Improving artificial intelligence models accuracy for monthly streamflow forecasting using grey Wolf optimization (GWO) algorithm

•Precise estimation of streamflow is required for events such as flood and drought.•Integrated AI with GWO outperform the standard AI methods.•SVR-GWO model improves the predictive precision of streamflow. Monthly streamflow forecasting is required for short- and long-term water resources management...

Full description

Saved in:
Bibliographic Details
Published in:Journal of hydrology (Amsterdam) Vol. 582; p. 124435
Main Authors: Tikhamarine, Yazid, Souag-Gamane, Doudja, Najah Ahmed, Ali, Kisi, Ozgur, El-Shafie, Ahmed
Format: Journal Article
Language:English
Published: Elsevier B.V 01-03-2020
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Precise estimation of streamflow is required for events such as flood and drought.•Integrated AI with GWO outperform the standard AI methods.•SVR-GWO model improves the predictive precision of streamflow. Monthly streamflow forecasting is required for short- and long-term water resources management especially in extreme events such as flood and drought. Therefore, there is need to develop a reliable and precise model for streamflow forecasting. The precision of Artificial Intelligence (AI) models can be improved by using hybrid AI models which consist of coupled models. Therefore, the chief aim of this study is to propose efficient hybrid system by integrating Grey Wolf Optimization (GWO) algorithm with Artificial Intelligence (AI) models. 130 years of monthly historical natural streamflow data will be used to evaluate the performance of the proposed modelling technique. Quantitative performance indicators will be introduced to evaluate the validity of the integrated models; in addition to that, comprehensive analysis will be conducted between the predicted and the observed streamflow. The results show the integrated AI with GWO outperform the standard AI methods and can make better forecasting during training and testing phases for the monthly inflow in all input cases. This finding reveals the superiority of GWO meta-heuristic algorithm in improving the accuracy of the standard AI in forecasting the monthly inflow.
AbstractList •Precise estimation of streamflow is required for events such as flood and drought.•Integrated AI with GWO outperform the standard AI methods.•SVR-GWO model improves the predictive precision of streamflow. Monthly streamflow forecasting is required for short- and long-term water resources management especially in extreme events such as flood and drought. Therefore, there is need to develop a reliable and precise model for streamflow forecasting. The precision of Artificial Intelligence (AI) models can be improved by using hybrid AI models which consist of coupled models. Therefore, the chief aim of this study is to propose efficient hybrid system by integrating Grey Wolf Optimization (GWO) algorithm with Artificial Intelligence (AI) models. 130 years of monthly historical natural streamflow data will be used to evaluate the performance of the proposed modelling technique. Quantitative performance indicators will be introduced to evaluate the validity of the integrated models; in addition to that, comprehensive analysis will be conducted between the predicted and the observed streamflow. The results show the integrated AI with GWO outperform the standard AI methods and can make better forecasting during training and testing phases for the monthly inflow in all input cases. This finding reveals the superiority of GWO meta-heuristic algorithm in improving the accuracy of the standard AI in forecasting the monthly inflow.
ArticleNumber 124435
Author Kisi, Ozgur
El-Shafie, Ahmed
Souag-Gamane, Doudja
Tikhamarine, Yazid
Najah Ahmed, Ali
Author_xml – sequence: 1
  givenname: Yazid
  surname: Tikhamarine
  fullname: Tikhamarine, Yazid
  organization: LEGHYD Laboratory, Department of Civil Engineering, University of Scienceand Technology Houari Boumediene, BP 32, BabEzzouar, Algiers, Algeria
– sequence: 2
  givenname: Doudja
  surname: Souag-Gamane
  fullname: Souag-Gamane, Doudja
  organization: LEGHYD Laboratory, Department of Civil Engineering, University of Scienceand Technology Houari Boumediene, BP 32, BabEzzouar, Algiers, Algeria
– sequence: 3
  givenname: Ali
  surname: Najah Ahmed
  fullname: Najah Ahmed, Ali
  organization: Institute for Energy Infrastructure (IEI), Universiti Tenaga Nasional (UNITEN), Kajang 43000, Selangor Darul Ehsan, Malaysia
– sequence: 4
  givenname: Ozgur
  orcidid: 0000-0001-7847-5872
  surname: Kisi
  fullname: Kisi, Ozgur
  organization: School of Technology, Ilia State University, Tbilisi, Georgia
– sequence: 5
  givenname: Ahmed
  orcidid: 0000-0001-5018-8505
  surname: El-Shafie
  fullname: El-Shafie, Ahmed
  organization: Department of Civil Engineering, Faculty of Engineering, University of Malaya (UM), 50603 Kuala Lumpur, Malaysia
BookMark eNqFkMFLwzAYxYNMcJv-CUKOemhN2rRpTyJD52Cwi7JjyJK0y0ibkWRKvfmfm7Ld_Q7vgwfvwfvNwKS3vQLgHqMUI1w-HdLDfpDOmjRDuE5xRkheXIEprmidZBTRCZgilGUJLmtyA2beH1C8PCdT8Lvqjs5-6b6F3AXdaKG5gboPyhjdql4o2FmpjIdciJPjYoCNddHrw94M0AeneNcY-z3aSnAfxqqTH7V1aoBbaxpoj0F3-ocHbXv4sNxuHiE3rXU67LtbcN1w49Xd5c_B59vrx-I9WW-Wq8XLOhE5qkOCJS44IqoUOW2iVA0lRYl4RUicgiqiKNnJWlacEkF5Xux2tCxKmdEyApEin4Pi3Cuc9d6phh2d7rgbGEZs5MgO7MKRjRzZmWPMPZ9zEYL60soxL_QIRuo4ODBp9T8NfwKog4E
CitedBy_id crossref_primary_10_1016_j_jhydrol_2022_128001
crossref_primary_10_1080_19942060_2022_2073565
crossref_primary_10_1007_s11227_021_03810_8
crossref_primary_10_1016_j_jlp_2021_104439
crossref_primary_10_1016_j_eswa_2021_115669
crossref_primary_10_1016_j_eswa_2020_113882
crossref_primary_10_1016_j_dajour_2023_100360
crossref_primary_10_1007_s11356_021_13445_0
crossref_primary_10_1016_j_ecolind_2021_107628
crossref_primary_10_1049_ntw2_12057
crossref_primary_10_3390_su13115900
crossref_primary_10_3390_w16060859
crossref_primary_10_1007_s11069_022_05237_7
crossref_primary_10_1016_j_agwat_2024_108924
crossref_primary_10_1007_s11831_022_09763_2
crossref_primary_10_1016_j_compeleceng_2024_109074
crossref_primary_10_1016_j_asoc_2023_110319
crossref_primary_10_1016_j_jhydrol_2020_125655
crossref_primary_10_3390_su14063352
crossref_primary_10_1016_j_jhydrol_2021_126506
crossref_primary_10_3390_ijerph17103730
crossref_primary_10_1016_j_knosys_2021_107379
crossref_primary_10_1007_s00477_021_02012_1
crossref_primary_10_1007_s11356_020_10421_y
crossref_primary_10_1007_s12665_022_10593_5
crossref_primary_10_1038_s41598_024_65547_7
crossref_primary_10_1080_02626667_2022_2149334
crossref_primary_10_2166_ws_2021_161
crossref_primary_10_3390_ani12233300
crossref_primary_10_1016_j_jhydrol_2023_130559
crossref_primary_10_1016_j_pce_2024_103646
crossref_primary_10_1177_14759217221113323
crossref_primary_10_1007_s00500_022_07141_5
crossref_primary_10_1016_j_asoc_2021_107282
crossref_primary_10_1016_j_jenvman_2024_120682
crossref_primary_10_1016_j_jhydrol_2021_126854
crossref_primary_10_1007_s10668_022_02497_y
crossref_primary_10_1088_1742_6596_2271_1_012019
crossref_primary_10_1007_s11356_023_28236_y
crossref_primary_10_1111_1752_1688_13098
crossref_primary_10_1061__ASCE_ST_1943_541X_0003356
crossref_primary_10_1155_2021_6611848
crossref_primary_10_3390_w13020139
crossref_primary_10_1007_s10661_021_09127_6
crossref_primary_10_1016_j_ins_2021_02_011
crossref_primary_10_1007_s00704_023_04624_9
crossref_primary_10_1007_s40996_022_00976_w
crossref_primary_10_3390_su12229720
crossref_primary_10_1016_j_agwat_2023_108620
crossref_primary_10_1016_j_aej_2021_02_046
crossref_primary_10_1016_j_chaos_2021_111783
crossref_primary_10_1016_j_jhydrol_2022_128431
crossref_primary_10_1109_TSTE_2024_3402585
