Improving artificial intelligence models accuracy for monthly streamflow forecasting using grey Wolf optimization (GWO) algorithm
•Precise estimation of streamflow is required for events such as flood and drought.•Integrated AI with GWO outperform the standard AI methods.•SVR-GWO model improves the predictive precision of streamflow. Monthly streamflow forecasting is required for short- and long-term water resources management...
Saved in:
Published in: | Journal of hydrology (Amsterdam) Vol. 582; p. 124435 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier B.V
01-03-2020
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | •Precise estimation of streamflow is required for events such as flood and drought.•Integrated AI with GWO outperform the standard AI methods.•SVR-GWO model improves the predictive precision of streamflow.
Monthly streamflow forecasting is required for short- and long-term water resources management especially in extreme events such as flood and drought. Therefore, there is need to develop a reliable and precise model for streamflow forecasting. The precision of Artificial Intelligence (AI) models can be improved by using hybrid AI models which consist of coupled models. Therefore, the chief aim of this study is to propose efficient hybrid system by integrating Grey Wolf Optimization (GWO) algorithm with Artificial Intelligence (AI) models. 130 years of monthly historical natural streamflow data will be used to evaluate the performance of the proposed modelling technique. Quantitative performance indicators will be introduced to evaluate the validity of the integrated models; in addition to that, comprehensive analysis will be conducted between the predicted and the observed streamflow. The results show the integrated AI with GWO outperform the standard AI methods and can make better forecasting during training and testing phases for the monthly inflow in all input cases. This finding reveals the superiority of GWO meta-heuristic algorithm in improving the accuracy of the standard AI in forecasting the monthly inflow. |
---|---|
AbstractList | •Precise estimation of streamflow is required for events such as flood and drought.•Integrated AI with GWO outperform the standard AI methods.•SVR-GWO model improves the predictive precision of streamflow.
Monthly streamflow forecasting is required for short- and long-term water resources management especially in extreme events such as flood and drought. Therefore, there is need to develop a reliable and precise model for streamflow forecasting. The precision of Artificial Intelligence (AI) models can be improved by using hybrid AI models which consist of coupled models. Therefore, the chief aim of this study is to propose efficient hybrid system by integrating Grey Wolf Optimization (GWO) algorithm with Artificial Intelligence (AI) models. 130 years of monthly historical natural streamflow data will be used to evaluate the performance of the proposed modelling technique. Quantitative performance indicators will be introduced to evaluate the validity of the integrated models; in addition to that, comprehensive analysis will be conducted between the predicted and the observed streamflow. The results show the integrated AI with GWO outperform the standard AI methods and can make better forecasting during training and testing phases for the monthly inflow in all input cases. This finding reveals the superiority of GWO meta-heuristic algorithm in improving the accuracy of the standard AI in forecasting the monthly inflow. |
ArticleNumber | 124435 |
Author | Kisi, Ozgur El-Shafie, Ahmed Souag-Gamane, Doudja Tikhamarine, Yazid Najah Ahmed, Ali |
Author_xml | – sequence: 1 givenname: Yazid surname: Tikhamarine fullname: Tikhamarine, Yazid organization: LEGHYD Laboratory, Department of Civil Engineering, University of Scienceand Technology Houari Boumediene, BP 32, BabEzzouar, Algiers, Algeria – sequence: 2 givenname: Doudja surname: Souag-Gamane fullname: Souag-Gamane, Doudja organization: LEGHYD Laboratory, Department of Civil Engineering, University of Scienceand Technology Houari Boumediene, BP 32, BabEzzouar, Algiers, Algeria – sequence: 3 givenname: Ali surname: Najah Ahmed fullname: Najah Ahmed, Ali organization: Institute for Energy Infrastructure (IEI), Universiti Tenaga Nasional (UNITEN), Kajang 43000, Selangor Darul Ehsan, Malaysia – sequence: 4 givenname: Ozgur orcidid: 0000-0001-7847-5872 surname: Kisi fullname: Kisi, Ozgur organization: School of Technology, Ilia State University, Tbilisi, Georgia – sequence: 5 givenname: Ahmed orcidid: 0000-0001-5018-8505 surname: El-Shafie fullname: El-Shafie, Ahmed organization: Department of Civil Engineering, Faculty of Engineering, University of Malaya (UM), 50603 Kuala Lumpur, Malaysia |
BookMark | eNqFkMFLwzAYxYNMcJv-CUKOemhN2rRpTyJD52Cwi7JjyJK0y0ibkWRKvfmfm7Ld_Q7vgwfvwfvNwKS3vQLgHqMUI1w-HdLDfpDOmjRDuE5xRkheXIEprmidZBTRCZgilGUJLmtyA2beH1C8PCdT8Lvqjs5-6b6F3AXdaKG5gboPyhjdql4o2FmpjIdciJPjYoCNddHrw94M0AeneNcY-z3aSnAfxqqTH7V1aoBbaxpoj0F3-ocHbXv4sNxuHiE3rXU67LtbcN1w49Xd5c_B59vrx-I9WW-Wq8XLOhE5qkOCJS44IqoUOW2iVA0lRYl4RUicgiqiKNnJWlacEkF5Xux2tCxKmdEyApEin4Pi3Cuc9d6phh2d7rgbGEZs5MgO7MKRjRzZmWPMPZ9zEYL60soxL_QIRuo4ODBp9T8NfwKog4E |
CitedBy_id | crossref_primary_10_1016_j_jhydrol_2022_128001 crossref_primary_10_1080_19942060_2022_2073565 crossref_primary_10_1007_s11227_021_03810_8 crossref_primary_10_1016_j_jlp_2021_104439 crossref_primary_10_1016_j_eswa_2021_115669 crossref_primary_10_1016_j_eswa_2020_113882 crossref_primary_10_1016_j_dajour_2023_100360 crossref_primary_10_1007_s11356_021_13445_0 crossref_primary_10_1016_j_ecolind_2021_107628 crossref_primary_10_1049_ntw2_12057 crossref_primary_10_3390_su13115900 crossref_primary_10_3390_w16060859 crossref_primary_10_1007_s11069_022_05237_7 crossref_primary_10_1016_j_agwat_2024_108924 crossref_primary_10_1007_s11831_022_09763_2 crossref_primary_10_1016_j_compeleceng_2024_109074 crossref_primary_10_1016_j_asoc_2023_110319 crossref_primary_10_1016_j_jhydrol_2020_125655 crossref_primary_10_3390_su14063352 crossref_primary_10_1016_j_jhydrol_2021_126506 crossref_primary_10_3390_ijerph17103730 crossref_primary_10_1016_j_knosys_2021_107379 crossref_primary_10_1007_s00477_021_02012_1 crossref_primary_10_1007_s11356_020_10421_y crossref_primary_10_1007_s12665_022_10593_5 crossref_primary_10_1038_s41598_024_65547_7 crossref_primary_10_1080_02626667_2022_2149334 crossref_primary_10_2166_ws_2021_161 crossref_primary_10_3390_ani12233300 crossref_primary_10_1016_j_jhydrol_2023_130559 crossref_primary_10_1016_j_pce_2024_103646 crossref_primary_10_1177_14759217221113323 crossref_primary_10_1007_s00500_022_07141_5 crossref_primary_10_1016_j_asoc_2021_107282 crossref_primary_10_1016_j_jenvman_2024_120682 crossref_primary_10_1016_j_jhydrol_2021_126854 crossref_primary_10_1007_s10668_022_02497_y crossref_primary_10_1088_1742_6596_2271_1_012019 crossref_primary_10_1007_s11356_023_28236_y crossref_primary_10_1111_1752_1688_13098 crossref_primary_10_1061__ASCE_ST_1943_541X_0003356 crossref_primary_10_1155_2021_6611848 crossref_primary_10_3390_w13020139 crossref_primary_10_1007_s10661_021_09127_6 crossref_primary_10_1016_j_ins_2021_02_011 crossref_primary_10_1007_s00704_023_04624_9 crossref_primary_10_1007_s40996_022_00976_w crossref_primary_10_3390_su12229720 crossref_primary_10_1016_j_agwat_2023_108620 crossref_primary_10_1016_j_aej_2021_02_046 crossref_primary_10_1016_j_chaos_2021_111783 crossref_primary_10_1016_j_jhydrol_2022_128431 crossref_primary_10_1109_TSTE_2024_3402585 crossref_primary_10_3390_hydrology10030058 crossref_primary_10_3390_su12197877 crossref_primary_10_1016_j_conbuildmat_2022_128862 crossref_primary_10_1038_s41598_024_63490_1 crossref_primary_10_1016_j_aej_2021_10_021 crossref_primary_10_3390_math10071121 crossref_primary_10_1109_ACCESS_2023_3318739 crossref_primary_10_1016_j_agwat_2021_107342 crossref_primary_10_5194_hess_25_5951_2021 crossref_primary_10_1016_j_jhydrol_2022_128836 crossref_primary_10_1016_j_jhydrol_2021_126879 crossref_primary_10_1016_j_mex_2021_101589 crossref_primary_10_3390_rs13061196 crossref_primary_10_3390_w15193427 crossref_primary_10_1016_j_jhydrol_2020_125769 crossref_primary_10_1007_s00703_021_00787_0 crossref_primary_10_1016_j_jenvman_2024_120404 crossref_primary_10_1016_j_knosys_2023_110737 crossref_primary_10_2166_ws_2023_122 crossref_primary_10_1007_s41870_023_01496_0 crossref_primary_10_1016_j_chemolab_2023_104930 crossref_primary_10_1007_s11269_020_02619_z crossref_primary_10_1007_s11356_022_21410_8 crossref_primary_10_1007_s12145_024_01390_8 crossref_primary_10_1038_s41598_023_41108_2 crossref_primary_10_1061__ASCE_IR_1943_4774_0001688 crossref_primary_10_1007_s10661_020_08659_7 crossref_primary_10_1109_ACCESS_2022_3162932 crossref_primary_10_1007_s13201_023_01913_6 crossref_primary_10_1007_s12145_024_01300_y crossref_primary_10_1155_2022_4882521 crossref_primary_10_1007_s00477_020_01874_1 crossref_primary_10_1007_s11269_022_03133_0 crossref_primary_10_1007_s11356_021_15563_1 crossref_primary_10_1007_s00477_023_02610_1 crossref_primary_10_1016_j_asej_2021_01_007 crossref_primary_10_1142_S1793557121501448 crossref_primary_10_1080_02626667_2022_2082877 crossref_primary_10_1061_JHYEFF_HEENG_5920 crossref_primary_10_1016_j_eswa_2023_121113 crossref_primary_10_1007_s11356_020_08792_3 crossref_primary_10_1016_j_eswa_2023_122200 crossref_primary_10_1016_j_jhydrol_2022_128608 crossref_primary_10_3390_w14142241 crossref_primary_10_1080_02626667_2022_2138759 crossref_primary_10_1016_j_energy_2022_124382 crossref_primary_10_1016_j_heliyon_2022_e09399 crossref_primary_10_3390_su14137936 crossref_primary_10_1007_s11356_020_09876_w crossref_primary_10_1016_j_agwat_2022_107861 crossref_primary_10_1016_j_aiig_2024_100073 crossref_primary_10_1080_02626667_2022_2141121 crossref_primary_10_1016_j_jhydrol_2020_124897 crossref_primary_10_1007_s12205_023_0821_6 crossref_primary_10_1080_02626667_2022_2063724 crossref_primary_10_1016_j_jhydrol_2021_126258 crossref_primary_10_1080_0194262X_2022_2116144 crossref_primary_10_1002_cjce_25047 crossref_primary_10_1016_j_egyr_2023_09_071 crossref_primary_10_1016_j_jhydrol_2021_125967 crossref_primary_10_1016_j_eswa_2023_123076 crossref_primary_10_1038_s41598_022_06969_z crossref_primary_10_1016_j_jksuci_2021_11_016 crossref_primary_10_3390_biomimetics8010084 crossref_primary_10_1016_j_fuel_2023_129589 crossref_primary_10_1007_s13201_022_01830_0 crossref_primary_10_1111_geoj_12478 crossref_primary_10_1016_j_jhydrol_2021_126607 crossref_primary_10_3390_w13010091 crossref_primary_10_1007_s40996_020_00571_x crossref_primary_10_2166_wcc_2020_365 crossref_primary_10_1016_j_geotexmem_2021_04_007 crossref_primary_10_1016_j_asej_2022_101876 crossref_primary_10_1007_s10311_024_01748_w crossref_primary_10_1080_02626667_2021_1928138 crossref_primary_10_1016_j_jhydrol_2021_126310 crossref_primary_10_1007_s11069_021_04839_x crossref_primary_10_1016_j_jhydrol_2022_128995 crossref_primary_10_1007_s13201_022_01593_8 crossref_primary_10_1038_s41598_023_41113_5 crossref_primary_10_1007_s00477_023_02632_9 crossref_primary_10_1016_j_ejrh_2024_101681 crossref_primary_10_1016_j_asej_2022_101919 crossref_primary_10_1016_j_eswa_2022_119002 crossref_primary_10_1117_1_JRS_15_024519 crossref_primary_10_3390_su12218932 crossref_primary_10_1007_s10668_023_03885_8 crossref_primary_10_1007_s40899_021_00584_y crossref_primary_10_1016_j_clwat_2024_100003 crossref_primary_10_1155_2022_4792988 crossref_primary_10_1016_j_scitotenv_2020_139486 crossref_primary_10_1016_j_aej_2021_04_100 crossref_primary_10_1109_ACCESS_2024_3404606 crossref_primary_10_1080_02626667_2021_2012182 crossref_primary_10_3390_e24081065 crossref_primary_10_1007_s11600_022_00934_0 crossref_primary_10_1080_19942060_2021_2019128 crossref_primary_10_1016_j_eswa_2022_117629 crossref_primary_10_1007_s11269_022_03339_2 crossref_primary_10_3390_w14203338 |
Cites_doi | 10.1002/joc.3754 10.1029/2010WR009742 10.2166/hydro.2015.095 10.1016/j.asoc.2007.07.011 10.1016/j.jhydrol.2013.11.054 10.1007/s40710-015-0080-8 10.1016/j.pce.2007.04.019 10.3923/jas.2012.2139.2147 10.1016/j.jhydrol.2015.11.011 10.1007/s40710-015-0081-7 10.1016/j.jhydrol.2016.09.035 10.1016/S0022-1694(98)00242-X 10.1016/j.eswa.2014.03.053 10.1007/s11269-016-1408-5 10.1016/j.jhydrol.2005.06.001 10.1007/s10489-016-0767-1 10.1016/j.jhydrol.2017.07.008 10.1007/s00500-016-2442-1 10.1016/j.jhydrol.2011.10.039 10.1016/j.jhydrol.2015.05.048 10.1007/s11269-014-0824-7 10.1111/j.1752-1688.2002.tb01544.x 10.1016/j.eswa.2014.09.062 10.1007/s10489-014-0645-7 10.1016/j.jhydrol.2014.03.057 10.1016/j.advengsoft.2013.12.007 10.1007/s40710-015-0064-8 10.1007/s00703-010-0110-z 10.1007/s12517-019-4697-1 10.2478/johh-2013-0015 10.1002/2015WR017049 10.1145/1961189.1961199 10.1016/j.jhydrol.2019.06.025 10.1623/hysj.51.4.599 10.1016/j.compag.2015.09.012 10.1007/BF02478259 10.2166/hydro.2010.040 10.1007/s10586-019-02913-5 10.1016/j.jhydrol.2018.02.033 10.1016/j.jhydrol.2009.03.038 10.1007/s00521-013-1469-9 10.1016/j.jhydrol.2010.11.030 10.1007/s11269-006-9027-1 10.1016/j.neucom.2013.09.030 10.1016/j.jhydrol.2015.10.038 10.1016/j.jhydrol.2015.09.047 10.1016/j.jhydrol.2016.03.002 10.1080/02626667.2019.1678750 10.1016/j.eswa.2011.04.114 10.1007/s11269-008-9382-1 10.1016/j.jhydrol.2010.12.041 10.1007/s11269-015-1107-7 10.1029/2007WR006737 10.1016/j.jhydrol.2009.06.019 10.5194/hess-16-4417-2012 10.1016/j.cageo.2014.04.015 10.1016/j.jhydrol.2012.11.017 10.1007/s11269-014-0767-z 10.1080/02626667.2012.754102 10.1016/j.jhydrol.2019.05.045 10.1016/0143-6228(90)90043-O 10.1016/j.jhydrol.2008.01.023 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. |
Copyright_xml | – notice: 2019 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jhydrol.2019.124435 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 1879-2707 |
ExternalDocumentID | 10_1016_j_jhydrol_2019_124435 S0022169419311709 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABEFU ABFNM ABGRD ABJNI ABMAC ABQEM ABQYD ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIUM ACLVX ACNCT ACRLP ACSBN ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AENEX AEQOU AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 D-I DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMA HVGLF HZ~ H~9 IHE IMUCA J1W K-O KOM LW9 LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SCC SDF SDG SDP SEP SES SEW SPC SPCBC SPD SSA SSE SSZ T5K TN5 UQL VOH WUQ Y6R ZCA ZMT ZY4 ~02 ~G- ~KM AAHBH AAXKI AAYXX ADVLN AFJKZ AKRWK CITATION |
ID | FETCH-LOGICAL-c309t-1d15a04e6c37f6c38f74560a844003084e74bd9d8a74c7a35bb7656d276124dc3 |
ISSN | 0022-1694 |
IngestDate | Thu Sep 26 15:53:37 EDT 2024 Fri Feb 23 02:47:17 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Aswan High Dam Evolutionary algorithms Streamflow Estimation |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c309t-1d15a04e6c37f6c38f74560a844003084e74bd9d8a74c7a35bb7656d276124dc3 |
ORCID | 0000-0001-5018-8505 0000-0001-7847-5872 |
ParticipantIDs | crossref_primary_10_1016_j_jhydrol_2019_124435 elsevier_sciencedirect_doi_10_1016_j_jhydrol_2019_124435 |
PublicationCentury | 2000 |
PublicationDate | March 2020 2020-03-00 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: March 2020 |
PublicationDecade | 2020 |
PublicationTitle | Journal of hydrology (Amsterdam) |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Fahimi, Yaseen, El-shafie (b0125) 2016; 1–29 Ahmed, Othman, Afan, Elsha (b0010) 2019 Parmar, Bhardwaj (b0230) 2014; 29 Valipour, Banihabib, Behbahani (b0295) 2013; 476 Al Shorman, Faris, Aljarah (b0015) 2019 Kisi, O., 2015. Streamflow Forecasting and Estimation Using Least Square Support Vector Regression and Adaptive Neuro-Fuzzy Embedded Fuzzy c-means Clustering 5109–5127. https://doi.org/10.1007/s11269-015-1107-7. Hurst, Black, Simaika (b0155) 1996 Turan, Yurdusev (b0285) 2014; 28 Rasouli, Hsieh, Cannon (b0240) 2012; 414–415 Tikhamarine, Souag-Gamane, Kisi (b0280) 2019; 12 Tabari, Sabziparvar, Ahmadi (b0265) 2011; 110 Mirjalili, Mirjalili, Lewis (b0215) 2014; 69 Danandeh Mehr, Kahya, Yerdelen (b0100) 2014; 70 Yaseen, Kisi, Demir (b0350) 2016 Danandeh Mehr, Kahya, Bagheri, Deliktas (b0095) 2013; 1–13 Mirjalili (b0210) 2015; 43 Yu, Lu (b0355) 2018; 559 Bai, Chen, Xie, Li (b0055) 2016; 532 McCulloch, Pitts (b0205) 1943; 5 Willmott (b0320) 1984 Dehghani, Saghafian, Nasiri Saleh, Farokhnia, Noori (b0105) 2014; 34 Kavousi-Fard, Samet, Marzbani (b0165) 2014; 41 Ismail, Shabri, Samsudin (b0160) 2012; 16 Vogel, Lall, Cai, Rajagopalan, Weiskel, Hooper, Matalas (b0305) 2015; 51 Afan, Keshtegar, Mohtar, El-Shafie (b0005) 2017; 552 Chen, Chau, Wang (b0085) 2015; 17 Haykin (b0145) 1994 El-Shafie, Abdin, Noureldin, Taha (b0115) 2009; 23 Lin, Cheng, Chau (b0180) 2006; 51 Valipour, Banihabib, Behbahani (b0290) 2012; 12 Zealand, Burn, Simonovic (b0360) 1999; 214 Ch, Sohani, Kumar, Malik, Chahar, Nema, Panigrahi, Dhiman (b0075) 2014; 129 He, Wen, Liu, Du (b0150) 2014; 509 Zia, Harris, Merrett, Rivers (b0370) 2015; 118 Zhang (bib377) 2019 Aljarah, Faris, Mirjalili, Al-Madi, Sheta, Mafarja (b0025) 2019 Faris, Aljarah, Mirjalili (b0135) 2016; 45 Zounemat-Kermani, Teshnehlab (b0375) 2008; 8 Chang, Lin (b0080) 2011; 2 Chua, Wong (b0090) 2011; 397 Kisi, Cimen (b0175) 2011; 399 Narsimlu (bib376) 2015 Zhang, Peng, Zhang, Wang (b0365) 2015; 530 Makkeasorn, Chang, Zhou (b0195) 2008; 352 Bahrami, Ardejani, Baafi (b0050) 2016; 536 Wei, Yang, Song, Abbaspour, Xu (b0315) 2013; 58 Yaseen, Jaafar, Deo, Kisi, Adamowski, Quilty, El-shafie (b0345) 2016 Aljarah, Faris, Mirjalili (b0020) 2018; 22 Okkan, Ali Serbes (b0225) 2013; 61 Singh, Cui (b0250) 2015; 2 Bruins, H.J., 1990. Water harvesting for plant production: Reij, C., Mulder, P., Begemann, L. Washington, D.C.: The World Bank, World Bank Technical Paper Number 91, 1988, 123 pp. Appl. Geograp. 10, 359. https://doi.org/10.1016/0143-6228(90)90043-O. Asefa, Kemblowski, McKee, Khalil (b0045) 2006; 318 Smola (b0255) 1996 Liong, Sivapragasam (b0185) 2002; 38 naganna, deka (bib378) 2014 Gunn (b0260) 1998 Box, Jenkins (b0065) 1970 Yaseen, El-shafie, Jaafar, Afan, Sayl (b0340) 2015; 530 Vapnik (b0300) 1995 Bayazit (b0060) 2015; 2 Deo, Şahin (b0110) 2016; 188 Nourani, Hosseini Baghanam, Adamowski, Kisi (b0220) 2014; 514 Amiri (b0030) 2015; 527 Fathian, Mehdizadeh, Kozekalani Sales, Safari (b0130) 2019; 575 Terzi, Ergin (b0270) 2014; 25 Tikhamarine, Malik, Kumar, Souag-Gamane, Kisi (b0275) 2019 Amisigo, van de Giesen, Rogers, Andah, Friesen (b0035) 2008; 33 Sharma, Srivastava, Fang, Kalin (b0245) 2015; 42 Pramanik, Panda, Singh (b0235) 2010; 13 Wu, Chau, Li (b0330) 2009; 45 Wang, Chau, Cheng, Qiu (b0310) 2009; 374 Guo, Zhou, Qin, Zou, Li (b0140) 2011; 38 Wu, Chau, Li (b0335) 2009; 372 El-Shafie, Taha, Noureldin (b0120) 2007; 21 Angelakis, Gikas (b0040) 2014; 8 Maroufpoor, Maroufpoor, Bozorg-Haddad, Shiri, Mundher Yaseen (b0200) 2019; 575 Maity, Kashid (b0190) 2011; 47 Mirjalili (10.1016/j.jhydrol.2019.124435_b0215) 2014; 69 Amiri (10.1016/j.jhydrol.2019.124435_b0030) 2015; 527 Amisigo (10.1016/j.jhydrol.2019.124435_b0035) 2008; 33 Ismail (10.1016/j.jhydrol.2019.124435_b0160) 2012; 16 Nourani (10.1016/j.jhydrol.2019.124435_b0220) 2014; 514 Wu (10.1016/j.jhydrol.2019.124435_b0330) 2009; 45 Tabari (10.1016/j.jhydrol.2019.124435_b0265) 2011; 110 Vogel (10.1016/j.jhydrol.2019.124435_b0305) 2015; 51 Liong (10.1016/j.jhydrol.2019.124435_b0185) 2002; 38 naganna (10.1016/j.jhydrol.2019.124435_bib378) 2014 Narsimlu (10.1016/j.jhydrol.2019.124435_bib376) 2015 Kisi (10.1016/j.jhydrol.2019.124435_b0175) 2011; 399 Ahmed (10.1016/j.jhydrol.2019.124435_b0010) 2019 Tikhamarine (10.1016/j.jhydrol.2019.124435_b0280) 2019; 12 Yaseen (10.1016/j.jhydrol.2019.124435_b0340) 2015; 530 Danandeh Mehr (10.1016/j.jhydrol.2019.124435_b0100) 2014; 70 Haykin (10.1016/j.jhydrol.2019.124435_b0145) 1994 Valipour (10.1016/j.jhydrol.2019.124435_b0295) 2013; 476 Danandeh Mehr (10.1016/j.jhydrol.2019.124435_b0095) 2013; 1–13 Zealand (10.1016/j.jhydrol.2019.124435_b0360) 1999; 214 10.1016/j.jhydrol.2019.124435_b0170 Deo (10.1016/j.jhydrol.2019.124435_b0110) 2016; 188 Zia (10.1016/j.jhydrol.2019.124435_b0370) 2015; 118 Mirjalili (10.1016/j.jhydrol.2019.124435_b0210) 2015; 43 Aljarah (10.1016/j.jhydrol.2019.124435_b0025) 2019 Zounemat-Kermani (10.1016/j.jhydrol.2019.124435_b0375) 2008; 8 Wang (10.1016/j.jhydrol.2019.124435_b0310) 2009; 374 Sharma (10.1016/j.jhydrol.2019.124435_b0245) 2015; 42 Terzi (10.1016/j.jhydrol.2019.124435_b0270) 2014; 25 Vapnik (10.1016/j.jhydrol.2019.124435_b0300) 1995 Bai (10.1016/j.jhydrol.2019.124435_b0055) 2016; 532 Faris (10.1016/j.jhydrol.2019.124435_b0135) 2016; 45 Afan (10.1016/j.jhydrol.2019.124435_b0005) 2017; 552 Chua (10.1016/j.jhydrol.2019.124435_b0090) 2011; 397 Guo (10.1016/j.jhydrol.2019.124435_b0140) 2011; 38 Dehghani (10.1016/j.jhydrol.2019.124435_b0105) 2014; 34 Zhang (10.1016/j.jhydrol.2019.124435_b0365) 2015; 530 El-Shafie (10.1016/j.jhydrol.2019.124435_b0115) 2009; 23 Kavousi-Fard (10.1016/j.jhydrol.2019.124435_b0165) 2014; 41 Fathian (10.1016/j.jhydrol.2019.124435_b0130) 2019; 575 Angelakis (10.1016/j.jhydrol.2019.124435_b0040) 2014; 8 McCulloch (10.1016/j.jhydrol.2019.124435_b0205) 1943; 5 Maroufpoor (10.1016/j.jhydrol.2019.124435_b0200) 2019; 575 Willmott (10.1016/j.jhydrol.2019.124435_b0320) 1984 Turan (10.1016/j.jhydrol.2019.124435_b0285) 2014; 28 Chen (10.1016/j.jhydrol.2019.124435_b0085) 2015; 17 Ch (10.1016/j.jhydrol.2019.124435_b0075) 2014; 129 Maity (10.1016/j.jhydrol.2019.124435_b0190) 2011; 47 Yu (10.1016/j.jhydrol.2019.124435_b0355) 2018; 559 Zhang (10.1016/j.jhydrol.2019.124435_bib377) 2019 Parmar (10.1016/j.jhydrol.2019.124435_b0230) 2014; 29 Valipour (10.1016/j.jhydrol.2019.124435_b0290) 2012; 12 Bahrami (10.1016/j.jhydrol.2019.124435_b0050) 2016; 536 Wei (10.1016/j.jhydrol.2019.124435_b0315) 2013; 58 Chang (10.1016/j.jhydrol.2019.124435_b0080) 2011; 2 Gunn (10.1016/j.jhydrol.2019.124435_b0260) 1998 Hurst (10.1016/j.jhydrol.2019.124435_b0155) 1996 Pramanik (10.1016/j.jhydrol.2019.124435_b0235) 2010; 13 Rasouli (10.1016/j.jhydrol.2019.124435_b0240) 2012; 414–415 Yaseen (10.1016/j.jhydrol.2019.124435_b0345) 2016 10.1016/j.jhydrol.2019.124435_b0070 Al Shorman (10.1016/j.jhydrol.2019.124435_b0015) 2019 Lin (10.1016/j.jhydrol.2019.124435_b0180) 2006; 51 Tikhamarine (10.1016/j.jhydrol.2019.124435_b0275) 2019 Asefa (10.1016/j.jhydrol.2019.124435_b0045) 2006; 318 Smola (10.1016/j.jhydrol.2019.124435_b0255) 1996 Yaseen (10.1016/j.jhydrol.2019.124435_b0350) 2016 Bayazit (10.1016/j.jhydrol.2019.124435_b0060) 2015; 2 Fahimi (10.1016/j.jhydrol.2019.124435_b0125) 2016; 1–29 He (10.1016/j.jhydrol.2019.124435_b0150) 2014; 509 Aljarah (10.1016/j.jhydrol.2019.124435_b0020) 2018; 22 Box (10.1016/j.jhydrol.2019.124435_b0065) 1970 El-Shafie (10.1016/j.jhydrol.2019.124435_b0120) 2007; 21 Singh (10.1016/j.jhydrol.2019.124435_b0250) 2015; 2 Wu (10.1016/j.jhydrol.2019.124435_b0335) 2009; 372 Okkan (10.1016/j.jhydrol.2019.124435_b0225) 2013; 61 Makkeasorn (10.1016/j.jhydrol.2019.124435_b0195) 2008; 352 |
References_xml | – volume: 16 start-page: 4417 year: 2012 end-page: 4433 ident: b0160 article-title: A hybrid model of self organizing maps and least square support vector machine for river flow forecasting publication-title: Hydrol. Earth Syst. Sci. contributor: fullname: Samsudin – volume: 13 start-page: 49 year: 2010 ident: b0235 article-title: Daily river flow forecasting using wavelet ANN hybrid models publication-title: J. Hydroinformat. contributor: fullname: Singh – volume: 12 start-page: 540 year: 2019 ident: b0280 article-title: A new intelligent method for monthly streamflow prediction: hybrid wavelet support vector regression based on grey wolf optimizer (WSVR–GWO) publication-title: Arab. J. Geosci. contributor: fullname: Kisi – volume: 17 start-page: 733 year: 2015 end-page: 744 ident: b0085 article-title: A novel hybrid neural network based on continuity equation and fuzzy pattern-recognition for downstream daily river discharge forecasting publication-title: J. Hydroinformat. contributor: fullname: Wang – volume: 414–415 start-page: 284 year: 2012 end-page: 293 ident: b0240 article-title: Daily streamflow forecasting by machine learning methods with weather and climate inputs publication-title: J. Hydrol. contributor: fullname: Cannon – volume: 559 start-page: 156 year: 2018 end-page: 165 ident: b0355 article-title: An integrated model of water resources optimization allocation based on projection pursuit model – Grey wolf optimization method in a transboundary river basin publication-title: J. Hydrol. contributor: fullname: Lu – volume: 33 start-page: 141 year: 2008 end-page: 150 ident: b0035 article-title: Monthly streamflow prediction in the Volta Basin of West Africa: A SISO NARMAX polynomial modelling publication-title: Phys. Chem. the Earth, Parts A/B/C contributor: fullname: Friesen – volume: 8 start-page: 67 year: 2014 end-page: 78 ident: b0040 article-title: Water reuse: Overview of current practices and trends in the world with emphasis on EU states publication-title: Water Util. J. contributor: fullname: Gikas – volume: 21 start-page: 533 year: 2007 end-page: 556 ident: b0120 article-title: A neuro-fuzzy model for inflow forecasting of the Nile river at Aswan high dam publication-title: Water Resour. Manage. contributor: fullname: Noureldin – volume: 352 start-page: 336 year: 2008 end-page: 354 ident: b0195 article-title: Short-term streamflow forecasting with global climate change implications – A comparative study between genetic programming and neural network models publication-title: J. Hydrol. contributor: fullname: Zhou – volume: 25 start-page: 179 year: 2014 end-page: 188 ident: b0270 article-title: Forecasting of monthly river flow with autoregressive modeling and data-driven techniques publication-title: Neural Comput. Appl. contributor: fullname: Ergin – volume: 372 start-page: 80 year: 2009 end-page: 93 ident: b0335 article-title: Methods to improve neural network performance in daily flows prediction publication-title: J. Hydrol. contributor: fullname: Li – volume: 532 start-page: 193 year: 2016 end-page: 206 ident: b0055 article-title: Daily reservoir inflow forecasting usingmultiscale deep feature learning with hybrid models publication-title: J. Hydrol. contributor: fullname: Li – volume: 45 year: 2009 ident: b0330 article-title: Predicting monthly streamflow using data-driven models coupled with data-preprocessing techniques publication-title: Water Resour. Res. contributor: fullname: Li – volume: 214 start-page: 32 year: 1999 end-page: 48 ident: b0360 article-title: Short term streamflow forecasting using artificial neural networks publication-title: J. Hydrol. contributor: fullname: Simonovic – volume: 38 start-page: 13073 year: 2011 end-page: 13081 ident: b0140 article-title: Monthly streamflow forecasting based on improved support vector machine model publication-title: Expert Syst. Applicat. contributor: fullname: Li – volume: 399 start-page: 132 year: 2011 end-page: 140 ident: b0175 article-title: A wavelet-support vector machine conjunction model for monthly streamflow forecasting publication-title: J. Hydrol. contributor: fullname: Cimen – volume: 476 start-page: 433 year: 2013 end-page: 441 ident: b0295 article-title: Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir publication-title: J. Hydrol. contributor: fullname: Behbahani – year: 1996 ident: b0255 article-title: Regression Estimation with Support Vector contributor: fullname: Smola – volume: 397 start-page: 191 year: 2011 end-page: 201 ident: b0090 article-title: Runoff forecasting for an asphalt plane by Artificial Neural Networks and comparisons with kinematic wave and autoregressive moving average models publication-title: J. Hydrol. contributor: fullname: Wong – volume: 129 start-page: 279 year: 2014 end-page: 288 ident: b0075 article-title: A Support Vector Machine-Firefly Algorithm based forecasting model to determine malaria transmission publication-title: Neurocomputing contributor: fullname: Dhiman – volume: 2 start-page: 449 year: 2015 end-page: 460 ident: b0250 article-title: Entropy theory for streamflow forecasting publication-title: Environ. Process. contributor: fullname: Cui – volume: 575 start-page: 1200 year: 2019 end-page: 1213 ident: b0130 article-title: Hybrid models to improve the monthly river flow prediction: integrating artificial intelligence and nonlinear time series models publication-title: J. Hydrol. contributor: fullname: Safari – volume: 28 start-page: 4685 year: 2014 end-page: 4697 ident: b0285 article-title: Predicting monthly river flows by genetic fuzzy systems publication-title: Water Resour. Manage. contributor: fullname: Yurdusev – volume: 58 start-page: 374 year: 2013 end-page: 389 ident: b0315 article-title: A wavelet-neural network hybrid modelling approach for estimating and predicting river monthly flows publication-title: Hydrol. Sci. J. contributor: fullname: Xu – volume: 530 start-page: 829 year: 2015 end-page: 844 ident: b0340 article-title: Artificial intelligence based models for stream-flow forecasting: 2000–2015 publication-title: J. Hydrol. contributor: fullname: Sayl – volume: 22 start-page: 1 year: 2018 end-page: 15 ident: b0020 article-title: Optimizing connection weights in neural networks using the whale optimization algorithm publication-title: Soft Comput. contributor: fullname: Mirjalili – volume: 575 start-page: 544 year: 2019 end-page: 556 ident: b0200 article-title: Soil moisture simulation using hybrid artificial intelligent model: hybridization of adaptive neuro fuzzy inference system with grey wolf optimizer algorithm publication-title: J. Hydrol. contributor: fullname: Mundher Yaseen – volume: 8 start-page: 928 year: 2008 end-page: 936 ident: b0375 article-title: Using adaptive neuro-fuzzy inference system for hydrological time series prediction publication-title: Appl. Soft Comput. J. contributor: fullname: Teshnehlab – volume: 23 start-page: 2289 year: 2009 end-page: 2315 ident: b0115 article-title: Enhancing inflow forecasting model at aswan high dam utilizing radial basis neural network and upstream monitoring stations measurements publication-title: Water Resour. Manage. contributor: fullname: Taha – volume: 38 start-page: 173 year: 2002 end-page: 186 ident: b0185 article-title: Flood stage forecasting with support vector machines publication-title: J. Am. Water Resour. Associat. contributor: fullname: Sivapragasam – volume: 509 start-page: 379 year: 2014 end-page: 386 ident: b0150 article-title: A comparative study of artificial neural network, adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region publication-title: J. Hydrol. contributor: fullname: Du – volume: 552 year: 2017 ident: b0005 article-title: Harmonize input selection for sediment transport prediction publication-title: J. Hydrol. contributor: fullname: El-Shafie – volume: 47 start-page: 1 year: 2011 end-page: 17 ident: b0190 article-title: Importance analysis of local and global climate inputs for basin-scale streamflow prediction publication-title: Water Resour. Res. contributor: fullname: Kashid – volume: 514 start-page: 358 year: 2014 end-page: 377 ident: b0220 article-title: Applications of hybrid wavelet–Artificial Intelligence models in hydrology: a review publication-title: J. Hydrol. contributor: fullname: Kisi – start-page: 578 year: 2019 ident: b0010 article-title: Machine learning methods for better water quality prediction publication-title: J. Hydrol. contributor: fullname: Elsha – volume: 2 year: 2011 ident: b0080 article-title: LIBSVM: A library for support vector machines publication-title: ACM Trans. Intell. Syst. Technol. contributor: fullname: Lin – volume: 1–29 year: 2016 ident: b0125 article-title: Application of soft computing based hybrid models in hydrological variables modeling: a comprehensive review publication-title: Theoret. Appl. Climatol. contributor: fullname: El-shafie – year: 2019 ident: b0275 article-title: Estimation of monthly reference evapotranspiration using novel hybrid machine learning approaches publication-title: Hydrol. Sci. J. contributor: fullname: Kisi – volume: 29 start-page: 17 year: 2014 end-page: 33 ident: b0230 article-title: River water prediction modeling using neural networks, fuzzy and wavelet coupled model publication-title: Water Resour. Manage. contributor: fullname: Bhardwaj – year: 2014 ident: bib378 article-title: Support Vector Machine Applications in the field of Hydrology: A Review publication-title: Appl. Soft Comput. contributor: fullname: deka – year: 1998 ident: b0260 article-title: Support Vector Machiens for Classification and Regression, Image Speech & Intelligent Systems Research Group contributor: fullname: Gunn – volume: 41 start-page: 6047 year: 2014 end-page: 6056 ident: b0165 article-title: A new hybrid modified firefly algorithm and support vector regression model for accurate short term load forecasting publication-title: Exp. Syst. Appl. contributor: fullname: Marzbani – volume: 527 start-page: 1054 year: 2015 end-page: 1072 ident: b0030 article-title: Forecasting daily river flows using nonlinear time series models publication-title: J. Hydrol. contributor: fullname: Amiri – year: 2016 ident: b0350 article-title: Enhancing long-term streamflow forecasting and predicting using periodicity data component: application of artificial intelligence publication-title: Water Resour. Manage. contributor: fullname: Demir – volume: 45 start-page: 322 year: 2016 end-page: 332 ident: b0135 article-title: Training feedforward neural networks using multi-verse optimizer for binary classification problems publication-title: Appl. Intellig. contributor: fullname: Mirjalili – volume: 61 start-page: 112 year: 2013 end-page: 119 ident: b0225 article-title: The combined use of wavelet transform and black box models in reservoir inflow modeling publication-title: J. Hydrol. Hydromechan. contributor: fullname: Ali Serbes – volume: 51 start-page: 599 year: 2006 end-page: 612 ident: b0180 article-title: Using support vector machines for long-term discharge prediction publication-title: Hydrol. Sci. J. contributor: fullname: Chau – year: 2019 ident: bib377 article-title: Evolving feedforward artificial neural networks using a two-stage approach publication-title: Neurocomputing contributor: fullname: Zhang – volume: 530 start-page: 137 year: 2015 end-page: 152 ident: b0365 article-title: Are hybrid models integrated with data preprocessing techniques suitable for monthly streamflow forecasting? Some experiment evidences publication-title: J. Hydrol. contributor: fullname: Wang – volume: 70 start-page: 63 year: 2014 end-page: 72 ident: b0100 article-title: Linear genetic programming application for successive-station monthly streamflow prediction publication-title: Comput. Geosci. contributor: fullname: Yerdelen – year: 1995 ident: b0300 article-title: The nature of statistical learning theory contributor: fullname: Vapnik – start-page: 443 year: 1984 end-page: 460 ident: b0320 article-title: On the Evaluation of Model Performance in Physical Geography publication-title: Spatial Statistics and Models contributor: fullname: Willmott – volume: 318 start-page: 7 year: 2006 end-page: 16 ident: b0045 article-title: Multi-time scale stream flow predictions: the support vector machines approach publication-title: J. Hydrol. contributor: fullname: Khalil – volume: 34 start-page: 1169 year: 2014 end-page: 1180 ident: b0105 article-title: Uncertainty analysis of streamflow drought forecast using artificial neural networks and Monte-Carlo simulation publication-title: Int. J. Climatol. contributor: fullname: Noori – volume: 5 start-page: 115 year: 1943 end-page: 133 ident: b0205 article-title: A logical calculus of the ideas immanent in nervous activity publication-title: Bull Mathemat. Biophys. contributor: fullname: Pitts – volume: 110 start-page: 135 year: 2011 end-page: 142 ident: b0265 article-title: Comparison of artificial neural network and multivariate linear regression methods for estimation of daily soil temperature in an arid region publication-title: Meteorol. Atmos. Phys. contributor: fullname: Ahmadi – year: 2016 ident: b0345 article-title: Stream-flow forecasting using extreme learning machines: a case study in a semi-arid region in Iraq publication-title: J. Hydrol. contributor: fullname: El-shafie – year: 2019 ident: b0025 article-title: Evolving neural networks using bird swarm algorithm for data classification and regression applications publication-title: Cluster Comput. contributor: fullname: Mafarja – volume: 42 start-page: 2213 year: 2015 end-page: 2223 ident: b0245 article-title: Performance comparison of Adoptive Neuro Fuzzy Inference System (ANFIS) with Loading Simulation Program C++ (LSPC) model for streamflow simulation in El Niño Southern Oscillation (ENSO)-affected watershed publication-title: Exp. Syst. Applicat. contributor: fullname: Kalin – volume: 2 start-page: 527 year: 2015 end-page: 542 ident: b0060 article-title: Nonstationarity of hydrological records and recent trends in trend analysis: a state-of-the-art review publication-title: Environ. Process. contributor: fullname: Bayazit – volume: 12 start-page: 2139 year: 2012 end-page: 2147 ident: b0290 article-title: Monthly inflow forecasting using autoregressive artificial neural network publication-title: J. Appl. Sci. contributor: fullname: Behbahani – volume: 1–13 year: 2013 ident: b0095 article-title: Successive-station monthly streamflow prediction using neuro-wavelet technique publication-title: Earth Sci. Inform. contributor: fullname: Deliktas – year: 1970 ident: b0065 article-title: Time series analysis, forecasting and control contributor: fullname: Jenkins – year: 1996 ident: b0155 article-title: The Major Nile Projects. The Nile Basin contributor: fullname: Simaika – volume: 118 start-page: 350 year: 2015 end-page: 360 ident: b0370 article-title: Predicting discharge using a low complexity machine learning model publication-title: Comput. Electron. Agric. contributor: fullname: Rivers – year: 2015 ident: bib376 article-title: SWAT Model Calibration and Uncertainty Analysis for Streamflow Prediction in the Kunwari River Basin, India, Using Sequential Uncertainty Fitting publication-title: Environ. Environ. Process contributor: fullname: Narsimlu – volume: 374 start-page: 294 year: 2009 end-page: 306 ident: b0310 article-title: A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series publication-title: J. Hydrol. contributor: fullname: Qiu – volume: 43 start-page: 150 year: 2015 end-page: 161 ident: b0210 article-title: How effective is the Grey Wolf optimizer in training multi-layer perceptrons publication-title: Appl. Intellig. contributor: fullname: Mirjalili – year: 1994 ident: b0145 article-title: Neural Networks: A Comprehensive Foundation contributor: fullname: Haykin – volume: 51 start-page: 4409 year: 2015 end-page: 4430 ident: b0305 article-title: Hydrology: the interdisciplinary science of water publication-title: Water Resour. Res. contributor: fullname: Matalas – year: 2019 ident: b0015 article-title: Unsupervised intelligent system based on one class support vector machine and Grey Wolf optimization for IoT botnet detection publication-title: J. Ambient. Intell. Human Comput. contributor: fullname: Aljarah – volume: 188 year: 2016 ident: b0110 article-title: An extreme learning machine model for the simulation of monthly mean streamflow water level in eastern Queensland publication-title: Environ. Monitor. Assess. contributor: fullname: Şahin – volume: 536 start-page: 471 year: 2016 end-page: 484 ident: b0050 article-title: Application of artificial neural network coupled with genetic algorithm and simulated annealing to solve groundwater inflow problem to an advancing open pit mine publication-title: J. Hydrol. contributor: fullname: Baafi – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: b0215 article-title: Grey Wolf Optimizer publication-title: Adv. Eng. Softw. contributor: fullname: Lewis – volume: 34 start-page: 1169 year: 2014 ident: 10.1016/j.jhydrol.2019.124435_b0105 article-title: Uncertainty analysis of streamflow drought forecast using artificial neural networks and Monte-Carlo simulation publication-title: Int. J. Climatol. doi: 10.1002/joc.3754 contributor: fullname: Dehghani – volume: 47 start-page: 1 year: 2011 ident: 10.1016/j.jhydrol.2019.124435_b0190 article-title: Importance analysis of local and global climate inputs for basin-scale streamflow prediction publication-title: Water Resour. Res. doi: 10.1029/2010WR009742 contributor: fullname: Maity – volume: 17 start-page: 733 year: 2015 ident: 10.1016/j.jhydrol.2019.124435_b0085 article-title: A novel hybrid neural network based on continuity equation and fuzzy pattern-recognition for downstream daily river discharge forecasting publication-title: J. Hydroinformat. doi: 10.2166/hydro.2015.095 contributor: fullname: Chen – volume: 8 start-page: 928 year: 2008 ident: 10.1016/j.jhydrol.2019.124435_b0375 article-title: Using adaptive neuro-fuzzy inference system for hydrological time series prediction publication-title: Appl. Soft Comput. J. doi: 10.1016/j.asoc.2007.07.011 contributor: fullname: Zounemat-Kermani – volume: 509 start-page: 379 year: 2014 ident: 10.1016/j.jhydrol.2019.124435_b0150 article-title: A comparative study of artificial neural network, adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2013.11.054 contributor: fullname: He – volume: 2 start-page: 449 year: 2015 ident: 10.1016/j.jhydrol.2019.124435_b0250 article-title: Entropy theory for streamflow forecasting publication-title: Environ. Process. doi: 10.1007/s40710-015-0080-8 contributor: fullname: Singh – start-page: 578 year: 2019 ident: 10.1016/j.jhydrol.2019.124435_b0010 article-title: Machine learning methods for better water quality prediction publication-title: J. Hydrol. contributor: fullname: Ahmed – volume: 33 start-page: 141 year: 2008 ident: 10.1016/j.jhydrol.2019.124435_b0035 article-title: Monthly streamflow prediction in the Volta Basin of West Africa: A SISO NARMAX polynomial modelling publication-title: Phys. Chem. the Earth, Parts A/B/C doi: 10.1016/j.pce.2007.04.019 contributor: fullname: Amisigo – volume: 12 start-page: 2139 year: 2012 ident: 10.1016/j.jhydrol.2019.124435_b0290 article-title: Monthly inflow forecasting using autoregressive artificial neural network publication-title: J. Appl. Sci. doi: 10.3923/jas.2012.2139.2147 contributor: fullname: Valipour – volume: 8 start-page: 67 year: 2014 ident: 10.1016/j.jhydrol.2019.124435_b0040 article-title: Water reuse: Overview of current practices and trends in the world with emphasis on EU states publication-title: Water Util. J. contributor: fullname: Angelakis – volume: 532 start-page: 193 year: 2016 ident: 10.1016/j.jhydrol.2019.124435_b0055 article-title: Daily reservoir inflow forecasting usingmultiscale deep feature learning with hybrid models publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2015.11.011 contributor: fullname: Bai – volume: 2 start-page: 527 year: 2015 ident: 10.1016/j.jhydrol.2019.124435_b0060 article-title: Nonstationarity of hydrological records and recent trends in trend analysis: a state-of-the-art review publication-title: Environ. Process. doi: 10.1007/s40710-015-0081-7 contributor: fullname: Bayazit – year: 2016 ident: 10.1016/j.jhydrol.2019.124435_b0345 article-title: Stream-flow forecasting using extreme learning machines: a case study in a semi-arid region in Iraq publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2016.09.035 contributor: fullname: Yaseen – year: 1994 ident: 10.1016/j.jhydrol.2019.124435_b0145 contributor: fullname: Haykin – volume: 214 start-page: 32 year: 1999 ident: 10.1016/j.jhydrol.2019.124435_b0360 article-title: Short term streamflow forecasting using artificial neural networks publication-title: J. Hydrol. doi: 10.1016/S0022-1694(98)00242-X contributor: fullname: Zealand – volume: 41 start-page: 6047 year: 2014 ident: 10.1016/j.jhydrol.2019.124435_b0165 article-title: A new hybrid modified firefly algorithm and support vector regression model for accurate short term load forecasting publication-title: Exp. Syst. Appl. doi: 10.1016/j.eswa.2014.03.053 contributor: fullname: Kavousi-Fard – year: 2016 ident: 10.1016/j.jhydrol.2019.124435_b0350 article-title: Enhancing long-term streamflow forecasting and predicting using periodicity data component: application of artificial intelligence publication-title: Water Resour. Manage. doi: 10.1007/s11269-016-1408-5 contributor: fullname: Yaseen – year: 1995 ident: 10.1016/j.jhydrol.2019.124435_b0300 contributor: fullname: Vapnik – volume: 318 start-page: 7 year: 2006 ident: 10.1016/j.jhydrol.2019.124435_b0045 article-title: Multi-time scale stream flow predictions: the support vector machines approach publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2005.06.001 contributor: fullname: Asefa – volume: 45 start-page: 322 year: 2016 ident: 10.1016/j.jhydrol.2019.124435_b0135 article-title: Training feedforward neural networks using multi-verse optimizer for binary classification problems publication-title: Appl. Intellig. doi: 10.1007/s10489-016-0767-1 contributor: fullname: Faris – volume: 552 year: 2017 ident: 10.1016/j.jhydrol.2019.124435_b0005 article-title: Harmonize input selection for sediment transport prediction publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2017.07.008 contributor: fullname: Afan – volume: 22 start-page: 1 year: 2018 ident: 10.1016/j.jhydrol.2019.124435_b0020 article-title: Optimizing connection weights in neural networks using the whale optimization algorithm publication-title: Soft Comput. doi: 10.1007/s00500-016-2442-1 contributor: fullname: Aljarah – volume: 414–415 start-page: 284 year: 2012 ident: 10.1016/j.jhydrol.2019.124435_b0240 article-title: Daily streamflow forecasting by machine learning methods with weather and climate inputs publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2011.10.039 contributor: fullname: Rasouli – year: 1996 ident: 10.1016/j.jhydrol.2019.124435_b0255 contributor: fullname: Smola – volume: 527 start-page: 1054 year: 2015 ident: 10.1016/j.jhydrol.2019.124435_b0030 article-title: Forecasting daily river flows using nonlinear time series models publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2015.05.048 contributor: fullname: Amiri – volume: 29 start-page: 17 year: 2014 ident: 10.1016/j.jhydrol.2019.124435_b0230 article-title: River water prediction modeling using neural networks, fuzzy and wavelet coupled model publication-title: Water Resour. Manage. doi: 10.1007/s11269-014-0824-7 contributor: fullname: Parmar – year: 2014 ident: 10.1016/j.jhydrol.2019.124435_bib378 article-title: Support Vector Machine Applications in the field of Hydrology: A Review publication-title: Appl. Soft Comput. contributor: fullname: naganna – volume: 38 start-page: 173 year: 2002 ident: 10.1016/j.jhydrol.2019.124435_b0185 article-title: Flood stage forecasting with support vector machines publication-title: J. Am. Water Resour. Associat. doi: 10.1111/j.1752-1688.2002.tb01544.x contributor: fullname: Liong – volume: 1–13 year: 2013 ident: 10.1016/j.jhydrol.2019.124435_b0095 article-title: Successive-station monthly streamflow prediction using neuro-wavelet technique publication-title: Earth Sci. Inform. contributor: fullname: Danandeh Mehr – volume: 42 start-page: 2213 year: 2015 ident: 10.1016/j.jhydrol.2019.124435_b0245 article-title: Performance comparison of Adoptive Neuro Fuzzy Inference System (ANFIS) with Loading Simulation Program C++ (LSPC) model for streamflow simulation in El Niño Southern Oscillation (ENSO)-affected watershed publication-title: Exp. Syst. Applicat. doi: 10.1016/j.eswa.2014.09.062 contributor: fullname: Sharma – volume: 43 start-page: 150 year: 2015 ident: 10.1016/j.jhydrol.2019.124435_b0210 article-title: How effective is the Grey Wolf optimizer in training multi-layer perceptrons publication-title: Appl. Intellig. doi: 10.1007/s10489-014-0645-7 contributor: fullname: Mirjalili – volume: 514 start-page: 358 year: 2014 ident: 10.1016/j.jhydrol.2019.124435_b0220 article-title: Applications of hybrid wavelet–Artificial Intelligence models in hydrology: a review publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2014.03.057 contributor: fullname: Nourani – volume: 69 start-page: 46 year: 2014 ident: 10.1016/j.jhydrol.2019.124435_b0215 article-title: Grey Wolf Optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 contributor: fullname: Mirjalili – year: 2015 ident: 10.1016/j.jhydrol.2019.124435_bib376 article-title: SWAT Model Calibration and Uncertainty Analysis for Streamflow Prediction in the Kunwari River Basin, India, Using Sequential Uncertainty Fitting publication-title: Environ. Environ. Process doi: 10.1007/s40710-015-0064-8 contributor: fullname: Narsimlu – volume: 110 start-page: 135 year: 2011 ident: 10.1016/j.jhydrol.2019.124435_b0265 article-title: Comparison of artificial neural network and multivariate linear regression methods for estimation of daily soil temperature in an arid region publication-title: Meteorol. Atmos. Phys. doi: 10.1007/s00703-010-0110-z contributor: fullname: Tabari – volume: 188 year: 2016 ident: 10.1016/j.jhydrol.2019.124435_b0110 article-title: An extreme learning machine model for the simulation of monthly mean streamflow water level in eastern Queensland publication-title: Environ. Monitor. Assess. contributor: fullname: Deo – volume: 12 start-page: 540 year: 2019 ident: 10.1016/j.jhydrol.2019.124435_b0280 article-title: A new intelligent method for monthly streamflow prediction: hybrid wavelet support vector regression based on grey wolf optimizer (WSVR–GWO) publication-title: Arab. J. Geosci. doi: 10.1007/s12517-019-4697-1 contributor: fullname: Tikhamarine – volume: 61 start-page: 112 year: 2013 ident: 10.1016/j.jhydrol.2019.124435_b0225 article-title: The combined use of wavelet transform and black box models in reservoir inflow modeling publication-title: J. Hydrol. Hydromechan. doi: 10.2478/johh-2013-0015 contributor: fullname: Okkan – volume: 51 start-page: 4409 year: 2015 ident: 10.1016/j.jhydrol.2019.124435_b0305 article-title: Hydrology: the interdisciplinary science of water publication-title: Water Resour. Res. doi: 10.1002/2015WR017049 contributor: fullname: Vogel – volume: 2 year: 2011 ident: 10.1016/j.jhydrol.2019.124435_b0080 article-title: LIBSVM: A library for support vector machines publication-title: ACM Trans. Intell. Syst. Technol. doi: 10.1145/1961189.1961199 contributor: fullname: Chang – volume: 575 start-page: 1200 year: 2019 ident: 10.1016/j.jhydrol.2019.124435_b0130 article-title: Hybrid models to improve the monthly river flow prediction: integrating artificial intelligence and nonlinear time series models publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.06.025 contributor: fullname: Fathian – volume: 51 start-page: 599 year: 2006 ident: 10.1016/j.jhydrol.2019.124435_b0180 article-title: Using support vector machines for long-term discharge prediction publication-title: Hydrol. Sci. J. doi: 10.1623/hysj.51.4.599 contributor: fullname: Lin – volume: 118 start-page: 350 year: 2015 ident: 10.1016/j.jhydrol.2019.124435_b0370 article-title: Predicting discharge using a low complexity machine learning model publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2015.09.012 contributor: fullname: Zia – volume: 5 start-page: 115 year: 1943 ident: 10.1016/j.jhydrol.2019.124435_b0205 article-title: A logical calculus of the ideas immanent in nervous activity publication-title: Bull Mathemat. Biophys. doi: 10.1007/BF02478259 contributor: fullname: McCulloch – volume: 13 start-page: 49 year: 2010 ident: 10.1016/j.jhydrol.2019.124435_b0235 article-title: Daily river flow forecasting using wavelet ANN hybrid models publication-title: J. Hydroinformat. doi: 10.2166/hydro.2010.040 contributor: fullname: Pramanik – start-page: 443 year: 1984 ident: 10.1016/j.jhydrol.2019.124435_b0320 article-title: On the Evaluation of Model Performance in Physical Geography contributor: fullname: Willmott – year: 2019 ident: 10.1016/j.jhydrol.2019.124435_b0015 article-title: Unsupervised intelligent system based on one class support vector machine and Grey Wolf optimization for IoT botnet detection publication-title: J. Ambient. Intell. Human Comput. contributor: fullname: Al Shorman – year: 2019 ident: 10.1016/j.jhydrol.2019.124435_b0025 article-title: Evolving neural networks using bird swarm algorithm for data classification and regression applications publication-title: Cluster Comput. doi: 10.1007/s10586-019-02913-5 contributor: fullname: Aljarah – year: 2019 ident: 10.1016/j.jhydrol.2019.124435_bib377 article-title: Evolving feedforward artificial neural networks using a two-stage approach publication-title: Neurocomputing contributor: fullname: Zhang – volume: 559 start-page: 156 year: 2018 ident: 10.1016/j.jhydrol.2019.124435_b0355 article-title: An integrated model of water resources optimization allocation based on projection pursuit model – Grey wolf optimization method in a transboundary river basin publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2018.02.033 contributor: fullname: Yu – volume: 372 start-page: 80 year: 2009 ident: 10.1016/j.jhydrol.2019.124435_b0335 article-title: Methods to improve neural network performance in daily flows prediction publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2009.03.038 contributor: fullname: Wu – volume: 25 start-page: 179 year: 2014 ident: 10.1016/j.jhydrol.2019.124435_b0270 article-title: Forecasting of monthly river flow with autoregressive modeling and data-driven techniques publication-title: Neural Comput. Appl. doi: 10.1007/s00521-013-1469-9 contributor: fullname: Terzi – volume: 397 start-page: 191 year: 2011 ident: 10.1016/j.jhydrol.2019.124435_b0090 article-title: Runoff forecasting for an asphalt plane by Artificial Neural Networks and comparisons with kinematic wave and autoregressive moving average models publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2010.11.030 contributor: fullname: Chua – year: 1970 ident: 10.1016/j.jhydrol.2019.124435_b0065 contributor: fullname: Box – volume: 21 start-page: 533 year: 2007 ident: 10.1016/j.jhydrol.2019.124435_b0120 article-title: A neuro-fuzzy model for inflow forecasting of the Nile river at Aswan high dam publication-title: Water Resour. Manage. doi: 10.1007/s11269-006-9027-1 contributor: fullname: El-Shafie – volume: 1–29 year: 2016 ident: 10.1016/j.jhydrol.2019.124435_b0125 article-title: Application of soft computing based hybrid models in hydrological variables modeling: a comprehensive review publication-title: Theoret. Appl. Climatol. contributor: fullname: Fahimi – volume: 129 start-page: 279 year: 2014 ident: 10.1016/j.jhydrol.2019.124435_b0075 article-title: A Support Vector Machine-Firefly Algorithm based forecasting model to determine malaria transmission publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.09.030 contributor: fullname: Ch – volume: 530 start-page: 829 year: 2015 ident: 10.1016/j.jhydrol.2019.124435_b0340 article-title: Artificial intelligence based models for stream-flow forecasting: 2000–2015 publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2015.10.038 contributor: fullname: Yaseen – volume: 530 start-page: 137 year: 2015 ident: 10.1016/j.jhydrol.2019.124435_b0365 article-title: Are hybrid models integrated with data preprocessing techniques suitable for monthly streamflow forecasting? Some experiment evidences publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2015.09.047 contributor: fullname: Zhang – volume: 536 start-page: 471 year: 2016 ident: 10.1016/j.jhydrol.2019.124435_b0050 article-title: Application of artificial neural network coupled with genetic algorithm and simulated annealing to solve groundwater inflow problem to an advancing open pit mine publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2016.03.002 contributor: fullname: Bahrami – year: 2019 ident: 10.1016/j.jhydrol.2019.124435_b0275 article-title: Estimation of monthly reference evapotranspiration using novel hybrid machine learning approaches publication-title: Hydrol. Sci. J. doi: 10.1080/02626667.2019.1678750 contributor: fullname: Tikhamarine – volume: 38 start-page: 13073 year: 2011 ident: 10.1016/j.jhydrol.2019.124435_b0140 article-title: Monthly streamflow forecasting based on improved support vector machine model publication-title: Expert Syst. Applicat. doi: 10.1016/j.eswa.2011.04.114 contributor: fullname: Guo – volume: 23 start-page: 2289 year: 2009 ident: 10.1016/j.jhydrol.2019.124435_b0115 article-title: Enhancing inflow forecasting model at aswan high dam utilizing radial basis neural network and upstream monitoring stations measurements publication-title: Water Resour. Manage. doi: 10.1007/s11269-008-9382-1 contributor: fullname: El-Shafie – volume: 399 start-page: 132 year: 2011 ident: 10.1016/j.jhydrol.2019.124435_b0175 article-title: A wavelet-support vector machine conjunction model for monthly streamflow forecasting publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2010.12.041 contributor: fullname: Kisi – ident: 10.1016/j.jhydrol.2019.124435_b0170 doi: 10.1007/s11269-015-1107-7 – volume: 45 year: 2009 ident: 10.1016/j.jhydrol.2019.124435_b0330 article-title: Predicting monthly streamflow using data-driven models coupled with data-preprocessing techniques publication-title: Water Resour. Res. doi: 10.1029/2007WR006737 contributor: fullname: Wu – year: 1996 ident: 10.1016/j.jhydrol.2019.124435_b0155 contributor: fullname: Hurst – volume: 374 start-page: 294 year: 2009 ident: 10.1016/j.jhydrol.2019.124435_b0310 article-title: A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2009.06.019 contributor: fullname: Wang – volume: 16 start-page: 4417 year: 2012 ident: 10.1016/j.jhydrol.2019.124435_b0160 article-title: A hybrid model of self organizing maps and least square support vector machine for river flow forecasting publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-16-4417-2012 contributor: fullname: Ismail – volume: 70 start-page: 63 year: 2014 ident: 10.1016/j.jhydrol.2019.124435_b0100 article-title: Linear genetic programming application for successive-station monthly streamflow prediction publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2014.04.015 contributor: fullname: Danandeh Mehr – volume: 476 start-page: 433 year: 2013 ident: 10.1016/j.jhydrol.2019.124435_b0295 article-title: Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2012.11.017 contributor: fullname: Valipour – volume: 28 start-page: 4685 year: 2014 ident: 10.1016/j.jhydrol.2019.124435_b0285 article-title: Predicting monthly river flows by genetic fuzzy systems publication-title: Water Resour. Manage. doi: 10.1007/s11269-014-0767-z contributor: fullname: Turan – volume: 58 start-page: 374 year: 2013 ident: 10.1016/j.jhydrol.2019.124435_b0315 article-title: A wavelet-neural network hybrid modelling approach for estimating and predicting river monthly flows publication-title: Hydrol. Sci. J. doi: 10.1080/02626667.2012.754102 contributor: fullname: Wei – volume: 575 start-page: 544 year: 2019 ident: 10.1016/j.jhydrol.2019.124435_b0200 article-title: Soil moisture simulation using hybrid artificial intelligent model: hybridization of adaptive neuro fuzzy inference system with grey wolf optimizer algorithm publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.05.045 contributor: fullname: Maroufpoor – year: 1998 ident: 10.1016/j.jhydrol.2019.124435_b0260 contributor: fullname: Gunn – ident: 10.1016/j.jhydrol.2019.124435_b0070 doi: 10.1016/0143-6228(90)90043-O – volume: 352 start-page: 336 year: 2008 ident: 10.1016/j.jhydrol.2019.124435_b0195 article-title: Short-term streamflow forecasting with global climate change implications – A comparative study between genetic programming and neural network models publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2008.01.023 contributor: fullname: Makkeasorn |
SSID | ssj0000334 |
Score | 2.677104 |
Snippet | •Precise estimation of streamflow is required for events such as flood and drought.•Integrated AI with GWO outperform the standard AI methods.•SVR-GWO model... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 124435 |
SubjectTerms | Aswan High Dam Estimation Evolutionary algorithms Streamflow |
Title | Improving artificial intelligence models accuracy for monthly streamflow forecasting using grey Wolf optimization (GWO) algorithm |
URI | https://dx.doi.org/10.1016/j.jhydrol.2019.124435 |
Volume | 582 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLe67QAXxKcYX_KBA6hKaRundg4cIigbHLbDijZO0WvsNMmSBqWNUHfjP-c5zpfYQIDExapsuUnf--n559f3QchLR9gwA5hZbClDi0GoLCFwwLNATsFmoeA63_n4jJ9ciPdzNh8MmmY63dx_1TTOoa515uxfaLv9UpzAz6hzHFHrOP6R3jsvgV6s60PE_cKbVfObzRCCoCx0s3cdaIivt43SXZU6AlmY5t_0tApgU4VFl5VHAa_mu-F5nobDHA1NVmdwVo6G81PtXoB0lRfxNsp-QXmjnSxMzSfc42W6RoPUgGydEYv4MoIMitj4Wb_AVRNwX749y0tYWUe4bBaR-sukPVROIIFo6EWZcd56adxFF2yqiIXTq1VZ9J0ceKNto7yM5-1a9k2biTCZmSbJI2UMuOCuzrHjfQvvmP5G104L47hIRon5-TrQzx1pwmMqqPxUiFv_rz3Vj0POq_v1uHvkYIrmDe3qgfdxfvGpYwC2zZoq9XpDlzn25saH3cyJejxncZfcqbVFPYOse2Sg1vfJrSNVlzZ_QL63CKMdwmgfYdQgjDYIowglWiOMdgijPYTRCmFUI4xqhNE-wugrxNdr2qLrIfn8Yb54d2zVjTyswB67W2siJw6MmZoFNg9xECFH3j4GwVhVL4kpjqbClQI4CzjYznLJ8Z4hpxz5N5OB_Yjsr_O1ekyoLp-IKmZLxiVzHAF44oaKI9WbiDBQk0MyakTpfzX1WvwmkDHxa9n7Wva-kf0hEY3A_Zp0GjLpI0p-v_XJv299Sm53MH9G9rdFqZ6TvY0sX9Rg-gELgqzD |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+artificial+intelligence+models+accuracy+for+monthly+streamflow+forecasting+using+grey+Wolf+optimization+%28GWO%29+algorithm&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Tikhamarine%2C+Yazid&rft.au=Souag-Gamane%2C+Doudja&rft.au=Najah+Ahmed%2C+Ali&rft.au=Kisi%2C+Ozgur&rft.date=2020-03-01&rft.pub=Elsevier+B.V&rft.issn=0022-1694&rft.eissn=1879-2707&rft.volume=582&rft_id=info:doi/10.1016%2Fj.jhydrol.2019.124435&rft.externalDocID=S0022169419311709 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon |