Adapting the CROPGRO‐faba bean model to simulate the growth and development of Amaranthus species
The aim of this study was to adapt the CROPGRO model to simulate growth and development processes of Amaranthus spp. under central European conditions. In 2017 and 2018, two field experiments with two amaranth cultivars (grain type, A. hypochondriacus L. Neuer Typ [NT]; fodder type, A. caudatus L. K...
Saved in:
Published in: | Agronomy journal Vol. 114; no. 4; pp. 2243 - 2263 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
01-07-2022
|
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The aim of this study was to adapt the CROPGRO model to simulate growth and development processes of Amaranthus spp. under central European conditions. In 2017 and 2018, two field experiments with two amaranth cultivars (grain type, A. hypochondriacus L. Neuer Typ [NT]; fodder type, A. caudatus L. K63 [K63]) were conducted in southern Germany. Based on experimental and literature data, parameter coefficients that drive physiological processes at species, cultivar, and ecotype levels were calibrated to predict the time series experimental observations of various growth and development traits. Statistical evaluation of the model adaptation was performed using root mean square error (RMSE, in variable units, 0 equals perfect fit) and the Willmott agreement index (d‐Stat., range from 0 to 1, 1 equals perfect fit). For NT and K63, respectively, the model adaptation led to accurate predictions of canopy height (RMSE, 0.07 and 0.24 m; d‐Stat.,0.98 and 0.92), panicle weight (RMSE, 2,034 and 1,153 kg ha–1; d‐Stat., 0.92 and 0.94), panicle harvest index (RMSE, 0.05 and 0.06; d‐Stat., 0.99 and 0.96), leaf N concentration (RMSE, 0.38 and 0.40%; d‐Stat., 0.94 and 0.92) and aboveground biomass (RMSE, 2,948 and 2,572 kg ha–1; d‐Stat., 0.88 and 0.91). In summary, the CROPGRO model was successfully adapted for Amaranthus spp. The adapted model can be further improved as it is made available for evaluation in different locations and environments including limited soil N supply.
Core Ideas
A physiological process‐based mechanistic model was adapted to Amaranthus ssp. for the first time.
Panicle weight and harvest index, leaf N concentration, and aboveground biomass were accurately predicted.
Amaranth showed a low requirement for N and considerable drought tolerance. |
---|---|
AbstractList | The aim of this study was to adapt the CROPGRO model to simulate growth and development processes of
Amaranthus
spp. under central European conditions. In 2017 and 2018, two field experiments with two amaranth cultivars (grain type,
A. hypochondriacus
L. Neuer Typ [NT]; fodder type,
A. caudatus
L. K63 [K63]) were conducted in southern Germany. Based on experimental and literature data, parameter coefficients that drive physiological processes at species, cultivar, and ecotype levels were calibrated to predict the time series experimental observations of various growth and development traits. Statistical evaluation of the model adaptation was performed using root mean square error (RMSE, in variable units, 0 equals perfect fit) and the Willmott agreement index (d‐Stat., range from 0 to 1, 1 equals perfect fit). For NT and K63, respectively, the model adaptation led to accurate predictions of canopy height (RMSE, 0.07 and 0.24 m; d‐Stat.,0.98 and 0.92), panicle weight (RMSE, 2,034 and 1,153 kg ha
–1
; d‐Stat., 0.92 and 0.94), panicle harvest index (RMSE, 0.05 and 0.06; d‐Stat., 0.99 and 0.96), leaf N concentration (RMSE, 0.38 and 0.40%; d‐Stat., 0.94 and 0.92) and aboveground biomass (RMSE, 2,948 and 2,572 kg ha
–1
; d‐Stat., 0.88 and 0.91). In summary, the CROPGRO model was successfully adapted for
Amaranthus
spp. The adapted model can be further improved as it is made available for evaluation in different locations and environments including limited soil N supply.
A physiological process‐based mechanistic model was adapted to
Amaranthus
ssp. for the first time.
Panicle weight and harvest index, leaf N concentration, and aboveground biomass were accurately predicted.