crossref_primary_10_3390_hydrology10030058
crossref_primary_10_3390_su12197877
crossref_primary_10_1016_j_conbuildmat_2022_128862
crossref_primary_10_1038_s41598_024_63490_1
crossref_primary_10_1016_j_aej_2021_10_021
crossref_primary_10_3390_math10071121
crossref_primary_10_1109_ACCESS_2023_3318739
crossref_primary_10_1016_j_agwat_2021_107342
crossref_primary_10_5194_hess_25_5951_2021
crossref_primary_10_1016_j_jhydrol_2022_128836
crossref_primary_10_1016_j_jhydrol_2021_126879
crossref_primary_10_1016_j_mex_2021_101589
crossref_primary_10_3390_rs13061196
crossref_primary_10_3390_w15193427
crossref_primary_10_1016_j_jhydrol_2020_125769
crossref_primary_10_1007_s00703_021_00787_0
crossref_primary_10_1016_j_jenvman_2024_120404
crossref_primary_10_1016_j_knosys_2023_110737
crossref_primary_10_2166_ws_2023_122
crossref_primary_10_1007_s41870_023_01496_0
crossref_primary_10_1016_j_chemolab_2023_104930
crossref_primary_10_1007_s11269_020_02619_z
crossref_primary_10_1007_s11356_022_21410_8
crossref_primary_10_1007_s12145_024_01390_8
crossref_primary_10_1038_s41598_023_41108_2
crossref_primary_10_1061__ASCE_IR_1943_4774_0001688
crossref_primary_10_1007_s10661_020_08659_7
crossref_primary_10_1109_ACCESS_2022_3162932
crossref_primary_10_1007_s13201_023_01913_6
crossref_primary_10_1007_s12145_024_01300_y
crossref_primary_10_1155_2022_4882521
crossref_primary_10_1007_s00477_020_01874_1
crossref_primary_10_1007_s11269_022_03133_0
crossref_primary_10_1007_s11356_021_15563_1
crossref_primary_10_1007_s00477_023_02610_1
crossref_primary_10_1016_j_asej_2021_01_007
crossref_primary_10_1142_S1793557121501448
crossref_primary_10_1080_02626667_2022_2082877
crossref_primary_10_1061_JHYEFF_HEENG_5920
crossref_primary_10_1016_j_eswa_2023_121113
crossref_primary_10_1007_s11356_020_08792_3
crossref_primary_10_1016_j_eswa_2023_122200
crossref_primary_10_1016_j_jhydrol_2022_128608
crossref_primary_10_3390_w14142241
crossref_primary_10_1080_02626667_2022_2138759
crossref_primary_10_1016_j_energy_2022_124382
crossref_primary_10_1016_j_heliyon_2022_e09399
crossref_primary_10_3390_su14137936
crossref_primary_10_1007_s11356_020_09876_w
crossref_primary_10_1016_j_agwat_2022_107861
crossref_primary_10_1016_j_aiig_2024_100073
crossref_primary_10_1080_02626667_2022_2141121
crossref_primary_10_1016_j_jhydrol_2020_124897
crossref_primary_10_1007_s12205_023_0821_6
crossref_primary_10_1080_02626667_2022_2063724
crossref_primary_10_1016_j_jhydrol_2021_126258
crossref_primary_10_1080_0194262X_2022_2116144
crossref_primary_10_1002_cjce_25047
crossref_primary_10_1016_j_egyr_2023_09_071
crossref_primary_10_1016_j_jhydrol_2021_125967
crossref_primary_10_1016_j_eswa_2023_123076
crossref_primary_10_1038_s41598_022_06969_z
crossref_primary_10_1016_j_jksuci_2021_11_016
crossref_primary_10_3390_biomimetics8010084
crossref_primary_10_1016_j_fuel_2023_129589
crossref_primary_10_1007_s13201_022_01830_0
crossref_primary_10_1111_geoj_12478
crossref_primary_10_1016_j_jhydrol_2021_126607
crossref_primary_10_3390_w13010091
crossref_primary_10_1007_s40996_020_00571_x
crossref_primary_10_2166_wcc_2020_365
crossref_primary_10_1016_j_geotexmem_2021_04_007
crossref_primary_10_1016_j_asej_2022_101876
crossref_primary_10_1007_s10311_024_01748_w
crossref_primary_10_1080_02626667_2021_1928138
crossref_primary_10_1016_j_jhydrol_2021_126310
crossref_primary_10_1007_s11069_021_04839_x
crossref_primary_10_1016_j_jhydrol_2022_128995
crossref_primary_10_1007_s13201_022_01593_8
crossref_primary_10_1038_s41598_023_41113_5
crossref_primary_10_1007_s00477_023_02632_9
crossref_primary_10_1016_j_ejrh_2024_101681
crossref_primary_10_1016_j_asej_2022_101919
crossref_primary_10_1016_j_eswa_2022_119002
crossref_primary_10_1117_1_JRS_15_024519
crossref_primary_10_3390_su12218932
crossref_primary_10_1007_s10668_023_03885_8
crossref_primary_10_1007_s40899_021_00584_y
crossref_primary_10_1016_j_clwat_2024_100003
crossref_primary_10_1155_2022_4792988
crossref_primary_10_1016_j_scitotenv_2020_139486
crossref_primary_10_1016_j_aej_2021_04_100
crossref_primary_10_1109_ACCESS_2024_3404606
crossref_primary_10_1080_02626667_2021_2012182
crossref_primary_10_3390_e24081065
crossref_primary_10_1007_s11600_022_00934_0
crossref_primary_10_1080_19942060_2021_2019128
crossref_primary_10_1016_j_eswa_2022_117629
crossref_primary_10_1007_s11269_022_03339_2
crossref_primary_10_3390_w14203338
Cites_doi 10.1002/joc.3754
10.1029/2010WR009742
10.2166/hydro.2015.095
10.1016/j.asoc.2007.07.011
10.1016/j.jhydrol.2013.11.054
10.1007/s40710-015-0080-8
10.1016/j.pce.2007.04.019
10.3923/jas.2012.2139.2147
10.1016/j.jhydrol.2015.11.011
10.1007/s40710-015-0081-7
10.1016/j.jhydrol.2016.09.035
10.1016/S0022-1694(98)00242-X
10.1016/j.eswa.2014.03.053
10.1007/s11269-016-1408-5
10.1016/j.jhydrol.2005.06.001
10.1007/s10489-016-0767-1
10.1016/j.jhydrol.2017.07.008
10.1007/s00500-016-2442-1
10.1016/j.jhydrol.2011.10.039
10.1016/j.jhydrol.2015.05.048
10.1007/s11269-014-0824-7
10.1111/j.1752-1688.2002.tb01544.x
10.1016/j.eswa.2014.09.062
10.1007/s10489-014-0645-7
10.1016/j.jhydrol.2014.03.057
10.1016/j.advengsoft.2013.12.007
10.1007/s40710-015-0064-8
10.1007/s00703-010-0110-z
10.1007/s12517-019-4697-1
10.2478/johh-2013-0015
10.1002/2015WR017049
10.1145/1961189.1961199
10.1016/j.jhydrol.2019.06.025
10.1623/hysj.51.4.599
10.1016/j.compag.2015.09.012
10.1007/BF02478259
10.2166/hydro.2010.040
10.1007/s10586-019-02913-5
10.1016/j.jhydrol.2018.02.033
10.1016/j.jhydrol.2009.03.038
10.1007/s00521-013-1469-9
10.1016/j.jhydrol.2010.11.030
10.1007/s11269-006-9027-1
10.1016/j.neucom.2013.09.030
10.1016/j.jhydrol.2015.10.038
10.1016/j.jhydrol.2015.09.047
10.1016/j.jhydrol.2016.03.002
10.1080/02626667.2019.1678750
10.1016/j.eswa.2011.04.114
10.1007/s11269-008-9382-1
10.1016/j.jhydrol.2010.12.041
10.1007/s11269-015-1107-7
10.1029/2007WR006737
10.1016/j.jhydrol.2009.06.019
10.5194/hess-16-4417-2012
10.1016/j.cageo.2014.04.015
10.1016/j.jhydrol.2012.11.017
10.1007/s11269-014-0767-z
10.1080/02626667.2012.754102
10.1016/j.jhydrol.2019.05.045
10.1016/0143-6228(90)90043-O
10.1016/j.jhydrol.2008.01.023
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.jhydrol.2019.124435
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1879-2707
ExternalDocumentID 10_1016_j_jhydrol_2019_124435
S0022169419311709
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACLVX
ACNCT
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SPD
SSA
SSE
SSZ
T5K
TN5
UQL
VOH
WUQ
Y6R
ZCA
ZMT
ZY4
~02
~G-
~KM
AAHBH
AAXKI
AAYXX
ADVLN
AFJKZ
AKRWK
CITATION
ID FETCH-LOGICAL-c309t-1d15a04e6c37f6c38f74560a844003084e74bd9d8a74c7a35bb7656d276124dc3
ISSN 0022-1694
IngestDate Thu Sep 26 15:53:37 EDT 2024
Fri Feb 23 02:47:17 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Aswan High Dam
Evolutionary algorithms
Streamflow
Estimation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c309t-1d15a04e6c37f6c38f74560a844003084e74bd9d8a74c7a35bb7656d276124dc3
ORCID 0000-0001-5018-8505
0000-0001-7847-5872
ParticipantIDs crossref_primary_10_1016_j_jhydrol_2019_124435
elsevier_sciencedirect_doi_10_1016_j_jhydrol_2019_124435
PublicationCentury 2000
PublicationDate March 2020
2020-03-00
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: March 2020
PublicationDecade 2020
PublicationTitle Journal of hydrology (Amsterdam)
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Fahimi, Yaseen, El-shafie (b0125) 2016; 1–29
Ahmed, Othman, Afan, Elsha (b0010) 2019
Parmar, Bhardwaj (b0230) 2014; 29
Valipour, Banihabib, Behbahani (b0295) 2013; 476
Al Shorman, Faris, Aljarah (b0015) 2019
Kisi, O., 2015. Streamflow Forecasting and Estimation Using Least Square Support Vector Regression and Adaptive Neuro-Fuzzy Embedded Fuzzy c-means Clustering 5109–5127. https://doi.org/10.1007/s11269-015-1107-7.
