC&rft.issn=1077-5463&rft.eissn=1741-2986&rft.volume=25&rft.issue=17&rft.spage=2295&rft.epage=2304&rft_id=info:doi/10.1177%2F1077546319852536&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-5463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-5463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-5463&client=summon |