Amaranth showed a low requirement for N and considerable drought tolerance. The aim of this study was to adapt the CROPGRO model to simulate growth and development processes of Amaranthus spp. under central European conditions. In 2017 and 2018, two field experiments with two amaranth cultivars (grain type, A. hypochondriacus L. Neuer Typ [NT]; fodder type, A. caudatus L. K63 [K63]) were conducted in southern Germany. Based on experimental and literature data, parameter coefficients that drive physiological processes at species, cultivar, and ecotype levels were calibrated to predict the time series experimental observations of various growth and development traits. Statistical evaluation of the model adaptation was performed using root mean square error (RMSE, in variable units, 0 equals perfect fit) and the Willmott agreement index (d‐Stat., range from 0 to 1, 1 equals perfect fit). For NT and K63, respectively, the model adaptation led to accurate predictions of canopy height (RMSE, 0.07 and 0.24 m; d‐Stat.,0.98 and 0.92), panicle weight (RMSE, 2,034 and 1,153 kg ha–1; d‐Stat., 0.92 and 0.94), panicle harvest index (RMSE, 0.05 and 0.06; d‐Stat., 0.99 and 0.96), leaf N concentration (RMSE, 0.38 and 0.40%; d‐Stat., 0.94 and 0.92) and aboveground biomass (RMSE, 2,948 and 2,572 kg ha–1; d‐Stat., 0.88 and 0.91). In summary, the CROPGRO model was successfully adapted for Amaranthus spp. The adapted model can be further improved as it is made available for evaluation in different locations and environments including limited soil N supply. Core Ideas A physiological process‐based mechanistic model was adapted to Amaranthus ssp. for the first time. Panicle weight and harvest index, leaf N concentration, and aboveground biomass were accurately predicted. Amaranth showed a low requirement for N and considerable drought tolerance. |
Author | Boote, Ken Pflugfelder, Annegret Graeff‐Hönninger, Simone Nkebiwe, Peteh Mehdi Munz, Sebastian |
Author_xml | – sequence: 1 givenname: Peteh Mehdi orcidid: 0000-0002-0344-0509 surname: Nkebiwe fullname: Nkebiwe, Peteh Mehdi email: mehdi.nkebiwe@uni-hohenheim.de organization: Univ. of Hohenheim – sequence: 2 givenname: Ken orcidid: 0000-0002-1358-5496 surname: Boote fullname: Boote, Ken organization: Univ. of Florida – sequence: 3 givenname: Annegret surname: Pflugfelder fullname: Pflugfelder, Annegret organization: Univ. of Hohenheim – sequence: 4 givenname: Sebastian orcidid: 0000-0001-6713-1863 surname: Munz fullname: Munz, Sebastian organization: Univ. of Hohenheim – sequence: 5 givenname: Simone orcidid: 0000-0001-9996-961X surname: Graeff‐Hönninger fullname: Graeff‐Hönninger, Simone organization: Univ. of Hohenheim |
BookMark | eNp9kEFuwjAQRa2KSgXaTU_gdaVQj4MTWEaopa2QqBD7yLHHEJTYUWyK2PUInLEnaYCuu_qL_2b09QakZ51FQh6BjYAx_iw3Oz7iwKbshvRhHIuIJWPRI33WtRFME35HBt7vGAOYjqFPVKZlE0q7oWGLdLZafs5Xy5_vk5GFpAVKS2unsaLBUV_W-0oGvJCb1h3ClkqrqcYvrFxTow3UGZrVspU2bPee-gZVif6e3BpZeXz4yyFZv76sZ2_RYjl_n2WLSMXd4ChVsUmY1LFGo4xhaApIeaIxnQAXQmqJRqDgyAWatGBcJZAkMDExl0KIeEierm9V67xv0eRNW3Zjjjmw_GwnP9vJL3Y6GK7woazw-A-ZZ_MPfr35BZN1anY |
CitedBy_id | crossref_primary_10_3390_agriengineering5030100 |
Cites_doi | 10.1016/S2095‐3119(17)61778‐7 10.1016/j.tifs.2009.10.014 10.2134/agronj15.0272 10.1002/jsfa.7359 10.1002/agj2.20305 10.1016/j.sajb.2019.05.035 10.1016/S1161‐0301(02)00107‐7 10.17221/2224‐PSE 10.1002/9781118720691.ch20 10.1017/S0021859621000538 10.1002/j.1537‐2197.1961.tb11599.x 10.2134/agronj1998.00021962009000050005x 10.1016/j.agsy.2016.05.014 10.1038/s41598‐021‐85486‐x 10.1007/978-3-642-01132-0_19 10.17660/ActaHortic.1990.267.42 10.1023/A:1008771103826 10.1016/j.scienta.2014.11.019 10.1016/j.agrformet.2016.12.015 10.1007/s12229‐017‐9194‐1 10.1111/j.1750‐3841.2012.02645.x 10.1007/978-94-017-3624-4_6 10.1002/joc.5291 10.2307/2437786 10.1111/jac.12108 10.3390/agronomy10010011 10.1080/09637480902950597 10.2307/2401288 10.1007/978-94-017-0754-1_9 10.1175/1520‐0477 10.1081/FRI‐120018880 10.2134/agronj2002.1437 10.5073/JfK.2009.02.01 10.3390/agronomy9120832 10.1093/molbev/msz304 10.1016/j.agrformet.2017.08.003 10.1016/j.eja.2007.05.007 10.1111/1541‐4337.12021 10.2134/agronj2002.7430 10.1111/mec.13974 10.1016/j.agwat.2018.06.012 |
ContentType | Journal Article |
Copyright | 2022 The Authors. Agronomy Journal published by Wiley Periodicals LLC on behalf of American Society of Agronomy. |
Copyright_xml | – notice: 2022 The Authors. Agronomy Journal published by Wiley Periodicals LLC on behalf of American Society of Agronomy. |
DBID | 24P WIN AAYXX CITATION |
DOI | 10.1002/agj2.21090 |
DatabaseName | Wiley-Blackwell Titles (Open access) Wiley Free Archive CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1435-0645 |
EndPage | 2263 |
ExternalDocumentID | 10_1002_agj2_21090 AGJ221090 |
Genre | article |
GrantInformation_xml | – fundername: German Federal Ministry for Economic Affairs and Energy within the Central Innovation Program for SMEs (ZIM) funderid: 16KN050528 |
GroupedDBID | -~X .86 .~0 0R~ 186 1OB 1OC 23M 24P 2WC 33P 3V. 5GY 6J9 6KN 7X2 7XC 88I 8FE 8FG 8FH 8FW 8G5 8R4 8R5 AABCJ AAHBH AAHHS AANLZ ABCQX ABCUV ABEFU ABJCF ABJNI ABRSH ABUWG ACAWQ ACCFJ ACCZN ACGFO ACGOD ACIWK ACPOU ACQAM ACXQS ADFRT ADKYN ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AETEA AEUYR AFFPM AFKRA AFRAH AHBTC AI. AIDBO AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ATCPS AZQEC BCR BCU BEC BENPR BES BFHJK BGLVJ BHPHI BLC BPHCQ C1A CCPQU D0L DCZOG DROCM DWQXO E3Z EBS ECGQY EJD F5P GNUQQ GUQSH H13 HCIFZ HF~ HGLYW L6V L7B LAS LATKE LEEKS LPU M0K M2O M2P M7S MEWTI MV1 NEJ NHAZY NHB O9- P2P PATMY PEA PQQKQ PROAC PTHSS PYCSY Q2X QF4 QM4 QN7 ROL RPX RWL S0X SAMSI SJFOW SJN SUPJJ TAE TR2 TWZ U2A VH1 VOH WIN WOQ WXSBR Y6R YYP ZCG ~02 ~KM AAMNL AAYXX ADMHG CITATION |
ID | FETCH-LOGICAL-c3090-7c3f60ad3defcff0efb1726de781255adaef5e52e25ef7b02c616618f32a5553 |
IEDL.DBID | 33P |
ISSN | 0002-1962 |
IngestDate | Thu Nov 21 21:50:33 EST 2024 Sat Aug 24 00:54:36 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | Attribution-NonCommercial |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3090-7c3f60ad3defcff0efb1726de781255adaef5e52e25ef7b02c616618f32a5553 |
Notes | Assigned to Associate Editor Stephen Del Grosso. |
ORCID | 0000-0001-6713-1863 0000-0001-9996-961X 0000-0002-1358-5496 0000-0002-0344-0509 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fagj2.21090 |
PageCount | 21 |
ParticipantIDs | crossref_primary_10_1002_agj2_21090 wiley_primary_10_1002_agj2_21090_AGJ221090 |
PublicationCentury | 2000 |
PublicationDate | July/August 2022 2022-07-00 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: July/August 2022 |
PublicationDecade | 2020 |
PublicationTitle | Agronomy journal |
PublicationYear | 2022 |
References | 2017; 234‐235 2017; 83 2015; 182 2000; 47 2002; 94 2016; 108 2009; 82 2019; 124 2003; 18 2018; 208 2003; 19 2020; 10 2017; 155 1997; 6 1990; 267 2010; 21 1990 2021; 158 2013; 12 1982; 63 2008; 28 1998; 90 2017; 247 2018; 38 1961; 48 1949; 36 2019; 9 2017; 26 2009; 61 2015; 201 2009; 60 2019; 37 1998 2009 2016; 96 2007 1999; 4 2007; 53 2012; 77 2018; 17 2021; 11 2021 2019 2018 2016 2020; 112 2015 2009; 1 1968 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_33_1 e_1_2_9_54_1 Soriano‐García M. (e_1_2_9_42_1) 2019 Gimplinger D. M. (e_1_2_9_20_1) 2009; 82 Pandey R. M. (e_1_2_9_37_1) 2009; 1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_18_1 e_1_2_9_41_1 Boote K. J. (e_1_2_9_8_1) 1999 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_13_1 e_1_2_9_32_1 IUSS Working Group WRB (e_1_2_9_25_1) 2007 Association of Official Analytical Chemists (AOAC) (e_1_2_9_5_1) 1990 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 Boote K. J. (e_1_2_9_9_1) 1998 e_1_2_9_3_1 Bora G. C. (e_1_2_9_12_1) 2018 Stetter M. G. (e_1_2_9_47_1) 2016 Mlosch L. (e_1_2_9_34_1) 2015 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 234‐235 start-page: 136 year: 2017 end-page: 148 article-title: Data requirement for effective calibration of process‐based crop models publication-title: Agricultural and Forest Meteorology – volume: 60 start-page: 240 issue: sup4 year: 2009 end-page: 257 article-title: Nutritive value and chemical composition of pseudocereals as gluten‐free ingredients publication-title: International Journal of Food Sciences and Nutrition – start-page: 139 year: 2016 end-page: 160 – start-page: 651 year: 1998 end-page: 692 – year: 2021 – volume: 38 start-page: 1718 issue: 4 year: 2018 end-page: 1736 article-title: Will drought events become more frequent and severe in Europe? publication-title: International Journal of Climatology – volume: 26 start-page: 871 issue: 3 year: 2017 end-page: 886 article-title: Genomic and phenotypic evidence for an incomplete domestication of South American grain amaranth ( ) publication-title: Molecular Ecology – volume: 4 start-page: 179 year: 1999 end-page: 199 – volume: 61 start-page: 41 issue: 2 year: 2009 end-page: 52 article-title: The BBCH system to coding the phenological growth stages of plants–History and publications publication-title: Journal Für Kulturpflanzen – volume: 17 start-page: 1145 issue: 5 year: 2018 end-page: 1153 article-title: Variability in total antioxidant capacity, antioxidant leaf pigments and foliage yield of vegetable amaranth publication-title: Journal of Integrative Agriculture – volume: 94 start-page: 1437 issue: 6 year: 2002 end-page: 1443 article-title: Water use patterns of grain amaranth in the northern Great Plains publication-title: Agronomy Journal – year: 1990 – start-page: 99 year: 1998 end-page: 128 – volume: 124 start-page: 436 year: 2019 end-page: 443 article-title: The phenological growth stages of different amaranth species grown in restricted spaces based in BBCH code publication-title: South African Journal of Botany – volume: 158 start-page: 791 issue: 10 year: 2021 end-page: 793 article-title: iCROPM 2020: Crop modeling for the future publication-title: Journal of Agricultural Science – volume: 108 start-page: 64 issue: 1 year: 2016 end-page: 72 article-title: Adapting the CROPGRO Model to simulate growth and yield of spring safflower in semiarid conditions publication-title: Agronomy Journal – volume: 155 start-page: 240 year: 2017 end-page: 254 article-title: Brief history of agricultural systems modeling publication-title: Agricultural Systems – volume: 112 start-page: 3859 issue: 5 year: 2020 end-page: 3877 article-title: Adapting the CROPGRO model to simulate chia growth and yield publication-title: Agronomy – volume: 36 start-page: 175 issue: 2 year: 1949 end-page: 180 article-title: Photoperiodic responses of Willd. and L publication-title: American Journal of Botany – volume: 83 start-page: 382 issue: 4 year: 2017 end-page: 436 article-title: Biology of amaranths publication-title: The Botanical Review – volume: 28 start-page: 119 issue: 2 year: 2008 end-page: 125 article-title: Optimum crop densities for potential yield and harvestable yield of grain amaranth are conflicting publication-title: European Journal of Agronomy – start-page: 175 year: 2009 end-page: 191 – volume: 18 start-page: 235 issue: 3 year: 2003 end-page: 265 article-title: The DSSAT cropping system model publication-title: European Journal of Agronomy – volume: 1 start-page: 61 issue: 2 year: 2009 end-page: 64 article-title: Genetic improvement of grain amaranths: A review publication-title: Current Advances in Agricultural Sciences – volume: 11 start-page: 6086 issue: 1 year: 2021 article-title: Elucidation of the core betalain biosynthesis pathway in publication-title: Scientific Reports – volume: 37 start-page: 1407 issue: 5 year: 2019 end-page: 1419 article-title: Parallel seed color adaptation during multiple domestication attempts of an ancient new world grain publication-title: Molecular Biology and Evolution – volume: 10 issue: 1 year: 2020 article-title: Modifying the CROPGRO Safflower model to simulate growth, seed and floret yield under field conditions in southwestern Germany publication-title: Agronomy – volume: 9 issue: 12 year: 2019 article-title: Simulating growth and development processes of quinoa ( Willd.): Adaptation and evaluation of the CSM‐CROPGRO model publication-title: Agronomy – volume: 12 start-page: 381 issue: 4 year: 2013 end-page: 412 article-title: Nutritional components of amaranth seeds and vegetables: A review on composition, properties, and uses publication-title: Comprehensive Reviews in Food Science and Food Safety – volume: 21 start-page: 106 issue: 2 year: 2010 end-page: 113 article-title: Nutritive value of pseudocereals and their increasing use as functional gluten‐free ingredients publication-title: Trends in Food Science & Technology – volume: 53 start-page: 105 issue: 3 year: 2007 article-title: Yield and quality of grain amaranth ( sp.) in eastern Austria publication-title: Plant Soil and Environment – year: 2019 – year: 2015 – volume: 47 start-page: 43 issue: 1 year: 2000 end-page: 53 article-title: Field evaluation of an genetic resource collection in China publication-title: Genetic Resources and Crop Evolution – start-page: 253 year: 2018 end-page: 266 – volume: 19 start-page: 139 issue: 1‐2 year: 2003 end-page: 148 article-title: The global potential for quinoa and other Andean crops publication-title: Food Reviews International – year: 2007 – volume: 77 start-page: 93 issue: 4 year: 2012 end-page: 104 article-title: State of knowledge on amaranth grain: A comprehensive review publication-title: Journal of Food Science – volume: 201 start-page: 321 issue: 5 year: 2015 end-page: 329 article-title: The potential for utilizing the seed crop amaranth ( spp.) in East Africa as an alternative crop to support food security and climate change Mitigation publication-title: Journal of Agronomy and Crop Science – volume: 94 start-page: 743 issue: 4 year: 2002 end-page: 756 article-title: Adapting the CROPGRO legume model to simulate growth of faba bean publication-title: Agronomy Journal – volume: 247 start-page: 300 year: 2017 end-page: 310 article-title: Evaluating AquaCrop model for simulating production of amaranthus ( ) a leafy vegetable, under irrigation and rainfed conditions publication-title: Agricultural and Forest Meteorology – year: 2016 – volume: 96 start-page: 709 issue: 3 year: 2016 end-page: 714 article-title: An overview of available crop growth and yield models for studies and assessments in agriculture publication-title: Journal of the Science of Food and Agriculture – start-page: 243 year: 1968 end-page: 251 article-title: Photosynthetic and respiratory exchanges of carbon dioxide by leaves of the grain amaranth publication-title: Journal of Applied Ecology – volume: 182 start-page: 110 year: 2015 end-page: 118 article-title: Evaluation of the CROPGRO model for white cabbage production under temperate European climate conditions publication-title: Scientia Horticulturae – volume: 63 start-page: 1309 issue: 11 year: 1982 end-page: 1313 article-title: Some comments on the evaluation of model performance publication-title: Bulletin of the American Meteorological Society – volume: 82 start-page: 183 issue: 2 year: 2009 end-page: 192 article-title: Calibration and validation of the crop growth model LINTUL for grain amaranth ( sp.) publication-title: Journal of Applied Botany and Food Quality – volume: 6 start-page: 135 year: 1997 end-page: 151 – volume: 48 start-page: 21 issue: 1 year: 1961 end-page: 28 article-title: Photoperiodism in . I. A Re‐Examination of the photoperiodic response publication-title: American Journal of Botany – volume: 267 start-page: 349 year: 1990 end-page: 368 article-title: Crop growth models: Their usefulness and limitations publication-title: Acta Horticulturae – volume: 208 start-page: 107 year: 2018 end-page: 119 article-title: Calibration and validation of the AquaCrop model for repeatedly harvested leafy vegetables grown under different irrigation regimes publication-title: Agricultural Water Management – volume: 90 start-page: 597 issue: 5 year: 1998 end-page: 602 article-title: Nitrogen fertilizer effect on grain amaranth publication-title: Agronomy Journal – ident: e_1_2_9_39_1 doi: 10.1016/S2095‐3119(17)61778‐7 – ident: e_1_2_9_4_1 doi: 10.1016/j.tifs.2009.10.014 – ident: e_1_2_9_41_1 doi: 10.2134/agronj15.0272 – ident: e_1_2_9_16_1 doi: 10.1002/jsfa.7359 – ident: e_1_2_9_31_1 doi: 10.1002/agj2.20305 – ident: e_1_2_9_32_1 doi: 10.1016/j.sajb.2019.05.035 – volume-title: Speciation and domestication genomics of Amaranthus spp year: 2016 ident: e_1_2_9_47_1 contributor: fullname: Stetter M. G. – ident: e_1_2_9_29_1 doi: 10.1016/S1161‐0301(02)00107‐7 – ident: e_1_2_9_19_1 doi: 10.17221/2224‐PSE – volume-title: Einfluss von Inhaltsstoffen und Kornparametern verschiedener Amarantsorten auf die Aufpoppfähigkeit im industriellen Maßstab year: 2015 ident: e_1_2_9_34_1 contributor: fullname: Mlosch L. – volume-title: Nutritional value of amaranth year: 2019 ident: e_1_2_9_42_1 contributor: fullname: Soriano‐García M. – ident: e_1_2_9_30_1 doi: 10.1002/9781118720691.ch20 – ident: e_1_2_9_23_1 doi: 10.1017/S0021859621000538 – volume-title: Official methods of analysis year: 1990 ident: e_1_2_9_5_1 contributor: fullname: Association of Official Analytical Chemists (AOAC) – ident: e_1_2_9_24_1 – ident: e_1_2_9_54_1 doi: 10.1002/j.1537‐2197.1961.tb11599.x – ident: e_1_2_9_35_1 doi: 10.2134/agronj1998.00021962009000050005x – ident: e_1_2_9_28_1 doi: 10.1016/j.agsy.2016.05.014 – ident: e_1_2_9_15_1 doi: 10.1038/s41598‐021‐85486‐x – ident: e_1_2_9_46_1 doi: 10.1007/978-3-642-01132-0_19 – start-page: 179 volume-title: DSSAT v3 year: 1999 ident: e_1_2_9_8_1 contributor: fullname: Boote K. J. – ident: e_1_2_9_44_1 doi: 10.17660/ActaHortic.1990.267.42 – volume: 1 start-page: 61 issue: 2 year: 2009 ident: e_1_2_9_37_1 article-title: Genetic improvement of grain amaranths: A review publication-title: Current Advances in Agricultural Sciences contributor: fullname: Pandey R. M. – ident: e_1_2_9_53_1 doi: 10.1023/A:1008771103826 – start-page: 253 volume-title: Forage crops of the world, Volume II: Minor forage crops year: 2018 ident: e_1_2_9_12_1 contributor: fullname: Bora G. C. – ident: e_1_2_9_50_1 doi: 10.1016/j.scienta.2014.11.019 – ident: e_1_2_9_22_1 doi: 10.1016/j.agrformet.2016.12.015 – volume: 82 start-page: 183 issue: 2 year: 2009 ident: e_1_2_9_20_1 article-title: Calibration and validation of the crop growth model LINTUL for grain amaranth (Amaranthus sp.) publication-title: Journal of Applied Botany and Food Quality contributor: fullname: Gimplinger D. M. – ident: e_1_2_9_6_1 doi: 10.1007/s12229‐017‐9194‐1 – ident: e_1_2_9_13_1 doi: 10.1111/j.1750‐3841.2012.02645.x – ident: e_1_2_9_10_1 doi: 10.1007/978-94-017-3624-4_6 – ident: e_1_2_9_43_1 doi: 10.1002/joc.5291 – ident: e_1_2_9_14_1 – ident: e_1_2_9_18_1 doi: 10.2307/2437786 – ident: e_1_2_9_2_1 doi: 10.1111/jac.12108 – start-page: 651 volume-title: Agricultural systems modeling and simulation year: 1998 ident: e_1_2_9_9_1 contributor: fullname: Boote K. J. – ident: e_1_2_9_45_1 doi: 10.3390/agronomy10010011 – ident: e_1_2_9_3_1 doi: 10.1080/09637480902950597 – ident: e_1_2_9_17_1 doi: 10.2307/2401288 – ident: e_1_2_9_40_1 doi: 10.1007/978-94-017-0754-1_9 – ident: e_1_2_9_52_1 doi: 10.1175/1520‐0477 – ident: e_1_2_9_26_1 doi: 10.1081/FRI‐120018880 – ident: e_1_2_9_27_1 doi: 10.2134/agronj2002.1437 – ident: e_1_2_9_33_1 doi: 10.5073/JfK.2009.02.01 – ident: e_1_2_9_38_1 doi: 10.3390/agronomy9120832 – ident: e_1_2_9_49_1 doi: 10.1093/molbev/msz304 – ident: e_1_2_9_7_1 doi: 10.1016/j.agrformet.2017.08.003 – ident: e_1_2_9_21_1 doi: 10.1016/j.eja.2007.05.007 – ident: e_1_2_9_51_1 doi: 10.1111/1541‐4337.12021 – volume-title: World Reference Base for Soil Resources 2006, first update 2007 year: 2007 ident: e_1_2_9_25_1 contributor: fullname: IUSS Working Group WRB – ident: e_1_2_9_11_1 doi: 10.2134/agronj2002.7430 – ident: e_1_2_9_48_1 doi: 10.1111/mec.13974 – ident: e_1_2_9_36_1 doi: 10.1016/j.agwat.2018.06.012 |
SSID | ssj0011941 |
Score | 2.4135756 |
Snippet | The aim of this study was to adapt the CROPGRO model to simulate growth and development processes of Amaranthus spp. under central European conditions. In 2017... The aim of this study was to adapt the CROPGRO model to simulate growth and development processes of Amaranthus spp. under central European conditions. In 2017... |
SourceID | crossref wiley |
SourceType | Aggregation Database Publisher |
StartPage | 2243 |
Title | Adapting the CROPGRO‐faba bean model to simulate the growth and development of Amaranthus species |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fagj2.21090 |
Volume | 114 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA7akx58i_VFQE_C2m222d2Cl6X2QQ9taXvwtkySSavQbenj7k_wN_pLTNKXXgTxsuxhAmGYyXyTzHxDyH1ZAIKWkaclNwkKIjc-V468clySOhQKAeyFW6MXtV7i56qlyXla98Is-SE2F27WM9x5bR0cxKywJQ2FwRt7ZLau0BzAJk1w_RtBZ_OEYLLz4hr7GjNjG25SVtgu_RGNvqNTF15qh__b2BE5WMFKmizt4JjsYHZC9pPBdEWtgadEJgomtsiZGsxHK912p95tf75_aBBABUJG3VQcOh_T2evITvVCJzkwifp8SCFTVG0rjOhY02QEJtLNh4sZtQ2bJuc-I_1atV9peKsRC54MzAa9SAY69EEFCrXU2kctDKIJFUYm8HMOClBz5AwZRx0Jn8mwaCJ6rAMGnPPgnOSycYYXhAKWfClj-zyMJS6C2AchoqKMyqE2mCfIk7u1ptPJkkgjXVIms9RqLHUay5MHp9pfRNKk3mTu7_Ivwldkj9nOBVdpe01y8-kCb8juTC1und2Yb6_Z-gKWFsa_ |
link.rule.ids | 315,782,786,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI4YHIADb8SbSHBCKuvSpe0OHKrBGDDYNHbgVjmJM0CiQ6y78xP4jfwSkuwFFyTErQdXiiw7_uzYnwk5rghA0DLytOQmQUHkxucqkVeJy1KHQiGALbjV76O7h_j8wtLknI1nYYb8EJOCm_UMd19bB7cF6eKUNRS6z-yU2cbCApkrh8YS7QRH0Jo8Ipj8vDRGv8bQ2ISdlBWn__6IR9_xqQswteV_Hm2FLI2QJU2GprBKZjBbI4tJ923EroHrRCYKXm2fMzWwj1bbzdZlu_n5_qFBABUIGXWLcWjeo_2nF7vYC51k1-Tq-SOFTFE1bTKiPU2TFzDBLn8c9Kmd2TRp9wbp1C461bo32rLgycAc0ItkoEMfVKBQS6191MKAmlBhZGI_56AANUfOkHHUkfCZDEsmqMc6YMA5DzbJbNbLcItQwLIvZWxfiLHMRRD7IERUklEl1Ab2BNvkaKzq9HXIpZEOWZNZajWWOo1tkxOn219E0uTymrmvnb8IH5L5eue2kTau7m52yQKzgwyu8XaPzOZvA9wnhb4aHDgj-gKDx8nb |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA4-QPTgW6zPgJ6Etduk2d2Cl0Xb-kJL9eBtmSSTquC29HH3J_gb_SUm6UsvgnjLYQJhmMl8k8x8Q8hxRQKCUXFglLAJCqKwPleJg0pSViaSGgHcg9vlQ3z3lFxUHU3O2bgXZsgPMXlwc57h72vn4B1tilPSUGi9slPm6gpnyXzZ4nDHnM95Y_KHYNPz0hj8WjtjE3JSVpzu_RGOvsNTH19qK_872SpZHuFKmg4NYY3MYL5OltJWd8StgRtEpRo6rsqZWtBHz5v3jXrz_vP9w4AEKhFy6sfi0H6b9l7e3Fgv9JItm6n3nynkmuppiRFtG5q-gQ11_edBj7qOTZt0b5LHWvXx_DIYzVgIFLcHDGLFTRSC5hqNMiZEIy2kiTTGNvILARrQCBQMmUATy5CpqGRDemI4AyEE3yJzeTvHbUIBy6FSifsfxrKQPAlByrik4kpkLOjhBXI01nTWGTJpZEPOZJY5jWVeYwVy4lX7i0iW1q-ZX-38RfiQLDQuatnt1d3NLllkrovBV93ukbl-d4D7ZLanBwfehL4APavIgQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adapting+the+CROPGRO%E2%80%90faba+bean+model+to+simulate+the+growth+and+development+of+Amaranthus+species&rft.jtitle=Agronomy+journal&rft.au=Nkebiwe%2C+Peteh+Mehdi&rft.au=Boote%2C+Ken&rft.au=Pflugfelder%2C+Annegret&rft.au=Munz%2C+Sebastian&rft.date=2022-07-01&rft.issn=0002-1962&rft.eissn=1435-0645&rft.volume=114&rft.issue=4&rft.spage=2243&rft.epage=2263&rft_id=info:doi/10.1002%2Fagj2.21090&rft.externalDBID=10.1002%252Fagj2.21090&rft.externalDocID=AGJ221090 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-1962&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-1962&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-1962&client=summon |