Hurst, Black, Simaika (b0155) 1996
Turan, Yurdusev (b0285) 2014; 28
Rasouli, Hsieh, Cannon (b0240) 2012; 414–415
Tikhamarine, Souag-Gamane, Kisi (b0280) 2019; 12
Tabari, Sabziparvar, Ahmadi (b0265) 2011; 110
Mirjalili, Mirjalili, Lewis (b0215) 2014; 69
Danandeh Mehr, Kahya, Yerdelen (b0100) 2014; 70
Yaseen, Kisi, Demir (b0350) 2016
Danandeh Mehr, Kahya, Bagheri, Deliktas (b0095) 2013; 1–13
Mirjalili (b0210) 2015; 43
Yu, Lu (b0355) 2018; 559
Bai, Chen, Xie, Li (b0055) 2016; 532
McCulloch, Pitts (b0205) 1943; 5
Willmott (b0320) 1984
Dehghani, Saghafian, Nasiri Saleh, Farokhnia, Noori (b0105) 2014; 34
Kavousi-Fard, Samet, Marzbani (b0165) 2014; 41
Ismail, Shabri, Samsudin (b0160) 2012; 16
Vogel, Lall, Cai, Rajagopalan, Weiskel, Hooper, Matalas (b0305) 2015; 51
Afan, Keshtegar, Mohtar, El-Shafie (b0005) 2017; 552
Chen, Chau, Wang (b0085) 2015; 17
Haykin (b0145) 1994
El-Shafie, Abdin, Noureldin, Taha (b0115) 2009; 23
Lin, Cheng, Chau (b0180) 2006; 51
Valipour, Banihabib, Behbahani (b0290) 2012; 12
Zealand, Burn, Simonovic (b0360) 1999; 214
Ch, Sohani, Kumar, Malik, Chahar, Nema, Panigrahi, Dhiman (b0075) 2014; 129
He, Wen, Liu, Du (b0150) 2014; 509
Zia, Harris, Merrett, Rivers (b0370) 2015; 118
Zhang (bib377) 2019
Aljarah, Faris, Mirjalili, Al-Madi, Sheta, Mafarja (b0025) 2019
Faris, Aljarah, Mirjalili (b0135) 2016; 45
Zounemat-Kermani, Teshnehlab (b0375) 2008; 8
Chang, Lin (b0080) 2011; 2
Chua, Wong (b0090) 2011; 397
Kisi, Cimen (b0175) 2011; 399
Narsimlu (bib376) 2015
Zhang, Peng, Zhang, Wang (b0365) 2015; 530
Makkeasorn, Chang, Zhou (b0195) 2008; 352
Bahrami, Ardejani, Baafi (b0050) 2016; 536
Wei, Yang, Song, Abbaspour, Xu (b0315) 2013; 58
Yaseen, Jaafar, Deo, Kisi, Adamowski, Quilty, El-shafie (b0345) 2016
Aljarah, Faris, Mirjalili (b0020) 2018; 22
Okkan, Ali Serbes (b0225) 2013; 61
Singh, Cui (b0250) 2015; 2
Bruins, H.J., 1990. Water harvesting for plant production: Reij, C., Mulder, P., Begemann, L. Washington, D.C.: The World Bank, World Bank Technical Paper Number 91, 1988, 123 pp. Appl. Geograp. 10, 359. https://doi.org/10.1016/0143-6228(90)90043-O.
Asefa, Kemblowski, McKee, Khalil (b0045) 2006; 318
Smola (b0255) 1996
Liong, Sivapragasam (b0185) 2002; 38
naganna, deka (bib378) 2014
Gunn (b0260) 1998
Box, Jenkins (b0065) 1970
Yaseen, El-shafie, Jaafar, Afan, Sayl (b0340) 2015; 530
Vapnik (b0300) 1995
Bayazit (b0060) 2015; 2
Deo, Şahin (b0110) 2016; 188
Nourani, Hosseini Baghanam, Adamowski, Kisi (b0220) 2014; 514
Amiri (b0030) 2015; 527
Fathian, Mehdizadeh, Kozekalani Sales, Safari (b0130) 2019; 575
Terzi, Ergin (b0270) 2014; 25
Tikhamarine, Malik, Kumar, Souag-Gamane, Kisi (b0275) 2019
Amisigo, van de Giesen, Rogers, Andah, Friesen (b0035) 2008; 33
Sharma, Srivastava, Fang, Kalin (b0245) 2015; 42
Pramanik, Panda, Singh (b0235) 2010; 13
Wu, Chau, Li (b0330) 2009; 45
Wang, Chau, Cheng, Qiu (b0310) 2009; 374
Guo, Zhou, Qin, Zou, Li (b0140) 2011; 38
Wu, Chau, Li (b0335) 2009; 372
El-Shafie, Taha, Noureldin (b0120) 2007; 21
Angelakis, Gikas (b0040) 2014; 8
Maroufpoor, Maroufpoor, Bozorg-Haddad, Shiri, Mundher Yaseen (b0200) 2019; 575
Maity, Kashid (b0190) 2011; 47
Mirjalili (10.1016/j.jhydrol.2019.124435_b0215) 2014; 69
Amiri (10.1016/j.jhydrol.2019.124435_b0030) 2015; 527
Amisigo (10.1016/j.jhydrol.2019.124435_b0035) 2008; 33
Ismail (10.1016/j.jhydrol.2019.124435_b0160) 2012; 16
Nourani (10.1016/j.jhydrol.2019.124435_b0220) 2014; 514
Wu (10.1016/j.jhydrol.2019.124435_b0330) 2009; 45
Tabari (10.1016/j.jhydrol.2019.124435_b0265) 2011; 110
Vogel (10.1016/j.jhydrol.2019.124435_b0305) 2015; 51
Liong (10.1016/j.jhydrol.2019.124435_b0185) 2002; 38
naganna (10.1016/j.jhydrol.2019.124435_bib378) 2014
Narsimlu (10.1016/j.jhydrol.2019.124435_bib376) 2015
Kisi (10.1016/j.jhydrol.2019.124435_b0175) 2011; 399
Ahmed (10.1016/j.jhydrol.2019.124435_b0010) 2019
Tikhamarine (10.1016/j.jhydrol.2019.124435_b0280) 2019; 12
Yaseen (10.1016/j.jhydrol.2019.124435_b0340) 2015; 530
Danandeh Mehr (10.1016/j.jhydrol.2019.124435_b0100) 2014; 70
Haykin (10.1016/j.jhydrol.2019.124435_b0145) 1994
Valipour (10.1016/j.jhydrol.2019.124435_b0295) 2013; 476
Danandeh Mehr (10.1016/j.jhydrol.2019.124435_b0095) 2013; 1–13
Zealand (10.1016/j.jhydrol.2019.124435_b0360) 1999; 214
10.1016/j.jhydrol.2019.124435_b0170
Deo (10.1016/j.jhydrol.2019.124435_b0110) 2016; 188
Zia (10.1016/j.jhydrol.2019.124435_b0370) 2015; 118
Mirjalili (10.1016/j.jhydrol.2019.124435_b0210) 2015; 43
Aljarah (10.1016/j.jhydrol.2019.124435_b0025) 2019
Zounemat-Kermani (10.1016/j.jhydrol.2019.124435_b0375) 2008; 8
Wang (10.1016/j.jhydrol.2019.124435_b0310) 2009; 374
Sharma (10.1016/j.jhydrol.2019.124435_b0245) 2015; 42
Terzi (10.1016/j.jhydrol.2019.124435_b0270) 2014; 25
Vapnik (10.1016/j.jhydrol.2019.124435_b0300) 1995
Bai (10.1016/j.jhydrol.2019.124435_b0055) 2016; 532
Faris (10.1016/j.jhydrol.2019.124435_b0135) 2016; 45
Afan (10.1016/j.jhydrol.2019.124435_b0005) 2017; 552
Chua (10.1016/j.jhydrol.2019.124435_b0090) 2011; 397
Guo (10.1016/j.jhydrol.2019.124435_b0140) 2011; 38
Dehghani (10.1016/j.jhydrol.2019.124435_b0105) 2014; 34
Zhang (10.1016/j.jhydrol.2019.124435_b0365) 2015; 530
El-Shafie (10.1016/j.jhydrol.2019.124435_b0115) 2009; 23
Kavousi-Fard (10.1016/j.jhydrol.2019.124435_b0165) 2014; 41
Fathian (10.1016/j.jhydrol.2019.124435_b0130) 2019; 575
Angelakis (10.1016/j.jhydrol.2019.124435_b0040) 2014; 8
McCulloch (10.1016/j.jhydrol.2019.124435_b0205) 1943; 5
Maroufpoor (10.1016/j.jhydrol.2019.124435_b0200) 2019; 575
Willmott (10.1016/j.jhydrol.2019.124435_b0320) 1984
Turan (10.1016/j.jhydrol.2019.124435_b0285) 2014; 28
Chen (10.1016/j.jhydrol.2019.124435_b0085) 2015; 17
Ch (10.1016/j.jhydrol.2019.124435_b0075) 2014; 129
Maity (10.1016/j.jhydrol.2019.124435_b0190) 2011; 47
Yu (10.1016/j.jhydrol.2019.124435_b0355) 2018; 559
Zhang (10.1016/j.jhydrol.2019.124435_bib377) 2019
Parmar (10.1016/j.jhydrol.2019.124435_b0230) 2014; 29
Valipour (10.1016/j.jhydrol.2019.124435_b0290) 2012; 12
Bahrami (10.1016/j.jhydrol.2019.124435_b0050) 2016; 536
Wei (10.1016/j.jhydrol.2019.124435_b0315) 2013; 58
Chang (10.1016/j.jhydrol.2019.124435_b0080) 2011; 2
Gunn (10.1016/j.jhydrol.2019.124435_b0260) 1998
Hurst (10.1016/j.jhydrol.2019.124435_b0155) 1996
Pramanik (10.1016/j.jhydrol.2019.124435_b0235) 2010; 13
Rasouli (10.1016/j.jhydrol.2019.124435_b0240) 2012; 414–415
Yaseen (10.1016/j.jhydrol.2019.124435_b0345) 2016
10.1016/j.jhydrol.2019.124435_b0070
Al Shorman (10.1016/j.jhydrol.2019.124435_b0015) 2019
Lin (10.1016/j.jhydrol.2019.124435_b0180) 2006; 51
Tikhamarine (10.1016/j.jhydrol.2019.124435_b0275) 2019
Asefa (10.1016/j.jhydrol.2019.124435_b0045) 2006; 318
Smola (10.1016/j.jhydrol.2019.124435_b0255) 1996
Yaseen (10.1016/j.jhydrol.2019.124435_b0350) 2016
Bayazit (10.1016/j.jhydrol.2019.124435_b0060) 2015; 2
Fahimi (10.1016/j.jhydrol.2019.124435_b0125) 2016; 1–29
He (10.1016/j.jhydrol.2019.124435_b0150) 2014; 509
Aljarah (10.1016/j.jhydrol.2019.124435_b0020) 2018; 22
Box (10.1016/j.jhydrol.2019.124435_b0065) 1970
El-Shafie (10.1016/j.jhydrol.2019.124435_b0120) 2007; 21
Singh (10.1016/j.jhydrol.2019.124435_b0250) 2015; 2
Wu (10.1016/j.jhydrol.2019.124435_b0335) 2009; 372
Okkan (10.1016/j.jhydrol.2019.124435_b0225) 2013; 61
Makkeasorn (10.1016/j.jhydrol.2019.124435_b0195) 2008; 352
References_xml – volume: 16
  start-page: 4417
  year: 2012
  end-page: 4433
  ident: b0160
  article-title: A hybrid model of self organizing maps and least square support vector machine for river flow forecasting
  publication-title: Hydrol. Earth Syst. Sci.
  contributor:
    fullname: Samsudin
– volume: 13
  start-page: 49
  year: 2010
  ident: b0235
  article-title: Daily river flow forecasting using wavelet ANN hybrid models
  publication-title: J. Hydroinformat.
  contributor:
    fullname: Singh
– volume: 12
  start-page: 540
  year: 2019
  ident: b0280
  article-title: A new intelligent method for monthly streamflow prediction: hybrid wavelet support vector regression based on grey wolf optimizer (WSVR–GWO)
  publication-title: Arab. J. Geosci.
  contributor:
    fullname: Kisi
– volume: 17
  start-page: 733
  year: 2015
  end-page: 744
  ident: b0085
  article-title: A novel hybrid neural network based on continuity equation and fuzzy pattern-recognition for downstream daily river discharge forecasting
  publication-title: J. Hydroinformat.
  contributor:
    fullname: Wang
– volume: 414–415
  start-page: 284
  year: 2012
  end-page: 293
  ident: b0240
  article-title: Daily streamflow forecasting by machine learning methods with weather and climate inputs
  publication-title: J. Hydrol.
  contributor:
    fullname: Cannon
– volume: 559
  start-page: 156
  year: 2018
  end-page: 165
  ident: b0355
  article-title: An integrated model of water resources optimization allocation based on projection pursuit model – Grey wolf optimization method in a transboundary river basin
  publication-title: J. Hydrol.
  contributor:
    fullname: Lu
– volume: 33
  start-page: 141
  year: 2008
  end-page: 150
  ident: b0035
  article-title: Monthly streamflow prediction in the Volta Basin of West Africa: A SISO NARMAX polynomial modelling
  publication-title: Phys. Chem. the Earth, Parts A/B/C
  contributor:
    fullname: Friesen
– volume: 8
  start-page: 67
  year: 2014
  end-page: 78
  ident: b0040
  article-title: Water reuse: Overview of current practices and trends in the world with emphasis on EU states
  publication-title: Water Util. J.
  contributor:
    fullname: Gikas
– volume: 21
  start-page: 533
  year: 2007
  end-page: 556
  ident: b0120
  article-title: A neuro-fuzzy model for inflow forecasting of the Nile river at Aswan high dam
  publication-title: Water Resour. Manage.
  contributor:
    fullname: Noureldin
– volume: 352
  start-page: 336
  year: 2008
  end-page: 354
  ident: b0195
  article-title: Short-term streamflow forecasting with global climate change implications – A comparative study between genetic programming and neural network models
  publication-title: J. Hydrol.
  contributor:
    fullname: Zhou
– volume: 25
  start-page: 179
  year: 2014
  end-page: 188
  ident: b0270
  article-title: Forecasting of monthly river flow with autoregressive modeling and data-driven techniques
  publication-title: Neural Comput. Appl.
  contributor:
    fullname: Ergin
– volume: 372
  start-page: 80
  year: 2009
  end-page: 93
  ident: b0335
  article-title: Methods to improve neural network performance in daily flows prediction
  publication-title: J. Hydrol.
  contributor:
    fullname: Li
– volume: 532
  start-page: 193
  year: 2016
  end-page: 206
  ident: b0055
  article-title: Daily reservoir inflow forecasting usingmultiscale deep feature learning with hybrid models
  publication-title: J. Hydrol.
  contributor:
    fullname: Li
– volume: 45
  year: 2009
  ident: b0330
  article-title: Predicting monthly streamflow using data-driven models coupled with data-preprocessing techniques
  publication-title: Water Resour. Res.
  contributor:
    fullname: Li
– volume: 214
  start-page: 32
  year: 1999
  end-page: 48
  ident: b0360
  article-title: Short term streamflow forecasting using artificial neural networks
  publication-title: J. Hydrol.
  contributor:
    fullname: Simonovic
– volume: 38
  start-page: 13073
  year: 2011
  end-page: 13081
  ident: b0140
  article-title: Monthly streamflow forecasting based on improved support vector machine model
  publication-title: Expert Syst. Applicat.
  contributor:
    fullname: Li
– volume: 399
  start-page: 132
  year: 2011
  end-page: 140
  ident: b0175
  article-title: A wavelet-support vector machine conjunction model for monthly streamflow forecasting
  publication-title: J. Hydrol.
  contributor:
    fullname: Cimen
– volume: 476
  start-page: 433
  year: 2013
  end-page: 441
  ident: b0295
  article-title: Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir
  publication-title: J. Hydrol.
  contributor:
    fullname: Behbahani
– year: 1996
  ident: b0255
  article-title: Regression Estimation with Support Vector
  contributor:
    fullname: Smola
– volume: 397
  start-page: 191
  year: 2011
  end-page: 201
  ident: b0090
  article-title: Runoff forecasting for an asphalt plane by Artificial Neural Networks and comparisons with kinematic wave and autoregressive moving average models
  publication-title: J. Hydrol.
  contributor:
    fullname: Wong
– volume: 129
  start-page: 279
  year: 2014
  end-page: 288
  ident: b0075
  article-title: A Support Vector Machine-Firefly Algorithm based forecasting model to determine malaria transmission
  publication-title: Neurocomputing
  contributor:
    fullname: Dhiman
– volume: 2
  start-page: 449
  year: 2015
  end-page: 460
  ident: b0250
  article-title: Entropy theory for streamflow forecasting
  publication-title: Environ. Process.
  contributor:
    fullname: Cui
– volume: 575
  start-page: 1200
  year: 2019
  end-page: 1213
  ident: b0130
  article-title: Hybrid models to improve the monthly river flow prediction: integrating artificial intelligence and nonlinear time series models
  publication-title: J. Hydrol.
  contributor:
    fullname: Safari
– volume: 28
  start-page: 4685
  year: 2014
  end-page: 4697
  ident: b0285
  article-title: Predicting monthly river flows by genetic fuzzy systems
  publication-title: Water Resour. Manage.
  contributor:
    fullname: Yurdusev
– volume: 58
  start-page: 374
  year: 2013
  end-page: 389
  ident: b0315
  article-title: A wavelet-neural network hybrid modelling approach for estimating and predicting river monthly flows
  publication-title: Hydrol. Sci. J.
  contributor:
    fullname: Xu
– volume: 530
  start-page: 829
  year: 2015
  end-page: 844
  ident: b0340
  article-title: Artificial intelligence based models for stream-flow forecasting: 2000–2015
  publication-title: J. Hydrol.
  contributor:
    fullname: Sayl
– volume: 22
  start-page: 1
  year: 2018
  end-page: 15
  ident: b0020
  article-title: Optimizing connection weights in neural networks using the whale optimization algorithm
  publication-title: Soft Comput.
  contributor:
    fullname: Mirjalili
– volume: 575
  start-page: 544
  year: 2019
  end-page: 556
  ident: b0200
  article-title: Soil moisture simulation using hybrid artificial intelligent model: hybridization of adaptive neuro fuzzy inference system with grey wolf optimizer algorithm
  publication-title: J. Hydrol.
  contributor:
    fullname: Mundher Yaseen
– volume: 8
  start-page: 928
  year: 2008
  end-page: 936
  ident: b0375
  article-title: Using adaptive neuro-fuzzy inference system for hydrological time series prediction
  publication-title: Appl. Soft Comput. J.
  contributor:
    fullname: Teshnehlab
– volume: 23
  start-page: 2289
  year: 2009
  end-page: 2315
  ident: b0115
  article-title: Enhancing inflow forecasting model at aswan high dam utilizing radial basis neural network and upstream monitoring stations measurements
  publication-title: Water Resour. Manage.
  contributor:
    fullname: Taha
– volume: 38
  start-page: 173
  year: 2002
  end-page: 186
  ident: b0185
  article-title: Flood stage forecasting with support vector machines
  publication-title: J. Am. Water Resour. Associat.
  contributor:
    fullname: Sivapragasam
– volume: 509
  start-page: 379
  year: 2014
  end-page: 386
  ident: b0150
  article-title: A comparative study of artificial neural network, adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region
  publication-title: J. Hydrol.
  contributor:
    fullname: Du
– volume: 552
  year: 2017
  ident: b0005
  article-title: Harmonize input selection for sediment transport prediction
  publication-title: J. Hydrol.
  contributor:
    fullname: El-Shafie
– volume: 47
  start-page: 1
  year: 2011
  end-page: 17
  ident: b0190
  article-title: Importance analysis of local and global climate inputs for basin-scale streamflow prediction
  publication-title: Water Resour. Res.
  contributor:
    fullname: Kashid
– volume: 514
  start-page: 358
  year: 2014
  end-page: 377
  ident: b0220
  article-title: Applications of hybrid wavelet–Artificial Intelligence models in hydrology: a review
  publication-title: J. Hydrol.
  contributor:
    fullname: Kisi
– start-page: 578
  year: 2019
  ident: b0010
  article-title: Machine learning methods for better water quality prediction
  publication-title: J. Hydrol.
  contributor:
    fullname: Elsha
– volume: 2
  year: 2011
  ident: b0080
  article-title: LIBSVM: A library for support vector machines
  publication-title: ACM Trans. Intell. Syst. Technol.
  contributor:
    fullname: Lin
– volume: 1–29
  year: 2016
  ident: b0125
  article-title: Application of soft computing based hybrid models in hydrological variables modeling: a comprehensive review
  publication-title: Theoret. Appl. Climatol.
  contributor:
    fullname: El-shafie
– year: 2019
  ident: b0275
  article-title: Estimation of monthly reference evapotranspiration using novel hybrid machine learning approaches
  publication-title: Hydrol. Sci. J.
  contributor:
    fullname: Kisi
– volume: 29
  start-page: 17
  year: 2014
  end-page: 33
  ident: b0230
  article-title: River water prediction modeling using neural networks, fuzzy and wavelet coupled model
  publication-title: Water Resour. Manage.
  contributor:
    fullname: Bhardwaj
– year: 2014
  ident: bib378
  article-title: Support Vector Machine Applications in the field of Hydrology: A Review
  publication-title: Appl. Soft Comput.
  contributor:
    fullname: deka
– year: 1998
  ident: b0260
  article-title: Support Vector Machiens for Classification and Regression, Image Speech & Intelligent Systems Research Group
  contributor:
    fullname: Gunn
– volume: 41
  start-page: 6047
  year: 2014
  end-page: 6056
  ident: b0165
  article-title: A new hybrid modified firefly algorithm and support vector regression model for accurate short term load forecasting
  publication-title: Exp. Syst. Appl.
  contributor:
    fullname: Marzbani
– volume: 527
  start-page: 1054
  year: 2015
  end-page: 1072
  ident: b0030
  article-title: Forecasting daily river flows using nonlinear time series models
  publication-title: J. Hydrol.
  contributor:
    fullname: Amiri
– year: 2016
  ident: b0350
  article-title: Enhancing long-term streamflow forecasting and predicting using periodicity data component: application of artificial intelligence
  publication-title: Water Resour. Manage.
  contributor:
    fullname: Demir
– volume: 45
  start-page: 322
  year: 2016
  end-page: 332
  ident: b0135
  article-title: Training feedforward neural networks using multi-verse optimizer for binary classification problems
  publication-title: Appl. Intellig.
  contributor:
    fullname: Mirjalili
– volume: 61
  start-page: 112
  year: 2013
  end-page: 119
  ident: b0225
  article-title: The combined use of wavelet transform and black box models in reservoir inflow modeling
  publication-title: J. Hydrol. Hydromechan.
  contributor:
    fullname: Ali Serbes
– volume: 51
  start-page: 599
  year: 2006
  end-page: 612
  ident: b0180
  article-title: Using support vector machines for long-term discharge prediction
  publication-title: Hydrol. Sci. J.
  contributor:
    fullname: Chau
– year: 2019
  ident: bib377
  article-title: Evolving feedforward artificial neural networks using a two-stage approach
  publication-title: Neurocomputing
  contributor:
    fullname: Zhang
– volume: 530
  start-page: 137
  year: 2015
  end-page: 152
  ident: b0365
  article-title: Are hybrid models integrated with data preprocessing techniques suitable for monthly streamflow forecasting? Some experiment evidences
  publication-title: J. Hydrol.
  contributor:
    fullname: Wang
– volume: 70
  start-page: 63
  year: 2014
  end-page: 72
  ident: b0100
  article-title: Linear genetic programming application for successive-station monthly streamflow prediction
  publication-title: Comput. Geosci.
  contributor:
    fullname: Yerdelen
– year: 1995
  ident: b0300
  article-title: The nature of statistical learning theory
  contributor:
    fullname: Vapnik
– start-page: 443
  year: 1984
  end-page: 460
  ident: b0320
  article-title: On the Evaluation of Model Performance in Physical Geography
  publication-title: Spatial Statistics and Models
  contributor:
    fullname: Willmott
– volume: 318
  start-page: 7
  year: 2006
  end-page: 16
  ident: b0045
  article-title: Multi-time scale stream flow predictions: the support vector machines approach
  publication-title: J. Hydrol.
  contributor:
    fullname: Khalil
– volume: 34
  start-page: 1169
  year: 2014
  end-page: 1180
  ident: b0105
  article-title: Uncertainty analysis of streamflow drought forecast using artificial neural networks and Monte-Carlo simulation
  publication-title: Int. J. Climatol.
  contributor:
    fullname: Noori
– volume: 5
  start-page: 115
  year: 1943
  end-page: 133
  ident: b0205
  article-title: A logical calculus of the ideas immanent in nervous activity
  publication-title: Bull Mathemat. Biophys.
  contributor:
    fullname: Pitts
– volume: 110
  start-page: 135
  year: 2011
  end-page: 142
  ident: b0265
  article-title: Comparison of artificial neural network and multivariate linear regression methods for estimation of daily soil temperature in an arid region
  publication-title: Meteorol. Atmos. Phys.
  contributor:
    fullname: Ahmadi
– year: 2016
  ident: b0345
  article-title: Stream-flow forecasting using extreme learning machines: a case study in a semi-arid region in Iraq
  publication-title: J. Hydrol.
  contributor:
    fullname: El-shafie
– year: 2019
  ident: b0025
  article-title: Evolving neural networks using bird swarm algorithm for data classification and regression applications
  publication-title: Cluster Comput.
  contributor:
    fullname: Mafarja
– volume: 42
  start-page: 2213
  year: 2015
  end-page: 2223
  ident: b0245
  article-title: Performance comparison of Adoptive Neuro Fuzzy Inference System (ANFIS) with Loading Simulation Program C++ (LSPC) model for streamflow simulation in El Niño Southern Oscillation (ENSO)-affected watershed
  publication-title: Exp. Syst. Applicat.
  contributor:
    fullname: Kalin
– volume: 2
  start-page: 527
  year: 2015
  end-page: 542
  ident: b0060
  article-title: Nonstationarity of hydrological records and recent trends in trend analysis: a state-of-the-art review
  publication-title: Environ. Process.
  contributor:
    fullname: Bayazit
– volume: 12
  start-page: 2139
  year: 2012
  end-page: 2147
  ident: b0290
  article-title: Monthly inflow forecasting using autoregressive artificial neural network
  publication-title: J. Appl. Sci.
  contributor:
    fullname: Behbahani
– volume: 1–13
  year: 2013
  ident: b0095
  article-title: Successive-station monthly streamflow prediction using neuro-wavelet technique
  publication-title: Earth Sci. Inform.
  contributor:
    fullname: Deliktas
– year: 1970
  ident: b0065
  article-title: Time series analysis, forecasting and control
  contributor:
    fullname: Jenkins
– year: 1996
  ident: b0155
  article-title: The Major Nile Projects. The Nile Basin
  contributor:
    fullname: Simaika
– volume: 118
  start-page: 350
  year: 2015
  end-page: 360
  ident: b0370
  article-title: Predicting discharge using a low complexity machine learning model
  publication-title: Comput. Electron. Agric.
  contributor:
    fullname: Rivers
– year: 2015
  ident: bib376
  article-title: SWAT Model Calibration and Uncertainty Analysis for Streamflow Prediction in the Kunwari River Basin, India, Using Sequential Uncertainty Fitting
  publication-title: Environ. Environ. Process
  contributor:
    fullname: Narsimlu
– volume: 374
  start-page: 294
  year: 2009
  end-page: 306
  ident: b0310
  article-title: A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series
  publication-title: J. Hydrol.
  contributor:
    fullname: Qiu
– volume: 43
  start-page: 150
  year: 2015
  end-page: 161
  ident: b0210
  article-title: How effective is the Grey Wolf optimizer in training multi-layer perceptrons
  publication-title: Appl. Intellig.
  contributor:
    fullname: Mirjalili
– year: 1994
  ident: b0145
  article-title: Neural Networks: A Comprehensive Foundation
  contributor:
    fullname: Haykin
– volume: 51
  start-page: 4409
  year: 2015
  end-page: 4430
  ident: b0305
  article-title: Hydrology: the interdisciplinary science of water
  publication-title: Water Resour. Res.
  contributor:
    fullname: Matalas
– year: 2019
  ident: b0015
  article-title: Unsupervised intelligent system based on one class support vector machine and Grey Wolf optimization for IoT botnet detection
  publication-title: J. Ambient. Intell. Human Comput.
  contributor:
    fullname: Aljarah
– volume: 188
  year: 2016
  ident: b0110
  article-title: An extreme learning machine model for the simulation of monthly mean streamflow water level in eastern Queensland
  publication-title: Environ. Monitor. Assess.
  contributor:
    fullname: Şahin
– volume: 536
  start-page: 471
  year: 2016
  end-page: 484
  ident: b0050
  article-title: Application of artificial neural network coupled with genetic algorithm and simulated annealing to solve groundwater inflow problem to an advancing open pit mine
  publication-title: J. Hydrol.
  contributor:
    fullname: Baafi
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: b0215
  article-title: Grey Wolf Optimizer
  publication-title: Adv. Eng. Softw.
  contributor:
    fullname: Lewis
– volume: 34
  start-page: 1169
  year: 2014
  ident: 10.1016/j.jhydrol.2019.124435_b0105
  article-title: Uncertainty analysis of streamflow drought forecast using artificial neural networks and Monte-Carlo simulation
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.3754
  contributor:
    fullname: Dehghani
– volume: 47
  start-page: 1
  year: 2011
  ident: 10.1016/j.jhydrol.2019.124435_b0190
  article-title: Importance analysis of local and global climate inputs for basin-scale streamflow prediction
  publication-title: Water Resour. Res.
  doi: 10.1029/2010WR009742
  contributor:
    fullname: Maity
– volume: 17
  start-page: 733
  year: 2015
  ident: 10.1016/j.jhydrol.2019.124435_b0085
  article-title: A novel hybrid neural network based on continuity equation and fuzzy pattern-recognition for downstream daily river discharge forecasting
  publication-title: J. Hydroinformat.
  doi: 10.2166/hydro.2015.095
  contributor:
    fullname: Chen
– volume: 8
  start-page: 928
  year: 2008
  ident: 10.1016/j.jhydrol.2019.124435_b0375
  article-title: Using adaptive neuro-fuzzy inference system for hydrological time series prediction
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2007.07.011
  contributor:
    fullname: Zounemat-Kermani
– volume: 509
  start-page: 379
  year: 2014
  ident: 10.1016/j.jhydrol.2019.124435_b0150
  article-title: A comparative study of artificial neural network, adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2013.11.054
  contributor:
    fullname: He
– volume: 2
  start-page: 449
  year: 2015
  ident: 10.1016/j.jhydrol.2019.124435_b0250
  article-title: Entropy theory for streamflow forecasting
  publication-title: Environ. Process.
  doi: 10.1007/s40710-015-0080-8
  contributor:
    fullname: Singh
– start-page: 578
  year: 2019
  ident: 10.1016/j.jhydrol.2019.124435_b0010
  article-title: Machine learning methods for better water quality prediction
  publication-title: J. Hydrol.
  contributor:
    fullname: Ahmed
– volume: 33
  start-page: 141
  year: 2008
  ident: 10.1016/j.jhydrol.2019.124435_b0035
  article-title: Monthly streamflow prediction in the Volta Basin of West Africa: A SISO NARMAX polynomial modelling
  publication-title: Phys. Chem. the Earth, Parts A/B/C
  doi: 10.1016/j.pce.2007.04.019
  contributor:
    fullname: Amisigo
– volume: 12
  start-page: 2139
  year: 2012
  ident: 10.1016/j.jhydrol.2019.124435_b0290
  article-title: Monthly inflow forecasting using autoregressive artificial neural network
  publication-title: J. Appl. Sci.
  doi: 10.3923/jas.2012.2139.2147
  contributor:
    fullname: Valipour
– volume: 8
  start-page: 67
  year: 2014
  ident: 10.1016/j.jhydrol.2019.124435_b0040
  article-title: Water reuse: Overview of current practices and trends in the world with emphasis on EU states
  publication-title: Water Util. J.
  contributor:
    fullname: Angelakis
– volume: 532
  start-page: 193
  year: 2016
  ident: 10.1016/j.jhydrol.2019.124435_b0055
  article-title: Daily reservoir inflow forecasting usingmultiscale deep feature learning with hybrid models
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2015.11.011
  contributor:
    fullname: Bai
– volume: 2
  start-page: 527
  year: 2015
  ident: 10.1016/j.jhydrol.2019.124435_b0060
  article-title: Nonstationarity of hydrological records and recent trends in trend analysis: a state-of-the-art review
  publication-title: Environ. Process.
  doi: 10.1007/s40710-015-0081-7
  contributor:
    fullname: Bayazit
– year: 2016
  ident: 10.1016/j.jhydrol.2019.124435_b0345
  article-title: Stream-flow forecasting using extreme learning machines: a case study in a semi-arid region in Iraq
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.09.035
  contributor:
    fullname: Yaseen
– year: 1994
  ident: 10.1016/j.jhydrol.2019.124435_b0145
  contributor:
    fullname: Haykin
– volume: 214
  start-page: 32
  year: 1999
  ident: 10.1016/j.jhydrol.2019.124435_b0360
  article-title: Short term streamflow forecasting using artificial neural networks
  publication-title: J. Hydrol.
  doi: 10.1016/S0022-1694(98)00242-X
  contributor:
    fullname: Zealand
– volume: 41
  start-page: 6047
  year: 2014
  ident: 10.1016/j.jhydrol.2019.124435_b0165
  article-title: A new hybrid modified firefly algorithm and support vector regression model for accurate short term load forecasting
  publication-title: Exp. Syst. Appl.
  doi: 10.1016/j.eswa.2014.03.053
  contributor:
    fullname: Kavousi-Fard
– year: 2016
  ident: 10.1016/j.jhydrol.2019.124435_b0350
  article-title: Enhancing long-term streamflow forecasting and predicting using periodicity data component: application of artificial intelligence
  publication-title: Water Resour. Manage.
  doi: 10.1007/s11269-016-1408-5
  contributor:
    fullname: Yaseen
– year: 1995
  ident: 10.1016/j.jhydrol.2019.124435_b0300
  contributor:
    fullname: Vapnik
– volume: 318
  start-page: 7
  year: 2006
  ident: 10.1016/j.jhydrol.2019.124435_b0045
  article-title: Multi-time scale stream flow predictions: the support vector machines approach
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2005.06.001
  contributor:
    fullname: Asefa
– volume: 45
  start-page: 322
  year: 2016
  ident: 10.1016/j.jhydrol.2019.124435_b0135
  article-title: Training feedforward neural networks using multi-verse optimizer for binary classification problems
  publication-title: Appl. Intellig.
  doi: 10.1007/s10489-016-0767-1
  contributor:
    fullname: Faris
– volume: 552
  year: 2017
  ident: 10.1016/j.jhydrol.2019.124435_b0005
  article-title: Harmonize input selection for sediment transport prediction
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2017.07.008
  contributor:
    fullname: Afan
– volume: 22
  start-page: 1
  year: 2018
  ident: 10.1016/j.jhydrol.2019.124435_b0020
  article-title: Optimizing connection weights in neural networks using the whale optimization algorithm
  publication-title: Soft Comput.
  doi: 10.1007/s00500-016-2442-1
  contributor:
    fullname: Aljarah
– volume: 414–415
  start-page: 284
  year: 2012
  ident: 10.1016/j.jhydrol.2019.124435_b0240
  article-title: Daily streamflow forecasting by machine learning methods with weather and climate inputs
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2011.10.039
  contributor:
    fullname: Rasouli
– year: 1996
  ident: 10.1016/j.jhydrol.2019.124435_b0255
  contributor:
    fullname: Smola
– volume: 527
  start-page: 1054
  year: 2015
  ident: 10.1016/j.jhydrol.2019.124435_b0030
  article-title: Forecasting daily river flows using nonlinear time series models
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2015.05.048
  contributor:
    fullname: Amiri
– volume: 29
  start-page: 17
  year: 2014
  ident: 10.1016/j.jhydrol.2019.124435_b0230
  article-title: River water prediction modeling using neural networks, fuzzy and wavelet coupled model
  publication-title: Water Resour. Manage.
  doi: 10.1007/s11269-014-0824-7
  contributor:
    fullname: Parmar
– year: 2014
  ident: 10.1016/j.jhydrol.2019.124435_bib378
  article-title: Support Vector Machine Applications in the field of Hydrology: A Review
  publication-title: Appl. Soft Comput.
  contributor:
    fullname: naganna
– volume: 38
  start-page: 173
  year: 2002
  ident: 10.1016/j.jhydrol.2019.124435_b0185
  article-title: Flood stage forecasting with support vector machines
  publication-title: J. Am. Water Resour. Associat.
  doi: 10.1111/j.1752-1688.2002.tb01544.x
  contributor:
    fullname: Liong
– volume: 1–13
  year: 2013
  ident: 10.1016/j.jhydrol.2019.124435_b0095
  article-title: Successive-station monthly streamflow prediction using neuro-wavelet technique
  publication-title: Earth Sci. Inform.
  contributor:
    fullname: Danandeh Mehr
– volume: 42
  start-page: 2213
  year: 2015
  ident: 10.1016/j.jhydrol.2019.124435_b0245
  article-title: Performance comparison of Adoptive Neuro Fuzzy Inference System (ANFIS) with Loading Simulation Program C++ (LSPC) model for streamflow simulation in El Niño Southern Oscillation (ENSO)-affected watershed
  publication-title: Exp. Syst. Applicat.
  doi: 10.1016/j.eswa.2014.09.062
  contributor:
    fullname: Sharma
– volume: 43
  start-page: 150
  year: 2015
  ident: 10.1016/j.jhydrol.2019.124435_b0210
  article-title: How effective is the Grey Wolf optimizer in training multi-layer perceptrons
  publication-title: Appl. Intellig.
  doi: 10.1007/s10489-014-0645-7
  contributor:
    fullname: Mirjalili
– volume: 514
  start-page: 358
  year: 2014
  ident: 10.1016/j.jhydrol.2019.124435_b0220
  article-title: Applications of hybrid wavelet–Artificial Intelligence models in hydrology: a review
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2014.03.057
  contributor:
    fullname: Nourani
– volume: 69
  start-page: 46
  year: 2014
  ident: 10.1016/j.jhydrol.2019.124435_b0215
  article-title: Grey Wolf Optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
  contributor:
    fullname: Mirjalili
– year: 2015
  ident: 10.1016/j.jhydrol.2019.124435_bib376
  article-title: SWAT Model Calibration and Uncertainty Analysis for Streamflow Prediction in the Kunwari River Basin, India, Using Sequential Uncertainty Fitting
  publication-title: Environ. Environ. Process
  doi: 10.1007/s40710-015-0064-8
  contributor:
    fullname: Narsimlu
– volume: 110
  start-page: 135
  year: 2011
  ident: 10.1016/j.jhydrol.2019.124435_b0265
  article-title: Comparison of artificial neural network and multivariate linear regression methods for estimation of daily soil temperature in an arid region
  publication-title: Meteorol. Atmos. Phys.
  doi: 10.1007/s00703-010-0110-z
  contributor:
    fullname: Tabari
– volume: 188
  year: 2016
  ident: 10.1016/j.jhydrol.2019.124435_b0110
  article-title: An extreme learning machine model for the simulation of monthly mean streamflow water level in eastern Queensland
  publication-title: Environ. Monitor. Assess.
  contributor:
    fullname: Deo
– volume: 12
  start-page: 540
  year: 2019
  ident: 10.1016/j.jhydrol.2019.124435_b0280
  article-title: A new intelligent method for monthly streamflow prediction: hybrid wavelet support vector regression based on grey wolf optimizer (WSVR–GWO)
  publication-title: Arab. J. Geosci.
  doi: 10.1007/s12517-019-4697-1
  contributor:
    fullname: Tikhamarine
– volume: 61
  start-page: 112
  year: 2013
  ident: 10.1016/j.jhydrol.2019.124435_b0225
  article-title: The combined use of wavelet transform and black box models in reservoir inflow modeling
  publication-title: J. Hydrol. Hydromechan.
  doi: 10.2478/johh-2013-0015
  contributor:
    fullname: Okkan
– volume: 51
  start-page: 4409
  year: 2015
  ident: 10.1016/j.jhydrol.2019.124435_b0305
  article-title: Hydrology: the interdisciplinary science of water
  publication-title: Water Resour. Res.
  doi: 10.1002/2015WR017049
  contributor:
    fullname: Vogel
– volume: 2
  year: 2011
  ident: 10.1016/j.jhydrol.2019.124435_b0080
  article-title: LIBSVM: A library for support vector machines
  publication-title: ACM Trans. Intell. Syst. Technol.
  doi: 10.1145/1961189.1961199
  contributor:
    fullname: Chang
– volume: 575
  start-page: 1200
  year: 2019
  ident: 10.1016/j.jhydrol.2019.124435_b0130
  article-title: Hybrid models to improve the monthly river flow prediction: integrating artificial intelligence and nonlinear time series models
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.06.025
  contributor:
    fullname: Fathian
– volume: 51
  start-page: 599
  year: 2006
  ident: 10.1016/j.jhydrol.2019.124435_b0180
  article-title: Using support vector machines for long-term discharge prediction
  publication-title: Hydrol. Sci. J.
  doi: 10.1623/hysj.51.4.599
  contributor:
    fullname: Lin
– volume: 118
  start-page: 350
  year: 2015
  ident: 10.1016/j.jhydrol.2019.124435_b0370
  article-title: Predicting discharge using a low complexity machine learning model
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2015.09.012
  contributor:
    fullname: Zia
– volume: 5
  start-page: 115
  year: 1943
  ident: 10.1016/j.jhydrol.2019.124435_b0205
  article-title: A logical calculus of the ideas immanent in nervous activity
  publication-title: Bull Mathemat. Biophys.
  doi: 10.1007/BF02478259
  contributor:
    fullname: McCulloch
– volume: 13
  start-page: 49
  year: 2010
  ident: 10.1016/j.jhydrol.2019.124435_b0235
  article-title: Daily river flow forecasting using wavelet ANN hybrid models
  publication-title: J. Hydroinformat.
  doi: 10.2166/hydro.2010.040
  contributor:
    fullname: Pramanik
– start-page: 443
  year: 1984
  ident: 10.1016/j.jhydrol.2019.124435_b0320
  article-title: On the Evaluation of Model Performance in Physical Geography
  contributor:
    fullname: Willmott
– year: 2019
  ident: 10.1016/j.jhydrol.2019.124435_b0015
  article-title: Unsupervised intelligent system based on one class support vector machine and Grey Wolf optimization for IoT botnet detection
  publication-title: J. Ambient. Intell. Human Comput.
  contributor:
    fullname: Al Shorman
– year: 2019
  ident: 10.1016/j.jhydrol.2019.124435_b0025
  article-title: Evolving neural networks using bird swarm algorithm for data classification and regression applications
  publication-title: Cluster Comput.
  doi: 10.1007/s10586-019-02913-5
  contributor:
    fullname: Aljarah
– year: 2019
  ident: 10.1016/j.jhydrol.2019.124435_bib377
  article-title: Evolving feedforward artificial neural networks using a two-stage approach
  publication-title: Neurocomputing
  contributor:
    fullname: Zhang
– volume: 559
  start-page: 156
  year: 2018
  ident: 10.1016/j.jhydrol.2019.124435_b0355
  article-title: An integrated model of water resources optimization allocation based on projection pursuit model – Grey wolf optimization method in a transboundary river basin
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.02.033
  contributor:
    fullname: Yu
– volume: 372
  start-page: 80
  year: 2009
  ident: 10.1016/j.jhydrol.2019.124435_b0335
  article-title: Methods to improve neural network performance in daily flows prediction
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2009.03.038
  contributor:
    fullname: Wu
– volume: 25
  start-page: 179
  year: 2014
  ident: 10.1016/j.jhydrol.2019.124435_b0270
  article-title: Forecasting of monthly river flow with autoregressive modeling and data-driven techniques
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-013-1469-9
  contributor:
    fullname: Terzi
– volume: 397
  start-page: 191
  year: 2011
  ident: 10.1016/j.jhydrol.2019.124435_b0090
  article-title: Runoff forecasting for an asphalt plane by Artificial Neural Networks and comparisons with kinematic wave and autoregressive moving average models
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2010.11.030
  contributor:
    fullname: Chua
– year: 1970
  ident: 10.1016/j.jhydrol.2019.124435_b0065
  contributor:
    fullname: Box
– volume: 21
  start-page: 533
  year: 2007
  ident: 10.1016/j.jhydrol.2019.124435_b0120
  article-title: A neuro-fuzzy model for inflow forecasting of the Nile river at Aswan high dam
  publication-title: Water Resour. Manage.
  doi: 10.1007/s11269-006-9027-1
  contributor:
    fullname: El-Shafie
– volume: 1–29
  year: 2016
  ident: 10.1016/j.jhydrol.2019.124435_b0125
  article-title: Application of soft computing based hybrid models in hydrological variables modeling: a comprehensive review
  publication-title: Theoret. Appl. Climatol.
  contributor:
    fullname: Fahimi
– volume: 129
  start-page: 279
  year: 2014
  ident: 10.1016/j.jhydrol.2019.124435_b0075
  article-title: A Support Vector Machine-Firefly Algorithm based forecasting model to determine malaria transmission
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.09.030
  contributor:
    fullname: Ch
– volume: 530
  start-page: 829
  year: 2015
  ident: 10.1016/j.jhydrol.2019.124435_b0340
  article-title: Artificial intelligence based models for stream-flow forecasting: 2000–2015
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2015.10.038
  contributor:
    fullname: Yaseen
– volume: 530
  start-page: 137
  year: 2015
  ident: 10.1016/j.jhydrol.2019.124435_b0365
  article-title: Are hybrid models integrated with data preprocessing techniques suitable for monthly streamflow forecasting? Some experiment evidences
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2015.09.047
  contributor:
    fullname: Zhang
– volume: 536
  start-page: 471
  year: 2016
  ident: 10.1016/j.jhydrol.2019.124435_b0050
  article-title: Application of artificial neural network coupled with genetic algorithm and simulated annealing to solve groundwater inflow problem to an advancing open pit mine
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.03.002
  contributor:
    fullname: Bahrami
– year: 2019
  ident: 10.1016/j.jhydrol.2019.124435_b0275
  article-title: Estimation of monthly reference evapotranspiration using novel hybrid machine learning approaches
  publication-title: Hydrol. Sci. J.
  doi: 10.1080/02626667.2019.1678750
  contributor:
    fullname: Tikhamarine
– volume: 38
  start-page: 13073
  year: 2011
  ident: 10.1016/j.jhydrol.2019.124435_b0140
  article-title: Monthly streamflow forecasting based on improved support vector machine model
  publication-title: Expert Syst. Applicat.
  doi: 10.1016/j.eswa.2011.04.114
  contributor:
    fullname: Guo
– volume: 23
  start-page: 2289
  year: 2009
  ident: 10.1016/j.jhydrol.2019.124435_b0115
  article-title: Enhancing inflow forecasting model at aswan high dam utilizing radial basis neural network and upstream monitoring stations measurements
  publication-title: Water Resour. Manage.
  doi: 10.1007/s11269-008-9382-1
  contributor:
    fullname: El-Shafie
– volume: 399
  start-page: 132
  year: 2011
  ident: 10.1016/j.jhydrol.2019.124435_b0175
  article-title: A wavelet-support vector machine conjunction model for monthly streamflow forecasting
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2010.12.041
  contributor:
    fullname: Kisi
– ident: 10.1016/j.jhydrol.2019.124435_b0170
  doi: 10.1007/s11269-015-1107-7
– volume: 45
  year: 2009
  ident: 10.1016/j.jhydrol.2019.124435_b0330
  article-title: Predicting monthly streamflow using data-driven models coupled with data-preprocessing techniques
  publication-title: Water Resour. Res.
  doi: 10.1029/2007WR006737
  contributor:
    fullname: Wu
– year: 1996
  ident: 10.1016/j.jhydrol.2019.124435_b0155
  contributor:
    fullname: Hurst
– volume: 374
  start-page: 294
  year: 2009
  ident: 10.1016/j.jhydrol.2019.124435_b0310
  article-title: A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2009.06.019
  contributor:
    fullname: Wang
– volume: 16
  start-page: 4417
  year: 2012
  ident: 10.1016/j.jhydrol.2019.124435_b0160
  article-title: A hybrid model of self organizing maps and least square support vector machine for river flow forecasting
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-16-4417-2012
  contributor:
    fullname: Ismail
– volume: 70
  start-page: 63
  year: 2014
  ident: 10.1016/j.jhydrol.2019.124435_b0100
  article-title: Linear genetic programming application for successive-station monthly streamflow prediction
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2014.04.015
  contributor:
    fullname: Danandeh Mehr
– volume: 476
  start-page: 433
  year: 2013
  ident: 10.1016/j.jhydrol.2019.124435_b0295
  article-title: Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2012.11.017
  contributor:
    fullname: Valipour
– volume: 28
  start-page: 4685
  year: 2014
  ident: 10.1016/j.jhydrol.2019.124435_b0285
  article-title: Predicting monthly river flows by genetic fuzzy systems
  publication-title: Water Resour. Manage.
  doi: 10.1007/s11269-014-0767-z
  contributor:
    fullname: Turan
– volume: 58
  start-page: 374
  year: 2013
  ident: 10.1016/j.jhydrol.2019.124435_b0315
  article-title: A wavelet-neural network hybrid modelling approach for estimating and predicting river monthly flows
  publication-title: Hydrol. Sci. J.
  doi: 10.1080/02626667.2012.754102
  contributor:
    fullname: Wei
– volume: 575
  start-page: 544
  year: 2019
  ident: 10.1016/j.jhydrol.2019.124435_b0200
  article-title: Soil moisture simulation using hybrid artificial intelligent model: hybridization of adaptive neuro fuzzy inference system with grey wolf optimizer algorithm
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.05.045
  contributor:
    fullname: Maroufpoor
– year: 1998
  ident: 10.1016/j.jhydrol.2019.124435_b0260
  contributor:
    fullname: Gunn
– ident: 10.1016/j.jhydrol.2019.124435_b0070
  doi: 10.1016/0143-6228(90)90043-O
– volume: 352
  start-page: 336
  year: 2008
  ident: 10.1016/j.jhydrol.2019.124435_b0195
  article-title: Short-term streamflow forecasting with global climate change implications – A comparative study between genetic programming and neural network models
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2008.01.023
  contributor:
    fullname: Makkeasorn
SSID ssj0000334
Score 2.677104
Snippet •Precise estimation of streamflow is required for events such as flood and drought.•Integrated AI with GWO outperform the standard AI methods.•SVR-GWO model...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 124435
SubjectTerms Aswan High Dam
Estimation
Evolutionary algorithms
Streamflow
Title Improving artificial intelligence models accuracy for monthly streamflow forecasting using grey Wolf optimization (GWO) algorithm
URI https://dx.doi.org/10.1016/j.jhydrol.2019.124435
Volume 582
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLe67QAXxKcYX_KBA6hKaRundg4cIigbHLbDijZO0WvsNMmSBqWNUHfjP-c5zpfYQIDExapsuUnf--n559f3QchLR9gwA5hZbClDi0GoLCFwwLNATsFmoeA63_n4jJ9ciPdzNh8MmmY63dx_1TTOoa515uxfaLv9UpzAz6hzHFHrOP6R3jsvgV6s60PE_cKbVfObzRCCoCx0s3cdaIivt43SXZU6AlmY5t_0tApgU4VFl5VHAa_mu-F5nobDHA1NVmdwVo6G81PtXoB0lRfxNsp-QXmjnSxMzSfc42W6RoPUgGydEYv4MoIMitj4Wb_AVRNwX749y0tYWUe4bBaR-sukPVROIIFo6EWZcd56adxFF2yqiIXTq1VZ9J0ceKNto7yM5-1a9k2biTCZmSbJI2UMuOCuzrHjfQvvmP5G104L47hIRon5-TrQzx1pwmMqqPxUiFv_rz3Vj0POq_v1uHvkYIrmDe3qgfdxfvGpYwC2zZoq9XpDlzn25saH3cyJejxncZfcqbVFPYOse2Sg1vfJrSNVlzZ_QL63CKMdwmgfYdQgjDYIowglWiOMdgijPYTRCmFUI4xqhNE-wugrxNdr2qLrIfn8Yb54d2zVjTyswB67W2siJw6MmZoFNg9xECFH3j4GwVhVL4kpjqbClQI4CzjYznLJ8Z4hpxz5N5OB_Yjsr_O1ekyoLp-IKmZLxiVzHAF44oaKI9WbiDBQk0MyakTpfzX1WvwmkDHxa9n7Wva-kf0hEY3A_Zp0GjLpI0p-v_XJv299Sm53MH9G9rdFqZ6TvY0sX9Rg-gELgqzD
link.rule.ids 315,783,787,27936,27937
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+artificial+intelligence+models+accuracy+for+monthly+streamflow+forecasting+using+grey+Wolf+optimization+%28GWO%29+algorithm&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Tikhamarine%2C+Yazid&rft.au=Souag-Gamane%2C+Doudja&rft.au=Najah+Ahmed%2C+Ali&rft.au=Kisi%2C+Ozgur&rft.date=2020-03-01&rft.pub=Elsevier+B.V&rft.issn=0022-1694&rft.eissn=1879-2707&rft.volume=582&rft_id=info:doi/10.1016%2Fj.jhydrol.2019.124435&rft.externalDocID=S0022169419311709
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon