Comparing neoantigen cancer vaccines and immune checkpoint therapy unveils an effective vaccine and anti-TREM2 macrophage-targeting dual therapy
The goal of therapeutic cancer vaccines and immune checkpoint therapy (ICT) is to promote T cells with anti-tumor capabilities. Here, we compared mutant neoantigen (neoAg) peptide-based vaccines with ICT in preclinical models. NeoAg vaccines induce the most robust expansion of proliferating and stem...
Saved in:
Published in: | Cell reports (Cambridge) Vol. 43; no. 11; p. 114875 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Elsevier Inc
26-11-2024
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The goal of therapeutic cancer vaccines and immune checkpoint therapy (ICT) is to promote T cells with anti-tumor capabilities. Here, we compared mutant neoantigen (neoAg) peptide-based vaccines with ICT in preclinical models. NeoAg vaccines induce the most robust expansion of proliferating and stem-like PD-1+TCF-1+ neoAg-specific CD8 T cells in tumors. Anti-CTLA-4 and/or anti-PD-1 ICT promotes intratumoral TCF-1− neoAg-specific CD8 T cells, although their phenotype depends in part on the specific ICT used. Anti-CTLA-4 also prompts substantial changes to CD4 T cells, including induction of ICOS+Bhlhe40+ T helper 1 (Th1)-like cells. Although neoAg vaccines or ICTs expand iNOS+ macrophages, neoAg vaccines maintain CX3CR1+CD206+ macrophages expressing the TREM2 receptor, unlike ICT, which suppresses them. TREM2 blockade enhances neoAg vaccine efficacy and is associated with fewer CX3CR1+CD206+ macrophages and induction of neoAg-specific CD8 T cells. Our findings highlight different mechanisms underlying neoAg vaccines and different forms of ICT and identify combinatorial therapies to enhance neoAg vaccine efficacy.
[Display omitted]
•NeoAg vaccines utilize mechanisms partially distinct from those of αCTLA-4 or αPD-1•NeoAg vaccines potently induce TCF-1+ stem-like and proliferating neoAg-specific CD8 T cells•NeoAg vaccines induce macrophage remodeling partially distinct from that of αCTLA-4 or αPD-1•TREM2 blockade remodels intratumoral macrophages and enhances neoAg vaccine efficacy
Keshari et al. demonstrate in preclinical models that neoantigen peptide-based vaccines, anti-PD-1, and anti-CTLA-4 each induce partially distinct tumor microenvironment remodeling. Targeting intratumoral macrophages via TREM2 blockade extends the therapeutic window of neoantigen vaccines and is associated with a decrease in CX3CR1+CD206+ macrophages and the promotion of neoantigen-specific T cells. |
---|---|
AbstractList | The goal of therapeutic cancer vaccines and immune checkpoint therapy (ICT) is to promote T cells with anti-tumor capabilities. Here, we compared mutant neoantigen (neoAg) peptide-based vaccines with ICT in preclinical models. NeoAg vaccines induce the most robust expansion of proliferating and stem-like PD-1+TCF-1+ neoAg-specific CD8 T cells in tumors. Anti-CTLA-4 and/or anti-PD-1 ICT promotes intratumoral TCF-1− neoAg-specific CD8 T cells, although their phenotype depends in part on the specific ICT used. Anti-CTLA-4 also prompts substantial changes to CD4 T cells, including induction of ICOS+Bhlhe40+ T helper 1 (Th1)-like cells. Although neoAg vaccines or ICTs expand iNOS+ macrophages, neoAg vaccines maintain CX3CR1+CD206+ macrophages expressing the TREM2 receptor, unlike ICT, which suppresses them. TREM2 blockade enhances neoAg vaccine efficacy and is associated with fewer CX3CR1+CD206+ macrophages and induction of neoAg-specific CD8 T cells. Our findings highlight different mechanisms underlying neoAg vaccines and different forms of ICT and identify combinatorial therapies to enhance neoAg vaccine efficacy.
[Display omitted]
•NeoAg vaccines utilize mechanisms partially distinct from those of αCTLA-4 or αPD-1•NeoAg vaccines potently induce TCF-1+ stem-like and proliferating neoAg-specific CD8 T cells•NeoAg vaccines induce macrophage remodeling partially distinct from that of αCTLA-4 or αPD-1•TREM2 blockade remodels intratumoral macrophages and enhances neoAg vaccine efficacy
Keshari et al. demonstrate in preclinical models that neoantigen peptide-based vaccines, anti-PD-1, and anti-CTLA-4 each induce partially distinct tumor microenvironment remodeling. Targeting intratumoral macrophages via TREM2 blockade extends the therapeutic window of neoantigen vaccines and is associated with a decrease in CX3CR1+CD206+ macrophages and the promotion of neoantigen-specific T cells. The goal of therapeutic cancer vaccines and immune checkpoint therapy (ICT) is to promote T cells with anti-tumor capabilities. Here, we compared mutant neoantigen (neoAg) peptide-based vaccines with ICT in preclinical models. NeoAg vaccines induce the most robust expansion of proliferating and stem-like PD-1+TCF-1+ neoAg-specific CD8 T cells in tumors. Anti-CTLA-4 and/or anti-PD-1 ICT promotes intratumoral TCF-1− neoAg-specific CD8 T cells, although their phenotype depends in part on the specific ICT used. Anti-CTLA-4 also prompts substantial changes to CD4 T cells, including induction of ICOS+Bhlhe40+ T helper 1 (Th1)-like cells. Although neoAg vaccines or ICTs expand iNOS+ macrophages, neoAg vaccines maintain CX3CR1+CD206+ macrophages expressing the TREM2 receptor, unlike ICT, which suppresses them. TREM2 blockade enhances neoAg vaccine efficacy and is associated with fewer CX3CR1+CD206+ macrophages and induction of neoAg-specific CD8 T cells. Our findings highlight different mechanisms underlying neoAg vaccines and different forms of ICT and identify combinatorial therapies to enhance neoAg vaccine efficacy. The goal of therapeutic cancer vaccines and immune checkpoint therapy (ICT) is to promote T cells with anti-tumor capabilities. Here, we compared mutant neoantigen (neoAg) peptide-based vaccines with ICT in preclinical models. NeoAg vaccines induce the most robust expansion of proliferating and stem-like PD-1+TCF-1+ neoAg-specific CD8 T cells in tumors. Anti-CTLA-4 and/or anti-PD-1 ICT promotes intratumoral TCF-1- neoAg-specific CD8 T cells, although their phenotype depends in part on the specific ICT used. Anti-CTLA-4 also prompts substantial changes to CD4 T cells, including induction of ICOS+Bhlhe40+ T helper 1 (Th1)-like cells. Although neoAg vaccines or ICTs expand iNOS+ macrophages, neoAg vaccines maintain CX3CR1+CD206+ macrophages expressing the TREM2 receptor, unlike ICT, which suppresses them. TREM2 blockade enhances neoAg vaccine efficacy and is associated with fewer CX3CR1+CD206+ macrophages and induction of neoAg-specific CD8 T cells. Our findings highlight different mechanisms underlying neoAg vaccines and different forms of ICT and identify combinatorial therapies to enhance neoAg vaccine efficacy.The goal of therapeutic cancer vaccines and immune checkpoint therapy (ICT) is to promote T cells with anti-tumor capabilities. Here, we compared mutant neoantigen (neoAg) peptide-based vaccines with ICT in preclinical models. NeoAg vaccines induce the most robust expansion of proliferating and stem-like PD-1+TCF-1+ neoAg-specific CD8 T cells in tumors. Anti-CTLA-4 and/or anti-PD-1 ICT promotes intratumoral TCF-1- neoAg-specific CD8 T cells, although their phenotype depends in part on the specific ICT used. Anti-CTLA-4 also prompts substantial changes to CD4 T cells, including induction of ICOS+Bhlhe40+ T helper 1 (Th1)-like cells. Although neoAg vaccines or ICTs expand iNOS+ macrophages, neoAg vaccines maintain CX3CR1+CD206+ macrophages expressing the TREM2 receptor, unlike ICT, which suppresses them. TREM2 blockade enhances neoAg vaccine efficacy and is associated with fewer CX3CR1+CD206+ macrophages and induction of neoAg-specific CD8 T cells. Our findings highlight different mechanisms underlying neoAg vaccines and different forms of ICT and identify combinatorial therapies to enhance neoAg vaccine efficacy. The goal of therapeutic cancer vaccines and immune checkpoint therapy (ICT) is to promote T cells with anti-tumor capabilities. Here, we compared mutant neoantigen (neoAg) peptide-based vaccines with ICT in preclinical models. NeoAg vaccines induce the most robust expansion of proliferating and stem-like PD-1 TCF-1 neoAg-specific CD8 T cells in tumors. Anti-CTLA-4 and/or anti-PD-1 ICT promotes intratumoral TCF-1 neoAg-specific CD8 T cells, although their phenotype depends in part on the specific ICT used. Anti-CTLA-4 also prompts substantial changes to CD4 T cells, including induction of ICOS Bhlhe40 T helper 1 (Th1)-like cells. Although neoAg vaccines or ICTs expand iNOS macrophages, neoAg vaccines maintain CX3CR1 CD206 macrophages expressing the TREM2 receptor, unlike ICT, which suppresses them. TREM2 blockade enhances neoAg vaccine efficacy and is associated with fewer CX3CR1 CD206 macrophages and induction of neoAg-specific CD8 T cells. Our findings highlight different mechanisms underlying neoAg vaccines and different forms of ICT and identify combinatorial therapies to enhance neoAg vaccine efficacy. |
ArticleNumber | 114875 |
Author | Alspach, Elise Saha, Akata Pineda, Josué E. Hu, Kenneth H. Miao, Qi Shavkunov, Alexander S. Gubin, Matthew M. Colonna, Marco Chaib, Mehdi Alekseev, Sayan Keshari, Sunita Molgora, Martina Pauken, Kristen E. Chen, Ken Minowa, Tomoyuki Williams, Charmelle D. Highsmith, Anna M. |
Author_xml | – sequence: 1 givenname: Sunita surname: Keshari fullname: Keshari, Sunita organization: Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA – sequence: 2 givenname: Alexander S. surname: Shavkunov fullname: Shavkunov, Alexander S. organization: Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA – sequence: 3 givenname: Qi surname: Miao fullname: Miao, Qi organization: Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA – sequence: 4 givenname: Akata surname: Saha fullname: Saha, Akata organization: Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA – sequence: 5 givenname: Tomoyuki surname: Minowa fullname: Minowa, Tomoyuki organization: Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA – sequence: 6 givenname: Martina surname: Molgora fullname: Molgora, Martina organization: Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO, USA – sequence: 7 givenname: Charmelle D. surname: Williams fullname: Williams, Charmelle D. organization: Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA – sequence: 8 givenname: Mehdi surname: Chaib fullname: Chaib, Mehdi organization: Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA – sequence: 9 givenname: Anna M. surname: Highsmith fullname: Highsmith, Anna M. organization: Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA – sequence: 10 givenname: Josué E. surname: Pineda fullname: Pineda, Josué E. organization: Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA – sequence: 11 givenname: Sayan surname: Alekseev fullname: Alekseev, Sayan organization: Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA – sequence: 12 givenname: Elise surname: Alspach fullname: Alspach, Elise organization: Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA – sequence: 13 givenname: Kenneth H. surname: Hu fullname: Hu, Kenneth H. organization: Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA – sequence: 14 givenname: Marco surname: Colonna fullname: Colonna, Marco organization: Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO, USA – sequence: 15 givenname: Kristen E. surname: Pauken fullname: Pauken, Kristen E. organization: Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA – sequence: 16 givenname: Ken surname: Chen fullname: Chen, Ken organization: Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA – sequence: 17 givenname: Matthew M. surname: Gubin fullname: Gubin, Matthew M. email: mgubin@mdanderson.org organization: Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39446585$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctu1DAUhi1URC_0DRDKkk0G27En8QYJjQqtVISEyto6dk4yHhIn2MlIfQseGafpVKzwxpb9X5LzXZIzP3gk5B2jG0bZ9uNhY7ELOG445WLDmKhK-YpccM5Yzrgoz_45n5PrGA80rS1lTIk35LxQQmxlJS_In93QjxCcbzOPA_jJtegzC95iyI5grfMYM_B15vp-9pjZPdpf4-D8lE17DDA-ZrM_ousWVYZNg3ZyRzx5n6xLbP7w4-Ybz3qwYRj30GI-QWhxWprrGbpT2lvyuoEu4vXzfkV-frl52N3m99-_3u0-3-e2oOWUl4pWlpUSJTdUKioFclkrYwRDIWmFVNnKNjVXhhbKQKMqZhFMeioR67K4Indrbj3AQY_B9RAe9QBOP10ModUQJmc71GhEKVUBxqAUkhdgjaxYiqRbTs2Wp6wPa9YYht8zxkn3LiZAHaSZzlEXjKdvFKyiSSpWaRpDjAGbl2pG9YJWH_SKVi9o9Yo22d4_N8ymx_rFdAKZBJ9WAaaZHR0GHa3DRLF2IRFJP-X-3_AXR2y6Jg |
Cites_doi | 10.1111/pcmr.12498 10.1038/nri954 10.1158/2326-6066.CIR-21-0129 10.1016/j.ccell.2023.03.009 10.1016/j.immuni.2021.11.015 10.1038/s41586-019-1325-x 10.1038/s41467-017-00627-z 10.1038/s41577-018-0044-0 10.1016/S0140-6736(23)02268-7 10.1038/s41577-022-00737-w 10.1038/nature22991 10.1038/s41568-022-00547-1 10.1016/j.cell.2020.08.053 10.1126/sciimmunol.adi5374 10.1056/NEJMoa2402604 10.1016/j.smim.2023.101739 10.1016/j.immuni.2015.01.006 10.1038/s41586-020-2134-y 10.1084/jem.20170155 10.1016/j.ccell.2019.02.009 10.1016/j.ccr.2010.11.011 10.1016/j.cell.2018.02.008 10.1038/s41591-020-01206-4 10.1126/science.aaa3828 10.1158/2326-6066.CIR-21-0588 10.1038/s41577-019-0127-6 10.1038/s41586-019-1836-5 10.1038/emboj.2012.333 10.1038/s41577-021-00574-3 10.1126/sciimmunol.ade3369 10.1084/jem.20082492 10.1016/j.cell.2021.07.015 10.1016/j.smim.2020.101414 10.1038/s41590-023-01475-4 10.1016/j.cell.2018.10.038 10.1158/2159-8290.CD-20-1680 10.1016/j.cell.2018.11.043 10.1016/j.ccell.2022.06.001 10.1002/JLB.5RI0220-603RR 10.4049/jimmunol.2001411 10.1038/s41591-020-0892-6 10.1126/science.ade2292 10.1172/JCI80009 10.1038/s41571-020-00460-2 10.1038/nature14404 10.1038/s41568-019-0235-4 10.1073/pnas.0813175106 10.1158/0008-5472.CAN-11-3722 10.4049/jimmunol.164.12.6166 10.1038/s41586-023-06063-y 10.1038/nature13988 10.1126/science.aaf2807 10.1038/nri3175 10.1016/j.immuni.2009.08.027 10.1038/s41467-019-10594-2 10.1038/s41586-019-1324-y 10.1158/2326-6066.CIR-13-0020 10.1038/nbt.2859 10.1126/science.aaf1490 10.1038/s41586-019-1671-8 10.1038/35099560 10.1038/s41586-018-0694-x 10.1056/NEJMoa2407417 10.1016/j.cell.2018.09.030 10.1038/s41586-020-2537-9 10.1038/nm.3161 10.1038/nature14426 10.1016/j.celrep.2021.109844 10.1038/s41577-023-00937-y 10.1016/j.ccell.2024.08.007 10.1038/nature10803 10.1084/jem.20130579 10.1038/nrc3670 10.1126/science.aaa4971 10.1038/s41590-019-0312-6 10.1172/JCI80008 10.1038/nri3740 10.1016/j.immuni.2019.09.013 10.1146/annurev-immunol-061020-053702 10.1038/nature10755 10.1158/2326-6066.CIR-16-0391 10.1158/1078-0432.CCR-21-1804 10.1038/s41586-023-06199-x 10.1016/j.it.2020.09.002 10.1038/s41568-021-00346-0 10.1016/j.immuni.2019.12.008 10.1016/j.cell.2021.11.007 10.1038/nature23003 10.1073/pnas.1821218116 10.1111/pcmr.12591 10.1038/s41586-021-03704-y 10.1158/2326-6066.CIR-13-0013 10.4049/jimmunol.2300355 10.1016/j.cell.2017.07.024 10.1038/s41586-022-04682-5 10.1016/j.cell.2020.07.013 10.1172/JCI164258 10.1016/j.cell.2022.10.006 10.1016/j.immuni.2023.09.005 10.3389/fimmu.2023.1102282 10.1016/j.cell.2020.06.032 10.1074/jbc.M111.324194 10.1158/0008-5472.CAN-17-2426 10.1016/j.it.2022.04.008 10.1126/science.abl5447 10.1038/s41586-018-0792-9 10.1016/j.immuni.2018.11.014 10.1084/jem.20200920 10.1038/s43018-022-00352-7 10.1038/s41586-024-07752-y 10.1038/s41590-020-00810-3 10.1038/nature14001 10.1038/s41591-019-0522-3 10.1056/NEJMoa1504030 |
ContentType | Journal Article |
Copyright | 2024 The Author(s) Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2024 The Author(s) – notice: Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH NPM AAYXX CITATION 7X8 DOA |
DOI | 10.1016/j.celrep.2024.114875 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access PubMed CrossRef MEDLINE - Academic DOAJ: Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2211-1247 |
ExternalDocumentID | oai_doaj_org_article_eb47593abbe54523acb581af90620b62 10_1016_j_celrep_2024_114875 39446585 S2211124724012269 |
Genre | Journal Article |
GroupedDBID | 0R~ 0SF 4.4 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AAKRW AALRI AAMRU AAXUO ABMAC ACGFO ACGFS ADBBV ADEZE ADVLN AENEX AEXQZ AFTJW AGHFR AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ BAWUL BCNDV DIK EBS EJD FCP FDB FRP GROUPED_DOAJ GX1 IXB KQ8 NCXOZ O-L O9- OK1 RCE ROL SSZ NPM AAYXX CITATION HZ~ IPNFZ M41 M48 RIG 7X8 |
ID | FETCH-LOGICAL-c307t-7908c175e52b059054e25d9bb41e4508e09c8cfd29b039baf981ceab5087eed73 |
IEDL.DBID | DOA |
ISSN | 2211-1247 |
IngestDate | Mon Oct 28 19:37:00 EDT 2024 Fri Oct 25 20:46:05 EDT 2024 Wed Nov 20 13:35:12 EST 2024 Sat Nov 02 12:15:44 EDT 2024 Sat Nov 23 15:54:15 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | CP: Immunology neoantigen-specific CD8 T cells immune checkpoint therapy CP: Cancer cancer immunotherapy intratumoral macrophages combination immunotherapy neoantigen cancer vaccines anti-CTLA-4/anti-PD-1 CD4 T cells TREM2 tumor microenvironment |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c307t-7908c175e52b059054e25d9bb41e4508e09c8cfd29b039baf981ceab5087eed73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doaj.org/article/eb47593abbe54523acb581af90620b62 |
PMID | 39446585 |
PQID | 3120594180 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_eb47593abbe54523acb581af90620b62 proquest_miscellaneous_3120594180 crossref_primary_10_1016_j_celrep_2024_114875 pubmed_primary_39446585 elsevier_sciencedirect_doi_10_1016_j_celrep_2024_114875 |
PublicationCentury | 2000 |
PublicationDate | 2024-11-26 |
PublicationDateYYYYMMDD | 2024-11-26 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-26 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell reports (Cambridge) |
PublicationTitleAlternate | Cell Rep |
PublicationYear | 2024 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Dorner, Dorner, Zhou, Opitz, Mora, Güttler, Hutloff, Mages, Ranke, Schaefer (bib62) 2009; 31 Gubin, Artyomov, Mardis, Schreiber (bib3) 2015; 125 Lowery, Krishna, Yossef, Parikh, Chatani, Zacharakis, Parkhurst, Levin, Sindiri, Sachs (bib61) 2022; 375 Oliveira, Stromhaug, Cieri, Iorgulescu, Klaeger, Wolff, Rachimi, Chea, Krause, Freeman (bib67) 2022; 605 Coulie, Van den Eynde, van der Bruggen, Boon (bib2) 2014; 14 Trapnell, Cacchiarelli, Grimsby, Pokharel, Li, Morse, Lennon, Livak, Mikkelsen, Rinn (bib68) 2014; 32 Wang, Coutifaris, Brocks, Wang, Azar, Solis, Nandi, Anderson, Han, Manne (bib98) 2024; 42 Carreno, Magrini, Becker-Hapak, Kaabinejadian, Hundal, Petti, Ly, Lie, Hildebrand, Mardis, Linette (bib5) 2015; 348 Wu, Manne, Ngiow, Baxter, Huang, Freilich, Clark, Lee, Chen, Khan (bib87) 2023; 8 D'Alise, Leoni, Cotugno, Troise, Langone, Fichera, De Lucia, Avalle, Vitale, Leuzzi (bib103) 2019; 10 van der Leun, Thommen, Schumacher (bib32) 2020; 20 Spranger, Bao, Gajewski (bib55) 2015; 523 Haabeth, Fauskanger, Manzke, Lundin, Corthay, Bogen, Tveita (bib92) 2018; 78 Gubin, Vesely (bib113) 2022; 28 Murphy, Reiner (bib63) 2002; 2 Fehlings, Simoni, Penny, Becht, Loh, Gubin, Ward, Wong, Schreiber, Newell (bib21) 2017; 8 Heemskerk, Kvistborg, Schumacher (bib1) 2013; 32 Jansen, Prokhnevska, Master, Sanda, Carlisle, Bilen, Cardenas, Wilkinson, Lake, Sowalsky (bib43) 2019; 576 Speiser, Utzschneider, Oberle, Münz, Romero, Zehn (bib58) 2014; 14 Baharom, Ramirez-Valdez, Tobin, Yamane, Dutertre, Khalilnezhad, Reynoso, Coble, Lynn, Mulè (bib83) 2021; 22 Gabrilovich, Ostrand-Rosenberg, Bronte (bib46) 2012; 12 Alexopoulou, Holt, Medzhitov, Flavell (bib106) 2001; 413 Simpson, Li, Montalvo-Ortiz, Sepulveda, Bergerhoff, Arce, Roddie, Henry, Yagita, Wolchok (bib71) 2013; 210 Wei, Levine, Cogdill, Zhao, Anang, Andrews, Sharma, Wang, Wargo, Pe'er, Allison (bib25) 2017; 170 Dolina, Lee, Brightman, McArdle, Hall, Thota, Zavala, Lanka, Ramamoorthy Premlal, Greenbaum (bib85) 2023; 133 Li, van der Leun, Yofe, Lubling, Gelbard-Solodkin, van Akkooi, van den Braber, Rozeman, Haanen, Blank (bib42) 2019; 176 Alspach, Lussier, Miceli, Kizhvatov, DuPage, Luoma, Meng, Lichti, Esaulova, Vomund (bib23) 2019; 574 Hu, Leet, Allesøe, Oliveira, Li, Luoma, Liu, Forman, Huang, Iorgulescu (bib12) 2021; 27 Molgora, Liu, Colonna, Cella (bib109) 2023; 67 Di Pilato, Kfuri-Rubens, Pruessmann, Ozga, Messemaker, Cadilha, Sivakumar, Cianciaruso, Warner, Marangoni (bib73) 2021; 184 Molgora, Esaulova, Vermi, Hou, Chen, Luo, Brioschi, Bugatti, Omodei, Ricci (bib77) 2020; 182 Sahin, Derhovanessian, Miller, Kloke, Simon, Löwer, Bukur, Tadmor, Luxemburger, Schrörs (bib6) 2017; 547 Khan, Giles, McDonald, Manne, Ngiow, Patel, Werner, Huang, Alexander, Wu (bib38) 2019; 571 Cook, Jarjour, Lin, Edelson (bib89) 2020; 41 Ott, Hu-Lieskovan, Chmielowski, Govindan, Naing, Bhardwaj, Margolin, Awad, Hellmann, Lin (bib9) 2020; 183 Wei, Anang, Sharma, Andrews, Reuben, Levine, Cogdill, Mancuso, Wargo, Pe'er, Allison (bib26) 2019; 116 Pauken, Shahid, Lagattuta, Mahuron, Luber, Lowe, Huang, Delaney, Long, Fung (bib60) 2021; 218 Pai, Hellmann, Sauter, Mattar, Rizvi, Woo, Shah, Nguyen, Uddin, Quintanal-Villalonga (bib45) 2023; 41 Cassetta, Pollard (bib50) 2023; 23 Kurtulus, Madi, Escobar, Klapholz, Nyman, Christian, Pawlak, Dionne, Xia, Rozenblatt-Rosen (bib35) 2019; 50 Meeth, Wang, Micevic, Damsky, Bosenberg (bib52) 2016; 29 Belk, Yao, Ly, Freitas, Chen, Shi, Valencia, Shifrut, Kale, Yost (bib40) 2022; 40 Oliveira, Stromhaug, Klaeger, Kula, Frederick, Le, Forman, Huang, Li, Zhang (bib59) 2021; 596 Philip, Schietinger (bib33) 2022; 22 Sade-Feldman, Yizhak, Bjorgaard, Ray, de Boer, Jenkins, Lieb, Chen, Frederick, Barzily-Rokni (bib41) 2018; 175 McGranahan, Furness, Rosenthal, Ramskov, Lyngaa, Saini, Jamal-Hanjani, Wilson, Birkbak, Hiley (bib112) 2016; 351 Wang, Perry, Meeth, Thakral, Damsky, Micevic, Kaech, Blenman, Bosenberg (bib57) 2017; 30 Peggs, Quezada, Chambers, Korman, Allison (bib69) 2009; 206 Das, Huang, Bonkowski, Longchamp, Li, Schultz, Kim, Osborne, Joshi, Lu (bib116) 2018; 173 Giles, Globig, Kaech, Wherry (bib30) 2023; 56 Katzenelenbogen, Sheban, Yalin, Yofe, Svetlichnyy, Jaitin, Bornstein, Moshe, Keren-Shaul, Cohen (bib76) 2020; 182 Ishida-Kitagawa, Tanaka, Bao, Kimura, Miura, Kitaoka, Hayashi, Sato, Maruoka, Ogawa (bib115) 2012; 287 Ott, Hu, Keskin, Shukla, Sun, Bozym, Zhang, Luoma, Giobbie-Hurder, Peter (bib7) 2017; 547 Liu, Chen, Zhang, Ye, Moore, Lu, Fang, Fu, Li (bib84) 2022; 3 Melief, van Hall, Arens, Ossendorp, van der Burg (bib95) 2015; 125 Noguchi, Ward, Gubin, Arthur, Lee, Hundal, Selby, Graziano, Mardis, Korman, Schreiber (bib114) 2017; 5 Mills, Kincaid, Alt, Heilman, Hill (bib105) 2000; 164 Ng Tang, Shen, Sun, Wen, Wolchok, Yuan, Allison, Sharma (bib66) 2013; 1 Sultan, Takeuchi, Ward, Sharma, Liu, Sukhov, Firulyova, Song, Ameh, Brioschi (bib97) 2024; 632 DuPage, Cheung, Mazumdar, Winslow, Bronson, Schmidt, Crowley, Chen, Jacks (bib53) 2011; 19 Weber, Carlino, Khattak, Meniawy, Ansstas, Taylor, Kim, McKean, Long, Sullivan (bib14) 2024; 403 Sultan, Salazar, Celis (bib107) 2020; 49 Scott, Dündar, Zumbo, Chandran, Klebanoff, Shakiba, Trivedi, Menocal, Appleby, Camara (bib39) 2019; 571 Ma, Black, Qian (bib74) 2022; 43 DuPage, Mazumdar, Schmidt, Cheung, Jacks (bib54) 2012; 482 Chen, Liakou, Kamat, Pettaway, Ward, Tang, Sun, Jungbluth, Troncoso, Logothetis, Sharma (bib65) 2009; 106 Larkin, Chiarion-Sileni, Gonzalez, Grob, Cowey, Lao, Schadendorf, Dummer, Smylie, Rutkowski (bib99) 2015; 373 Blass, Ott (bib11) 2021; 18 Cassetta, Fragkogianni, Sims, Swierczak, Forrester, Zhang, Soong, Cotechini, Anur, Lin (bib48) 2019; 35 Keskin, Anandappa, Sun, Tirosh, Mathewson, Li, Oliveira, Giobbie-Hurder, Felt, Gjini (bib8) 2019; 565 Gubin, Esaulova, Ward, Malkova, Runci, Wong, Noguchi, Arthur, Meng, Alspach (bib22) 2018; 175 Martinez, Pereira, Äijö, Kim, Marangoni, Pipkin, Togher, Heissmeyer, Zhang, Crotty (bib36) 2015; 42 Sahin, Oehm, Derhovanessian, Jabulowsky, Vormehr, Gold, Maurus, Schwarck-Kokarakis, Kuhn, Omokoko (bib10) 2020; 585 Salmon, Shavkunov, Miao, Jarjour, Keshari, Esaulova, Williams, Ward, Highsmith, Pineda (bib24) 2022; 10 Maier, Leader, Chen, Tung, Chang, LeBerichel, Chudnovskiy, Maskey, Walker, Finnigan (bib72) 2020; 580 Kruse, Buzzai, Shridhar, Braun, Gellert, Knauth, Pozniak, Peters, Dittmann, Mengoni (bib29) 2023; 618 Selby, Engelhardt, Quigley, Henning, Chen, Srinivasan, Korman (bib70) 2013; 1 Yu, Sharma, Jankovic, Gurram, Su, Hu, Li, Rieder, Zhao, Sun, Zhu (bib88) 2018; 215 Borst, Ahrends, Bąbała, Melief, Kastenmüller (bib28) 2018; 18 Hos, Camps, van den Bulk, Tondini, van den Ende, Ruano, Franken, Janssen, Ru, Filippov (bib80) 2019; 9 Nguyen, Kudek, Zander, Niu, Shen, Bauer, Alson, Khatun, Chen, Sun (bib90) 2024; 212 Chen, Ji, Ngiow, Manne, Cai, Huang, Johnson, Staupe, Bengsch, Xu (bib34) 2019; 51 Li, Zhu, Son, Wang, Jiang, Xiang, Ye, Beckermann, Wu, Jenkins (bib86) 2020; 52 Guo, Yang, Zhang, Zhang, Tong, Cao, Liu (bib108) 2021; 207 Oh, Fong (bib94) 2021; 54 Blank, Lucas, Scolyer, van de Wiel, Menzies, Lopez-Yurda, Hoeijmakers, Saw, Lijnsvelt, Maher (bib102) 2024 Matsushita, Vesely, Koboldt, Rickert, Uppaluri, Magrini, Arthur, White, Chen, Shea (bib18) 2012; 482 Park, Reyes-Torres, LeBerichel, Hamon, LaMarche, Hegde, Belabed, Troncoso, Grout, Magen (bib78) 2023; 24 Pauken, Sammons, Odorizzi, Manne, Godec, Khan, Drake, Chen, Sen, Kurachi (bib37) 2016; 354 Goswami, Anandhan, Raychaudhuri, Sharma (bib51) 2023; 23 Binnewies, Pollack, Rudolph, Dash, Abushawish, Lee, Jahchan, Canaday, Lu, Norng (bib110) 2021; 37 Rojas, Sethna, Soares, Olcese, Pang, Patterson, Lihm, Ceglia, Guasp, Chu (bib13) 2023; 618 Miller, Sen, Al Abosy, Bi, Virkud, LaFleur, Yates, Lako, Felt, Naik (bib31) 2019; 20 Dong (bib64) 2021; 39 Gubin, Zhang, Schuster, Caron, Ward, Noguchi, Ivanova, Hundal, Arthur, Krebber (bib16) 2014; 515 Schrors, Hos, Yildiz, Lower, Lang, Holtstrater, Becker, Vormehr, Sahin, Ossendorp, Diken (bib81) 2023; 14 Katsikis, Ishii, Schliehe (bib15) 2024; 24 Brightman, Naradikian, Miller, Schoenberger (bib93) 2020; 107 Yadav, Jhunjhunwala, Phung, Lupardus, Tanguay, Bumbaca, Franci, Cheung, Fritsche, Weinschenk (bib20) 2014; 515 Allen, Hiam, Burnett, Venida, DeBarge, Tenvooren, Marquez, Cho, Carmi, Spitzer (bib49) 2020; 26 Kreiter, Vormehr, van de Roemer, Diken, Löwer, Diekmann, Boegel, Schrörs, Vascotto, Castle (bib27) 2015; 520 Yost, Satpathy, Wells, Qi, Wang, Kageyama, McNamara, Granja, Sarin, Brown (bib44) 2019; 25 Schumacher, Schreiber (bib4) 2015; 348 Cui, Wang, Fagerberg, Chen, Connolly, Damo, Cheung, Mao, Askari, Chen (bib56) 2021; 184 Robbins, Lu, El-Gamil, Li, Gross, Gartner, Lin, Teer, Cliften, Tycksen (bib19) 2013; 19 Bill, Wirapati, Messemaker, Roh, Zitti, Duval, Kiss, Park, Saal, Hoelzl (bib79) 2023; 381 Baharom, Ramirez-Valdez, Khalilnezhad, Khalilnezhad, Dillon, Hermans, Fussell, Tobin, Dutertre, Lynn (bib82) 2022; 185 Zhang, Yu, Zheng, Zhang, Li, Fang, Gao, Kang, Zhang, Huang (bib91) 2018; 564 Sharma, Siddiqui, Anandhan, Yadav, Subudhi, Gao, Goswami, Allison (bib100) 2021; 11 Wolchok, Chiarion-Sileni, Rutkowski, Cowey, Schadendorf, Wagstaff, Queirolo, Dummer, Butler, Hill (bib101) 2024 DeNardo, Ruffell (bib47) 2019; 19 Castle, Kreiter, Diekmann, Löwer, van de Roemer, de Graaf, Selmi, Diken, Boegel, Paret (bib17) 2012; 72 Saxena, van der Burg, Melief, Bhardwaj (bib96) 2021; 21 Mujal, Combes, Rao, Binnewies, Samad, Tsui, Boissonnas, Pollack, Argüello, Meng (bib75) 2022; 10 Di Luccia, Molgora, Khantakova, Jaeger, Chang, Czepielewski, Helmink, Onufer, Fachi, Bhattarai (bib111) 2024; 9 Becker, Olkhanud, Seishima, Moreno, Goldfarbmuren, Maeng, Berzofsky (bib104) 2024; 12 Weber (10.1016/j.celrep.2024.114875_bib14) 2024; 403 Dorner (10.1016/j.celrep.2024.114875_bib62) 2009; 31 Oliveira (10.1016/j.celrep.2024.114875_bib59) 2021; 596 DuPage (10.1016/j.celrep.2024.114875_bib53) 2011; 19 Cassetta (10.1016/j.celrep.2024.114875_bib50) 2023; 23 Das (10.1016/j.celrep.2024.114875_bib116) 2018; 173 Alspach (10.1016/j.celrep.2024.114875_bib23) 2019; 574 Haabeth (10.1016/j.celrep.2024.114875_bib92) 2018; 78 Ng Tang (10.1016/j.celrep.2024.114875_bib66) 2013; 1 D'Alise (10.1016/j.celrep.2024.114875_bib103) 2019; 10 Kurtulus (10.1016/j.celrep.2024.114875_bib35) 2019; 50 Gubin (10.1016/j.celrep.2024.114875_bib22) 2018; 175 Keskin (10.1016/j.celrep.2024.114875_bib8) 2019; 565 Khan (10.1016/j.celrep.2024.114875_bib38) 2019; 571 Jansen (10.1016/j.celrep.2024.114875_bib43) 2019; 576 Sultan (10.1016/j.celrep.2024.114875_bib97) 2024; 632 Gubin (10.1016/j.celrep.2024.114875_bib113) 2022; 28 Heemskerk (10.1016/j.celrep.2024.114875_bib1) 2013; 32 Cui (10.1016/j.celrep.2024.114875_bib56) 2021; 184 Pai (10.1016/j.celrep.2024.114875_bib45) 2023; 41 Salmon (10.1016/j.celrep.2024.114875_bib24) 2022; 10 Martinez (10.1016/j.celrep.2024.114875_bib36) 2015; 42 van der Leun (10.1016/j.celrep.2024.114875_bib32) 2020; 20 Philip (10.1016/j.celrep.2024.114875_bib33) 2022; 22 Molgora (10.1016/j.celrep.2024.114875_bib77) 2020; 182 Hos (10.1016/j.celrep.2024.114875_bib80) 2019; 9 Speiser (10.1016/j.celrep.2024.114875_bib58) 2014; 14 Li (10.1016/j.celrep.2024.114875_bib42) 2019; 176 Meeth (10.1016/j.celrep.2024.114875_bib52) 2016; 29 Molgora (10.1016/j.celrep.2024.114875_bib109) 2023; 67 Coulie (10.1016/j.celrep.2024.114875_bib2) 2014; 14 Chen (10.1016/j.celrep.2024.114875_bib65) 2009; 106 Kruse (10.1016/j.celrep.2024.114875_bib29) 2023; 618 Park (10.1016/j.celrep.2024.114875_bib78) 2023; 24 Pauken (10.1016/j.celrep.2024.114875_bib37) 2016; 354 Giles (10.1016/j.celrep.2024.114875_bib30) 2023; 56 Li (10.1016/j.celrep.2024.114875_bib86) 2020; 52 Simpson (10.1016/j.celrep.2024.114875_bib71) 2013; 210 Maier (10.1016/j.celrep.2024.114875_bib72) 2020; 580 Scott (10.1016/j.celrep.2024.114875_bib39) 2019; 571 Sahin (10.1016/j.celrep.2024.114875_bib10) 2020; 585 Blass (10.1016/j.celrep.2024.114875_bib11) 2021; 18 Miller (10.1016/j.celrep.2024.114875_bib31) 2019; 20 Schumacher (10.1016/j.celrep.2024.114875_bib4) 2015; 348 Allen (10.1016/j.celrep.2024.114875_bib49) 2020; 26 Spranger (10.1016/j.celrep.2024.114875_bib55) 2015; 523 Hu (10.1016/j.celrep.2024.114875_bib12) 2021; 27 Peggs (10.1016/j.celrep.2024.114875_bib69) 2009; 206 Baharom (10.1016/j.celrep.2024.114875_bib82) 2022; 185 Guo (10.1016/j.celrep.2024.114875_bib108) 2021; 207 Noguchi (10.1016/j.celrep.2024.114875_bib114) 2017; 5 Ishida-Kitagawa (10.1016/j.celrep.2024.114875_bib115) 2012; 287 Brightman (10.1016/j.celrep.2024.114875_bib93) 2020; 107 Robbins (10.1016/j.celrep.2024.114875_bib19) 2013; 19 Chen (10.1016/j.celrep.2024.114875_bib34) 2019; 51 Melief (10.1016/j.celrep.2024.114875_bib95) 2015; 125 Cassetta (10.1016/j.celrep.2024.114875_bib48) 2019; 35 Selby (10.1016/j.celrep.2024.114875_bib70) 2013; 1 Schrors (10.1016/j.celrep.2024.114875_bib81) 2023; 14 McGranahan (10.1016/j.celrep.2024.114875_bib112) 2016; 351 Ott (10.1016/j.celrep.2024.114875_bib7) 2017; 547 Binnewies (10.1016/j.celrep.2024.114875_bib110) 2021; 37 Cook (10.1016/j.celrep.2024.114875_bib89) 2020; 41 Larkin (10.1016/j.celrep.2024.114875_bib99) 2015; 373 Dong (10.1016/j.celrep.2024.114875_bib64) 2021; 39 Sade-Feldman (10.1016/j.celrep.2024.114875_bib41) 2018; 175 Ma (10.1016/j.celrep.2024.114875_bib74) 2022; 43 Fehlings (10.1016/j.celrep.2024.114875_bib21) 2017; 8 Pauken (10.1016/j.celrep.2024.114875_bib60) 2021; 218 Wolchok (10.1016/j.celrep.2024.114875_bib101) 2024 Di Luccia (10.1016/j.celrep.2024.114875_bib111) 2024; 9 Castle (10.1016/j.celrep.2024.114875_bib17) 2012; 72 Rojas (10.1016/j.celrep.2024.114875_bib13) 2023; 618 Wang (10.1016/j.celrep.2024.114875_bib98) 2024; 42 Gubin (10.1016/j.celrep.2024.114875_bib16) 2014; 515 Katzenelenbogen (10.1016/j.celrep.2024.114875_bib76) 2020; 182 Saxena (10.1016/j.celrep.2024.114875_bib96) 2021; 21 Trapnell (10.1016/j.celrep.2024.114875_bib68) 2014; 32 Lowery (10.1016/j.celrep.2024.114875_bib61) 2022; 375 Dolina (10.1016/j.celrep.2024.114875_bib85) 2023; 133 Mujal (10.1016/j.celrep.2024.114875_bib75) 2022; 10 Sultan (10.1016/j.celrep.2024.114875_bib107) 2020; 49 Gabrilovich (10.1016/j.celrep.2024.114875_bib46) 2012; 12 Gubin (10.1016/j.celrep.2024.114875_bib3) 2015; 125 Liu (10.1016/j.celrep.2024.114875_bib84) 2022; 3 Alexopoulou (10.1016/j.celrep.2024.114875_bib106) 2001; 413 Belk (10.1016/j.celrep.2024.114875_bib40) 2022; 40 Goswami (10.1016/j.celrep.2024.114875_bib51) 2023; 23 Bill (10.1016/j.celrep.2024.114875_bib79) 2023; 381 Yadav (10.1016/j.celrep.2024.114875_bib20) 2014; 515 Murphy (10.1016/j.celrep.2024.114875_bib63) 2002; 2 Nguyen (10.1016/j.celrep.2024.114875_bib90) 2024; 212 Becker (10.1016/j.celrep.2024.114875_bib104) 2024; 12 Di Pilato (10.1016/j.celrep.2024.114875_bib73) 2021; 184 Oliveira (10.1016/j.celrep.2024.114875_bib67) 2022; 605 Zhang (10.1016/j.celrep.2024.114875_bib91) 2018; 564 Wei (10.1016/j.celrep.2024.114875_bib26) 2019; 116 Matsushita (10.1016/j.celrep.2024.114875_bib18) 2012; 482 Wang (10.1016/j.celrep.2024.114875_bib57) 2017; 30 Wu (10.1016/j.celrep.2024.114875_bib87) 2023; 8 Baharom (10.1016/j.celrep.2024.114875_bib83) 2021; 22 Borst (10.1016/j.celrep.2024.114875_bib28) 2018; 18 Yost (10.1016/j.celrep.2024.114875_bib44) 2019; 25 Mills (10.1016/j.celrep.2024.114875_bib105) 2000; 164 DeNardo (10.1016/j.celrep.2024.114875_bib47) 2019; 19 Sharma (10.1016/j.celrep.2024.114875_bib100) 2021; 11 Yu (10.1016/j.celrep.2024.114875_bib88) 2018; 215 Carreno (10.1016/j.celrep.2024.114875_bib5) 2015; 348 Kreiter (10.1016/j.celrep.2024.114875_bib27) 2015; 520 Ott (10.1016/j.celrep.2024.114875_bib9) 2020; 183 Oh (10.1016/j.celrep.2024.114875_bib94) 2021; 54 Wei (10.1016/j.celrep.2024.114875_bib25) 2017; 170 DuPage (10.1016/j.celrep.2024.114875_bib54) 2012; 482 Sahin (10.1016/j.celrep.2024.114875_bib6) 2017; 547 Blank (10.1016/j.celrep.2024.114875_bib102) 2024 Katsikis (10.1016/j.celrep.2024.114875_bib15) 2024; 24 |
References_xml | – volume: 23 start-page: 238 year: 2023 end-page: 257 ident: bib50 article-title: A timeline of tumour-associated macrophage biology publication-title: Nat. Rev. Cancer contributor: fullname: Pollard – volume: 37 year: 2021 ident: bib110 article-title: Targeting TREM2 on tumor-associated macrophages enhances immunotherapy publication-title: Cell Rep. contributor: fullname: Norng – volume: 40 start-page: 768 year: 2022 end-page: 786.e7 ident: bib40 article-title: Genome-wide CRISPR screens of T cell exhaustion identify chromatin remodeling factors that limit T cell persistence publication-title: Cancer Cell contributor: fullname: Yost – volume: 26 start-page: 1125 year: 2020 end-page: 1134 ident: bib49 article-title: Systemic dysfunction and plasticity of the immune macroenvironment in cancer models publication-title: Nat. Med. contributor: fullname: Spitzer – volume: 565 start-page: 234 year: 2019 end-page: 239 ident: bib8 article-title: Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial publication-title: Nature contributor: fullname: Gjini – volume: 585 start-page: 107 year: 2020 end-page: 112 ident: bib10 article-title: An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma publication-title: Nature contributor: fullname: Omokoko – volume: 184 start-page: 6101 year: 2021 end-page: 6118.e13 ident: bib56 article-title: Neoantigen-driven B cell and CD4 T follicular helper cell collaboration promotes anti-tumor CD8 T cell responses publication-title: Cell contributor: fullname: Chen – volume: 23 start-page: 106 year: 2023 end-page: 120 ident: bib51 article-title: Myeloid cell-targeted therapies for solid tumours publication-title: Nat. Rev. Immunol. contributor: fullname: Sharma – volume: 170 start-page: 1120 year: 2017 end-page: 1133.e17 ident: bib25 article-title: Distinct Cellular Mechanisms Underlie Anti-CTLA-4 and Anti-PD-1 Checkpoint Blockade publication-title: Cell contributor: fullname: Allison – volume: 547 start-page: 222 year: 2017 end-page: 226 ident: bib6 article-title: Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer publication-title: Nature contributor: fullname: Schrörs – volume: 29 start-page: 590 year: 2016 end-page: 597 ident: bib52 article-title: The YUMM lines: a series of congenic mouse melanoma cell lines with defined genetic alterations publication-title: Pigment Cell Melanoma Res. contributor: fullname: Bosenberg – volume: 107 start-page: 625 year: 2020 end-page: 633 ident: bib93 article-title: Harnessing neoantigen specific CD4 T cells for cancer immunotherapy publication-title: J. Leukoc. Biol. contributor: fullname: Schoenberger – volume: 78 start-page: 4573 year: 2018 end-page: 4585 ident: bib92 article-title: CD4(+) T-cell-Mediated Rejection of MHC Class II-Positive Tumor Cells Is Dependent on Antigen Secretion and Indirect Presentation on Host APCs publication-title: Cancer Res. contributor: fullname: Tveita – volume: 116 start-page: 22699 year: 2019 end-page: 22709 ident: bib26 article-title: Combination anti-CTLA-4 plus anti-PD-1 checkpoint blockade utilizes cellular mechanisms partially distinct from monotherapies publication-title: Proc. Natl. Acad. Sci. USA contributor: fullname: Allison – volume: 207 start-page: 408 year: 2021 end-page: 420 ident: bib108 article-title: A Monocyte-Orchestrated IFN-I-to-IL-4 Cytokine Axis Instigates Protumoral Macrophages and Thwarts Poly(I:C) Therapy publication-title: J. Immunol. contributor: fullname: Liu – volume: 35 start-page: 588 year: 2019 end-page: 602.e10 ident: bib48 article-title: Human Tumor-Associated Macrophage and Monocyte Transcriptional Landscapes Reveal Cancer-Specific Reprogramming, Biomarkers, and Therapeutic Targets publication-title: Cancer Cell contributor: fullname: Lin – volume: 32 start-page: 194 year: 2013 end-page: 203 ident: bib1 article-title: The cancer antigenome publication-title: The EMBO journal contributor: fullname: Schumacher – volume: 24 start-page: 213 year: 2024 end-page: 227 ident: bib15 article-title: Challenges in developing personalized neoantigen cancer vaccines publication-title: Nat. Rev. Immunol. contributor: fullname: Schliehe – volume: 20 start-page: 326 year: 2019 end-page: 336 ident: bib31 article-title: Subsets of exhausted CD8(+) T cells differentially mediate tumor control and respond to checkpoint blockade publication-title: Nat. Immunol. contributor: fullname: Naik – volume: 482 start-page: 400 year: 2012 end-page: 404 ident: bib18 article-title: Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting publication-title: Nature contributor: fullname: Shea – volume: 24 start-page: 792 year: 2023 end-page: 801 ident: bib78 article-title: TREM2 macrophages drive NK cell paucity and dysfunction in lung cancer publication-title: Nat. Immunol. contributor: fullname: Magen – volume: 381 start-page: 515 year: 2023 end-page: 524 ident: bib79 article-title: CXCL9:SPP1 macrophage polarity identifies a network of cellular programs that control human cancers publication-title: Science contributor: fullname: Hoelzl – volume: 185 start-page: 4317 year: 2022 end-page: 4332.e15 ident: bib82 article-title: Systemic vaccination induces CD8(+) T cells and remodels the tumor microenvironment publication-title: Cell contributor: fullname: Lynn – volume: 173 start-page: 74 year: 2018 end-page: 89.e20 ident: bib116 article-title: Impairment of an Endothelial NAD(+)-H(2)S Signaling Network Is a Reversible Cause of Vascular Aging publication-title: Cell contributor: fullname: Lu – volume: 212 start-page: 1829 year: 2024 end-page: 1842 ident: bib90 article-title: Bhlhe40 Promotes CD4+ T Helper 1 Cell and Suppresses T Follicular Helper Cell Differentiation during Viral Infection publication-title: J. Immunol. contributor: fullname: Sun – volume: 218 year: 2021 ident: bib60 article-title: Single-cell analyses identify circulating anti-tumor CD8 T cells and markers for their enrichment publication-title: J. Exp. Med. contributor: fullname: Fung – volume: 9 year: 2024 ident: bib111 article-title: TREM2 deficiency reprograms intestinal macrophages and microbiota to enhance anti-PD-1 tumor immunotherapy publication-title: Sci. Immunol. contributor: fullname: Bhattarai – volume: 375 start-page: 877 year: 2022 end-page: 884 ident: bib61 article-title: Molecular signatures of antitumor neoantigen-reactive T cells from metastatic human cancers publication-title: Science contributor: fullname: Sachs – volume: 14 start-page: 135 year: 2014 end-page: 146 ident: bib2 article-title: Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy publication-title: Nat. Rev. Cancer contributor: fullname: Boon – volume: 176 start-page: 775 year: 2019 end-page: 789.e18 ident: bib42 article-title: Dysfunctional CD8 T Cells Form a Proliferative, Dynamically Regulated Compartment within Human Melanoma publication-title: Cell contributor: fullname: Blank – volume: 56 start-page: 2231 year: 2023 end-page: 2253 ident: bib30 article-title: CD8(+) T cells in the cancer-immunity cycle publication-title: Immunity contributor: fullname: Wherry – volume: 515 start-page: 572 year: 2014 end-page: 576 ident: bib20 article-title: Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing publication-title: Nature contributor: fullname: Weinschenk – volume: 182 start-page: 886 year: 2020 end-page: 900.e17 ident: bib77 article-title: TREM2 Modulation Remodels the Tumor Myeloid Landscape Enhancing Anti-PD-1 Immunotherapy publication-title: Cell contributor: fullname: Ricci – volume: 175 start-page: 998 year: 2018 end-page: 1013.e20 ident: bib41 article-title: Defining T Cell States Associated with Response to Checkpoint Immunotherapy in Melanoma publication-title: Cell contributor: fullname: Barzily-Rokni – volume: 520 start-page: 692 year: 2015 end-page: 696 ident: bib27 article-title: Mutant MHC class II epitopes drive therapeutic immune responses to cancer publication-title: Nature contributor: fullname: Castle – volume: 3 start-page: 437 year: 2022 end-page: 452 ident: bib84 article-title: Concurrent delivery of immune checkpoint blockade modulates T cell dynamics to enhance neoantigen vaccine-generated antitumor immunity publication-title: Nat. Cancer contributor: fullname: Li – volume: 19 start-page: 72 year: 2011 end-page: 85 ident: bib53 article-title: Endogenous T cell responses to antigens expressed in lung adenocarcinomas delay malignant tumor progression publication-title: Cancer Cell contributor: fullname: Jacks – volume: 482 start-page: 405 year: 2012 end-page: 409 ident: bib54 article-title: Expression of tumour-specific antigens underlies cancer immunoediting publication-title: Nature contributor: fullname: Jacks – volume: 5 start-page: 106 year: 2017 end-page: 117 ident: bib114 article-title: Temporally Distinct PD-L1 Expression by Tumor and Host Cells Contributes to Immune Escape publication-title: Cancer Immunol. Res. contributor: fullname: Schreiber – volume: 18 start-page: 215 year: 2021 end-page: 229 ident: bib11 article-title: Advances in the development of personalized neoantigen-based therapeutic cancer vaccines publication-title: Nat. Rev. Clin. Oncol. contributor: fullname: Ott – volume: 11 start-page: 838 year: 2021 end-page: 857 ident: bib100 article-title: The Next Decade of Immune Checkpoint Therapy publication-title: Cancer Discov. contributor: fullname: Allison – volume: 215 start-page: 1813 year: 2018 end-page: 1821 ident: bib88 article-title: The transcription factor Bhlhe40 is a switch of inflammatory versus antiinflammatory Th1 cell fate determination publication-title: J. Exp. Med. contributor: fullname: Zhu – volume: 183 start-page: 347 year: 2020 end-page: 362.e24 ident: bib9 article-title: A Phase Ib Trial of Personalized Neoantigen Therapy Plus Anti-PD-1 in Patients with Advanced Melanoma, Non-small Cell Lung Cancer, or Bladder Cancer publication-title: Cell contributor: fullname: Lin – volume: 373 start-page: 23 year: 2015 end-page: 34 ident: bib99 article-title: Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma publication-title: N. Engl. J. Med. contributor: fullname: Rutkowski – year: 2024 ident: bib101 article-title: Final, 10-Year Outcomes with Nivolumab plus Ipilimumab in Advanced Melanoma publication-title: N. Engl. J. Med. contributor: fullname: Hill – volume: 51 start-page: 840 year: 2019 end-page: 855.e5 ident: bib34 article-title: TCF-1-Centered Transcriptional Network Drives an Effector versus Exhausted CD8 T Cell-Fate Decision publication-title: Immunity contributor: fullname: Xu – volume: 210 start-page: 1695 year: 2013 end-page: 1710 ident: bib71 article-title: Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma publication-title: J. Exp. Med. contributor: fullname: Wolchok – volume: 564 start-page: 268 year: 2018 end-page: 272 ident: bib91 article-title: Lineage tracking reveals dynamic relationships of T cells in colorectal cancer publication-title: Nature contributor: fullname: Huang – volume: 12 start-page: 253 year: 2012 end-page: 268 ident: bib46 article-title: Coordinated regulation of myeloid cells by tumours publication-title: Nat. Rev. Immunol. contributor: fullname: Bronte – volume: 1 start-page: 32 year: 2013 end-page: 42 ident: bib70 article-title: Anti-CTLA-4 antibodies of IgG2a isotype enhance antitumor activity through reduction of intratumoral regulatory T cells publication-title: Cancer Immunol. Res. contributor: fullname: Korman – volume: 580 start-page: 257 year: 2020 end-page: 262 ident: bib72 article-title: A conserved dendritic-cell regulatory program limits antitumour immunity publication-title: Nature contributor: fullname: Finnigan – volume: 42 start-page: 1582 year: 2024 end-page: 1597.e10 ident: bib98 article-title: Combination anti-PD-1 and anti-CTLA-4 therapy generates waves of clonal responses that include progenitor-exhausted CD8(+) T cells publication-title: Cancer Cell contributor: fullname: Manne – volume: 106 start-page: 2729 year: 2009 end-page: 2734 ident: bib65 article-title: Anti-CTLA-4 therapy results in higher CD4+ICOShi T cell frequency and IFN-gamma levels in both nonmalignant and malignant prostate tissues publication-title: Proc. Natl. Acad. Sci. USA contributor: fullname: Sharma – volume: 206 start-page: 1717 year: 2009 end-page: 1725 ident: bib69 article-title: Blockade of CTLA-4 on both effector and regulatory T cell compartments contributes to the antitumor activity of anti-CTLA-4 antibodies publication-title: J. Exp. Med. contributor: fullname: Allison – volume: 287 start-page: 17493 year: 2012 end-page: 17502 ident: bib115 article-title: Siglec-15 protein regulates formation of functional osteoclasts in concert with DNAX-activating protein of 12 kDa (DAP12) publication-title: J. Biol. Chem. contributor: fullname: Ogawa – volume: 43 start-page: 546 year: 2022 end-page: 563 ident: bib74 article-title: Macrophage diversity in cancer revisited in the era of single-cell omics publication-title: Trends Immunol. contributor: fullname: Qian – volume: 10 start-page: 2688 year: 2019 ident: bib103 article-title: Adenoviral vaccine targeting multiple neoantigens as strategy to eradicate large tumors combined with checkpoint blockade publication-title: Nat. Commun. contributor: fullname: Leuzzi – volume: 164 start-page: 6166 year: 2000 end-page: 6173 ident: bib105 article-title: M-1/M-2 macrophages and the Th1/Th2 paradigm publication-title: J. Immunol. contributor: fullname: Hill – volume: 348 start-page: 69 year: 2015 end-page: 74 ident: bib4 article-title: Neoantigens in cancer immunotherapy publication-title: Science contributor: fullname: Schreiber – volume: 28 start-page: 3917 year: 2022 end-page: 3928 ident: bib113 article-title: Cancer Immunoediting in the Era of Immuno-oncology publication-title: Clin. Cancer Res. contributor: fullname: Vesely – volume: 19 start-page: 747 year: 2013 end-page: 752 ident: bib19 article-title: Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells publication-title: Nat. Med. contributor: fullname: Tycksen – volume: 14 start-page: 768 year: 2014 end-page: 774 ident: bib58 article-title: T cell differentiation in chronic infection and cancer: functional adaptation or exhaustion? publication-title: Nat. Rev. Immunol. contributor: fullname: Zehn – volume: 41 start-page: 1023 year: 2020 end-page: 1036 ident: bib89 article-title: Transcription Factor Bhlhe40 in Immunity and Autoimmunity publication-title: Trends Immunol. contributor: fullname: Edelson – volume: 27 start-page: 515 year: 2021 end-page: 525 ident: bib12 article-title: Personal neoantigen vaccines induce persistent memory T cell responses and epitope spreading in patients with melanoma publication-title: Nat. Med. contributor: fullname: Iorgulescu – volume: 39 start-page: 51 year: 2021 end-page: 76 ident: bib64 article-title: Cytokine Regulation and Function in T Cells publication-title: Annu. Rev. Immunol. contributor: fullname: Dong – volume: 618 start-page: 144 year: 2023 end-page: 150 ident: bib13 article-title: Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer publication-title: Nature contributor: fullname: Chu – volume: 19 start-page: 369 year: 2019 end-page: 382 ident: bib47 article-title: Macrophages as regulators of tumour immunity and immunotherapy publication-title: Nat. Rev. Immunol. contributor: fullname: Ruffell – volume: 22 start-page: 41 year: 2021 end-page: 52 ident: bib83 article-title: Intravenous nanoparticle vaccination generates stem-like TCF1(+) neoantigen-specific CD8(+) T cells publication-title: Nat. Immunol. contributor: fullname: Mulè – volume: 9 year: 2019 ident: bib80 article-title: Identification of a neo-epitope dominating endogenous CD8 T cell responses to MC-38 colorectal cancer publication-title: OncoImmunology contributor: fullname: Filippov – volume: 403 start-page: 632 year: 2024 end-page: 644 ident: bib14 article-title: Individualised neoantigen therapy mRNA-4157 (V940) plus pembrolizumab versus pembrolizumab monotherapy in resected melanoma (KEYNOTE-942): a randomised, phase 2b study publication-title: Lancet contributor: fullname: Sullivan – volume: 351 start-page: 1463 year: 2016 end-page: 1469 ident: bib112 article-title: Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade publication-title: Science contributor: fullname: Hiley – volume: 2 start-page: 933 year: 2002 end-page: 944 ident: bib63 article-title: The lineage decisions of helper T cells publication-title: Nat. Rev. Immunol. contributor: fullname: Reiner – volume: 32 start-page: 381 year: 2014 end-page: 386 ident: bib68 article-title: The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells publication-title: Nat. Biotechnol. contributor: fullname: Rinn – volume: 133 year: 2023 ident: bib85 article-title: Linked CD4+/CD8+ T cell neoantigen vaccination overcomes immune checkpoint blockade resistance and enables tumor regression publication-title: J. Clin. Invest. contributor: fullname: Greenbaum – volume: 348 start-page: 803 year: 2015 end-page: 808 ident: bib5 article-title: A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells publication-title: Science contributor: fullname: Linette – volume: 30 start-page: 428 year: 2017 end-page: 435 ident: bib57 article-title: UV-induced somatic mutations elicit a functional T cell response in the YUMMER1.7 mouse melanoma model publication-title: Pigment Cell Melanoma Res. contributor: fullname: Bosenberg – volume: 571 start-page: 211 year: 2019 end-page: 218 ident: bib38 article-title: TOX transcriptionally and epigenetically programs CD8(+) T cell exhaustion publication-title: Nature contributor: fullname: Wu – volume: 125 start-page: 3401 year: 2015 end-page: 3412 ident: bib95 article-title: Therapeutic cancer vaccines publication-title: J. Clin. Invest. contributor: fullname: van der Burg – volume: 576 start-page: 465 year: 2019 end-page: 470 ident: bib43 article-title: An intra-tumoral niche maintains and differentiates stem-like CD8 T cells publication-title: Nature contributor: fullname: Sowalsky – volume: 8 start-page: 562 year: 2017 ident: bib21 article-title: Checkpoint blockade immunotherapy reshapes the high-dimensional phenotypic heterogeneity of murine intratumoural neoantigen-specific CD8(+) T cells publication-title: Nat. Commun. contributor: fullname: Newell – volume: 72 start-page: 1081 year: 2012 end-page: 1091 ident: bib17 article-title: Exploiting the mutanome for tumor vaccination publication-title: Cancer Res. contributor: fullname: Paret – volume: 12 year: 2024 ident: bib104 article-title: Second-generation checkpoint inhibitors and Treg depletion synergize with a mouse cancer vaccine in accordance with tumor microenvironment characterization publication-title: J. Immunother. Cancer contributor: fullname: Berzofsky – volume: 523 start-page: 231 year: 2015 end-page: 235 ident: bib55 article-title: Melanoma-intrinsic beta-catenin signalling prevents anti-tumour immunity publication-title: Nature contributor: fullname: Gajewski – volume: 618 start-page: 1033 year: 2023 end-page: 1040 ident: bib29 article-title: CD4(+) T cell-induced inflammatory cell death controls immune-evasive tumours publication-title: Nature contributor: fullname: Mengoni – volume: 20 start-page: 218 year: 2020 end-page: 232 ident: bib32 article-title: CD8(+) T cell states in human cancer: insights from single-cell analysis publication-title: Nat. Rev. Cancer contributor: fullname: Schumacher – volume: 413 start-page: 732 year: 2001 end-page: 738 ident: bib106 article-title: Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3 publication-title: Nature contributor: fullname: Flavell – volume: 182 start-page: 872 year: 2020 end-page: 885.e19 ident: bib76 article-title: Coupled scRNA-Seq and Intracellular Protein Activity Reveal an Immunosuppressive Role of TREM2 in Cancer publication-title: Cell contributor: fullname: Cohen – volume: 54 start-page: 2701 year: 2021 end-page: 2711 ident: bib94 article-title: Cytotoxic CD4(+) T cells in cancer: Expanding the immune effector toolbox publication-title: Immunity contributor: fullname: Fong – volume: 21 start-page: 360 year: 2021 end-page: 378 ident: bib96 article-title: Therapeutic cancer vaccines publication-title: Nat. Rev. Cancer contributor: fullname: Bhardwaj – volume: 8 year: 2023 ident: bib87 article-title: In vitro modeling of CD8(+) T cell exhaustion enables CRISPR screening to reveal a role for BHLHE40 publication-title: Sci. Immunol. contributor: fullname: Khan – volume: 31 start-page: 823 year: 2009 end-page: 833 ident: bib62 article-title: Selective expression of the chemokine receptor XCR1 on cross-presenting dendritic cells determines cooperation with CD8+ T cells publication-title: Immunity contributor: fullname: Schaefer – volume: 1 start-page: 229 year: 2013 end-page: 234 ident: bib66 article-title: Increased frequency of ICOS+ CD4 T cells as a pharmacodynamic biomarker for anti-CTLA-4 therapy publication-title: Cancer Immunol. Res. contributor: fullname: Sharma – volume: 354 start-page: 1160 year: 2016 end-page: 1165 ident: bib37 article-title: Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade publication-title: Science contributor: fullname: Kurachi – volume: 10 start-page: 403 year: 2022 end-page: 419 ident: bib75 article-title: Holistic Characterization of Tumor Monocyte-to-Macrophage Differentiation Integrates Distinct Immune Phenotypes in Kidney Cancer publication-title: Cancer Immunol. Res. contributor: fullname: Meng – volume: 22 start-page: 209 year: 2022 end-page: 223 ident: bib33 article-title: CD8(+) T cell differentiation and dysfunction in cancer publication-title: Nat. Rev. Immunol. contributor: fullname: Schietinger – volume: 10 start-page: 597 year: 2022 end-page: 611 ident: bib24 article-title: BHLHE40 Regulates the T-Cell Effector Function Required for Tumor Microenvironment Remodeling and Immune Checkpoint Therapy Efficacy publication-title: Cancer Immunol. Res. contributor: fullname: Pineda – volume: 515 start-page: 577 year: 2014 end-page: 581 ident: bib16 article-title: Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens publication-title: Nature contributor: fullname: Krebber – volume: 50 start-page: 181 year: 2019 end-page: 194.e6 ident: bib35 article-title: Checkpoint Blockade Immunotherapy Induces Dynamic Changes in PD-1(-)CD8(+) Tumor-Infiltrating T Cells publication-title: Immunity contributor: fullname: Rozenblatt-Rosen – volume: 632 start-page: 182 year: 2024 end-page: 191 ident: bib97 article-title: Neoantigen-specific cytotoxic Tr1 CD4 T cells suppress cancer immunotherapy publication-title: Nature contributor: fullname: Brioschi – volume: 67 year: 2023 ident: bib109 article-title: TREM2: A new player in the tumor microenvironment publication-title: Semin. Immunol. contributor: fullname: Cella – volume: 18 start-page: 635 year: 2018 end-page: 647 ident: bib28 article-title: CD4(+) T cell help in cancer immunology and immunotherapy publication-title: Nat. Rev. Immunol. contributor: fullname: Kastenmüller – volume: 184 start-page: 4512 year: 2021 end-page: 4530.e22 ident: bib73 article-title: CXCR6 positions cytotoxic T cells to receive critical survival signals in the tumor microenvironment publication-title: Cell contributor: fullname: Marangoni – volume: 574 start-page: 696 year: 2019 end-page: 701 ident: bib23 article-title: MHC-II neoantigens shape tumour immunity and response to immunotherapy publication-title: Nature contributor: fullname: Vomund – volume: 42 start-page: 265 year: 2015 end-page: 278 ident: bib36 article-title: The transcription factor NFAT promotes exhaustion of activated CD8(+) T cells publication-title: Immunity contributor: fullname: Crotty – volume: 175 start-page: 1014 year: 2018 end-page: 1030.e19 ident: bib22 article-title: High-Dimensional Analysis Delineates Myeloid and Lymphoid Compartment Remodeling during Successful Immune-Checkpoint Cancer Therapy publication-title: Cell contributor: fullname: Alspach – volume: 41 start-page: 776 year: 2023 end-page: 790.e7 ident: bib45 article-title: Lineage tracing reveals clonal progenitors and long-term persistence of tumor-specific T cells during immune checkpoint blockade publication-title: Cancer Cell contributor: fullname: Quintanal-Villalonga – year: 2024 ident: bib102 article-title: Neoadjuvant Nivolumab and Ipilimumab in Resectable Stage III Melanoma publication-title: N. Engl. J. Med. contributor: fullname: Maher – volume: 49 year: 2020 ident: bib107 article-title: Poly-ICLC, a multi-functional immune modulator for treating cancer publication-title: Semin. Immunol. contributor: fullname: Celis – volume: 571 start-page: 270 year: 2019 end-page: 274 ident: bib39 article-title: TOX is a critical regulator of tumour-specific T cell differentiation publication-title: Nature contributor: fullname: Camara – volume: 605 start-page: 532 year: 2022 end-page: 538 ident: bib67 article-title: Landscape of helper and regulatory antitumour CD4(+) T cells in melanoma publication-title: Nature contributor: fullname: Freeman – volume: 14 year: 2023 ident: bib81 article-title: MC38 colorectal tumor cell lines from two different sources display substantial differences in transcriptome, mutanome and neoantigen expression publication-title: Front. Immunol. contributor: fullname: Diken – volume: 547 start-page: 217 year: 2017 end-page: 221 ident: bib7 article-title: An immunogenic personal neoantigen vaccine for patients with melanoma publication-title: Nature contributor: fullname: Peter – volume: 596 start-page: 119 year: 2021 end-page: 125 ident: bib59 article-title: Phenotype, specificity and avidity of antitumour CD8(+) T cells in melanoma publication-title: Nature contributor: fullname: Zhang – volume: 125 start-page: 3413 year: 2015 end-page: 3421 ident: bib3 article-title: Tumor neoantigens: building a framework for personalized cancer immunotherapy publication-title: J. Clin. Invest. contributor: fullname: Schreiber – volume: 52 start-page: 201 year: 2020 end-page: 202 ident: bib86 article-title: The Transcription Factor Bhlhe40 Programs Mitochondrial Regulation of Resident CD8(+) T Cell Fitness and Functionality publication-title: Immunity contributor: fullname: Jenkins – volume: 25 start-page: 1251 year: 2019 end-page: 1259 ident: bib44 article-title: Clonal replacement of tumor-specific T cells following PD-1 blockade publication-title: Nat. Med. contributor: fullname: Brown – volume: 29 start-page: 590 year: 2016 ident: 10.1016/j.celrep.2024.114875_bib52 article-title: The YUMM lines: a series of congenic mouse melanoma cell lines with defined genetic alterations publication-title: Pigment Cell Melanoma Res. doi: 10.1111/pcmr.12498 contributor: fullname: Meeth – volume: 2 start-page: 933 year: 2002 ident: 10.1016/j.celrep.2024.114875_bib63 article-title: The lineage decisions of helper T cells publication-title: Nat. Rev. Immunol. doi: 10.1038/nri954 contributor: fullname: Murphy – volume: 10 start-page: 597 year: 2022 ident: 10.1016/j.celrep.2024.114875_bib24 article-title: BHLHE40 Regulates the T-Cell Effector Function Required for Tumor Microenvironment Remodeling and Immune Checkpoint Therapy Efficacy publication-title: Cancer Immunol. Res. doi: 10.1158/2326-6066.CIR-21-0129 contributor: fullname: Salmon – volume: 41 start-page: 776 year: 2023 ident: 10.1016/j.celrep.2024.114875_bib45 article-title: Lineage tracing reveals clonal progenitors and long-term persistence of tumor-specific T cells during immune checkpoint blockade publication-title: Cancer Cell doi: 10.1016/j.ccell.2023.03.009 contributor: fullname: Pai – volume: 54 start-page: 2701 year: 2021 ident: 10.1016/j.celrep.2024.114875_bib94 article-title: Cytotoxic CD4(+) T cells in cancer: Expanding the immune effector toolbox publication-title: Immunity doi: 10.1016/j.immuni.2021.11.015 contributor: fullname: Oh – volume: 571 start-page: 211 year: 2019 ident: 10.1016/j.celrep.2024.114875_bib38 article-title: TOX transcriptionally and epigenetically programs CD8(+) T cell exhaustion publication-title: Nature doi: 10.1038/s41586-019-1325-x contributor: fullname: Khan – volume: 8 start-page: 562 year: 2017 ident: 10.1016/j.celrep.2024.114875_bib21 article-title: Checkpoint blockade immunotherapy reshapes the high-dimensional phenotypic heterogeneity of murine intratumoural neoantigen-specific CD8(+) T cells publication-title: Nat. Commun. doi: 10.1038/s41467-017-00627-z contributor: fullname: Fehlings – volume: 18 start-page: 635 year: 2018 ident: 10.1016/j.celrep.2024.114875_bib28 article-title: CD4(+) T cell help in cancer immunology and immunotherapy publication-title: Nat. Rev. Immunol. doi: 10.1038/s41577-018-0044-0 contributor: fullname: Borst – volume: 403 start-page: 632 year: 2024 ident: 10.1016/j.celrep.2024.114875_bib14 article-title: Individualised neoantigen therapy mRNA-4157 (V940) plus pembrolizumab versus pembrolizumab monotherapy in resected melanoma (KEYNOTE-942): a randomised, phase 2b study publication-title: Lancet doi: 10.1016/S0140-6736(23)02268-7 contributor: fullname: Weber – volume: 23 start-page: 106 year: 2023 ident: 10.1016/j.celrep.2024.114875_bib51 article-title: Myeloid cell-targeted therapies for solid tumours publication-title: Nat. Rev. Immunol. doi: 10.1038/s41577-022-00737-w contributor: fullname: Goswami – volume: 547 start-page: 217 year: 2017 ident: 10.1016/j.celrep.2024.114875_bib7 article-title: An immunogenic personal neoantigen vaccine for patients with melanoma publication-title: Nature doi: 10.1038/nature22991 contributor: fullname: Ott – volume: 23 start-page: 238 year: 2023 ident: 10.1016/j.celrep.2024.114875_bib50 article-title: A timeline of tumour-associated macrophage biology publication-title: Nat. Rev. Cancer doi: 10.1038/s41568-022-00547-1 contributor: fullname: Cassetta – volume: 183 start-page: 347 year: 2020 ident: 10.1016/j.celrep.2024.114875_bib9 article-title: A Phase Ib Trial of Personalized Neoantigen Therapy Plus Anti-PD-1 in Patients with Advanced Melanoma, Non-small Cell Lung Cancer, or Bladder Cancer publication-title: Cell doi: 10.1016/j.cell.2020.08.053 contributor: fullname: Ott – volume: 9 year: 2024 ident: 10.1016/j.celrep.2024.114875_bib111 article-title: TREM2 deficiency reprograms intestinal macrophages and microbiota to enhance anti-PD-1 tumor immunotherapy publication-title: Sci. Immunol. doi: 10.1126/sciimmunol.adi5374 contributor: fullname: Di Luccia – year: 2024 ident: 10.1016/j.celrep.2024.114875_bib102 article-title: Neoadjuvant Nivolumab and Ipilimumab in Resectable Stage III Melanoma publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2402604 contributor: fullname: Blank – volume: 67 year: 2023 ident: 10.1016/j.celrep.2024.114875_bib109 article-title: TREM2: A new player in the tumor microenvironment publication-title: Semin. Immunol. doi: 10.1016/j.smim.2023.101739 contributor: fullname: Molgora – volume: 42 start-page: 265 year: 2015 ident: 10.1016/j.celrep.2024.114875_bib36 article-title: The transcription factor NFAT promotes exhaustion of activated CD8(+) T cells publication-title: Immunity doi: 10.1016/j.immuni.2015.01.006 contributor: fullname: Martinez – volume: 580 start-page: 257 year: 2020 ident: 10.1016/j.celrep.2024.114875_bib72 article-title: A conserved dendritic-cell regulatory program limits antitumour immunity publication-title: Nature doi: 10.1038/s41586-020-2134-y contributor: fullname: Maier – volume: 215 start-page: 1813 year: 2018 ident: 10.1016/j.celrep.2024.114875_bib88 article-title: The transcription factor Bhlhe40 is a switch of inflammatory versus antiinflammatory Th1 cell fate determination publication-title: J. Exp. Med. doi: 10.1084/jem.20170155 contributor: fullname: Yu – volume: 35 start-page: 588 year: 2019 ident: 10.1016/j.celrep.2024.114875_bib48 article-title: Human Tumor-Associated Macrophage and Monocyte Transcriptional Landscapes Reveal Cancer-Specific Reprogramming, Biomarkers, and Therapeutic Targets publication-title: Cancer Cell doi: 10.1016/j.ccell.2019.02.009 contributor: fullname: Cassetta – volume: 19 start-page: 72 year: 2011 ident: 10.1016/j.celrep.2024.114875_bib53 article-title: Endogenous T cell responses to antigens expressed in lung adenocarcinomas delay malignant tumor progression publication-title: Cancer Cell doi: 10.1016/j.ccr.2010.11.011 contributor: fullname: DuPage – volume: 173 start-page: 74 year: 2018 ident: 10.1016/j.celrep.2024.114875_bib116 article-title: Impairment of an Endothelial NAD(+)-H(2)S Signaling Network Is a Reversible Cause of Vascular Aging publication-title: Cell doi: 10.1016/j.cell.2018.02.008 contributor: fullname: Das – volume: 27 start-page: 515 year: 2021 ident: 10.1016/j.celrep.2024.114875_bib12 article-title: Personal neoantigen vaccines induce persistent memory T cell responses and epitope spreading in patients with melanoma publication-title: Nat. Med. doi: 10.1038/s41591-020-01206-4 contributor: fullname: Hu – volume: 348 start-page: 803 year: 2015 ident: 10.1016/j.celrep.2024.114875_bib5 article-title: A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells publication-title: Science doi: 10.1126/science.aaa3828 contributor: fullname: Carreno – volume: 10 start-page: 403 year: 2022 ident: 10.1016/j.celrep.2024.114875_bib75 article-title: Holistic Characterization of Tumor Monocyte-to-Macrophage Differentiation Integrates Distinct Immune Phenotypes in Kidney Cancer publication-title: Cancer Immunol. Res. doi: 10.1158/2326-6066.CIR-21-0588 contributor: fullname: Mujal – volume: 19 start-page: 369 year: 2019 ident: 10.1016/j.celrep.2024.114875_bib47 article-title: Macrophages as regulators of tumour immunity and immunotherapy publication-title: Nat. Rev. Immunol. doi: 10.1038/s41577-019-0127-6 contributor: fullname: DeNardo – volume: 576 start-page: 465 year: 2019 ident: 10.1016/j.celrep.2024.114875_bib43 article-title: An intra-tumoral niche maintains and differentiates stem-like CD8 T cells publication-title: Nature doi: 10.1038/s41586-019-1836-5 contributor: fullname: Jansen – volume: 32 start-page: 194 year: 2013 ident: 10.1016/j.celrep.2024.114875_bib1 article-title: The cancer antigenome publication-title: The EMBO journal doi: 10.1038/emboj.2012.333 contributor: fullname: Heemskerk – volume: 22 start-page: 209 year: 2022 ident: 10.1016/j.celrep.2024.114875_bib33 article-title: CD8(+) T cell differentiation and dysfunction in cancer publication-title: Nat. Rev. Immunol. doi: 10.1038/s41577-021-00574-3 contributor: fullname: Philip – volume: 8 year: 2023 ident: 10.1016/j.celrep.2024.114875_bib87 article-title: In vitro modeling of CD8(+) T cell exhaustion enables CRISPR screening to reveal a role for BHLHE40 publication-title: Sci. Immunol. doi: 10.1126/sciimmunol.ade3369 contributor: fullname: Wu – volume: 206 start-page: 1717 year: 2009 ident: 10.1016/j.celrep.2024.114875_bib69 article-title: Blockade of CTLA-4 on both effector and regulatory T cell compartments contributes to the antitumor activity of anti-CTLA-4 antibodies publication-title: J. Exp. Med. doi: 10.1084/jem.20082492 contributor: fullname: Peggs – volume: 184 start-page: 4512 year: 2021 ident: 10.1016/j.celrep.2024.114875_bib73 article-title: CXCR6 positions cytotoxic T cells to receive critical survival signals in the tumor microenvironment publication-title: Cell doi: 10.1016/j.cell.2021.07.015 contributor: fullname: Di Pilato – volume: 49 year: 2020 ident: 10.1016/j.celrep.2024.114875_bib107 article-title: Poly-ICLC, a multi-functional immune modulator for treating cancer publication-title: Semin. Immunol. doi: 10.1016/j.smim.2020.101414 contributor: fullname: Sultan – volume: 24 start-page: 792 year: 2023 ident: 10.1016/j.celrep.2024.114875_bib78 article-title: TREM2 macrophages drive NK cell paucity and dysfunction in lung cancer publication-title: Nat. Immunol. doi: 10.1038/s41590-023-01475-4 contributor: fullname: Park – volume: 175 start-page: 998 year: 2018 ident: 10.1016/j.celrep.2024.114875_bib41 article-title: Defining T Cell States Associated with Response to Checkpoint Immunotherapy in Melanoma publication-title: Cell doi: 10.1016/j.cell.2018.10.038 contributor: fullname: Sade-Feldman – volume: 11 start-page: 838 year: 2021 ident: 10.1016/j.celrep.2024.114875_bib100 article-title: The Next Decade of Immune Checkpoint Therapy publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-20-1680 contributor: fullname: Sharma – volume: 176 start-page: 775 year: 2019 ident: 10.1016/j.celrep.2024.114875_bib42 article-title: Dysfunctional CD8 T Cells Form a Proliferative, Dynamically Regulated Compartment within Human Melanoma publication-title: Cell doi: 10.1016/j.cell.2018.11.043 contributor: fullname: Li – volume: 40 start-page: 768 year: 2022 ident: 10.1016/j.celrep.2024.114875_bib40 article-title: Genome-wide CRISPR screens of T cell exhaustion identify chromatin remodeling factors that limit T cell persistence publication-title: Cancer Cell doi: 10.1016/j.ccell.2022.06.001 contributor: fullname: Belk – volume: 107 start-page: 625 year: 2020 ident: 10.1016/j.celrep.2024.114875_bib93 article-title: Harnessing neoantigen specific CD4 T cells for cancer immunotherapy publication-title: J. Leukoc. Biol. doi: 10.1002/JLB.5RI0220-603RR contributor: fullname: Brightman – volume: 207 start-page: 408 year: 2021 ident: 10.1016/j.celrep.2024.114875_bib108 article-title: A Monocyte-Orchestrated IFN-I-to-IL-4 Cytokine Axis Instigates Protumoral Macrophages and Thwarts Poly(I:C) Therapy publication-title: J. Immunol. doi: 10.4049/jimmunol.2001411 contributor: fullname: Guo – volume: 26 start-page: 1125 year: 2020 ident: 10.1016/j.celrep.2024.114875_bib49 article-title: Systemic dysfunction and plasticity of the immune macroenvironment in cancer models publication-title: Nat. Med. doi: 10.1038/s41591-020-0892-6 contributor: fullname: Allen – volume: 381 start-page: 515 year: 2023 ident: 10.1016/j.celrep.2024.114875_bib79 article-title: CXCL9:SPP1 macrophage polarity identifies a network of cellular programs that control human cancers publication-title: Science doi: 10.1126/science.ade2292 contributor: fullname: Bill – volume: 125 start-page: 3401 year: 2015 ident: 10.1016/j.celrep.2024.114875_bib95 article-title: Therapeutic cancer vaccines publication-title: J. Clin. Invest. doi: 10.1172/JCI80009 contributor: fullname: Melief – volume: 18 start-page: 215 year: 2021 ident: 10.1016/j.celrep.2024.114875_bib11 article-title: Advances in the development of personalized neoantigen-based therapeutic cancer vaccines publication-title: Nat. Rev. Clin. Oncol. doi: 10.1038/s41571-020-00460-2 contributor: fullname: Blass – volume: 523 start-page: 231 year: 2015 ident: 10.1016/j.celrep.2024.114875_bib55 article-title: Melanoma-intrinsic beta-catenin signalling prevents anti-tumour immunity publication-title: Nature doi: 10.1038/nature14404 contributor: fullname: Spranger – volume: 20 start-page: 218 year: 2020 ident: 10.1016/j.celrep.2024.114875_bib32 article-title: CD8(+) T cell states in human cancer: insights from single-cell analysis publication-title: Nat. Rev. Cancer doi: 10.1038/s41568-019-0235-4 contributor: fullname: van der Leun – volume: 106 start-page: 2729 year: 2009 ident: 10.1016/j.celrep.2024.114875_bib65 article-title: Anti-CTLA-4 therapy results in higher CD4+ICOShi T cell frequency and IFN-gamma levels in both nonmalignant and malignant prostate tissues publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0813175106 contributor: fullname: Chen – volume: 72 start-page: 1081 year: 2012 ident: 10.1016/j.celrep.2024.114875_bib17 article-title: Exploiting the mutanome for tumor vaccination publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-11-3722 contributor: fullname: Castle – volume: 164 start-page: 6166 year: 2000 ident: 10.1016/j.celrep.2024.114875_bib105 article-title: M-1/M-2 macrophages and the Th1/Th2 paradigm publication-title: J. Immunol. doi: 10.4049/jimmunol.164.12.6166 contributor: fullname: Mills – volume: 618 start-page: 144 year: 2023 ident: 10.1016/j.celrep.2024.114875_bib13 article-title: Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer publication-title: Nature doi: 10.1038/s41586-023-06063-y contributor: fullname: Rojas – volume: 515 start-page: 577 year: 2014 ident: 10.1016/j.celrep.2024.114875_bib16 article-title: Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens publication-title: Nature doi: 10.1038/nature13988 contributor: fullname: Gubin – volume: 354 start-page: 1160 year: 2016 ident: 10.1016/j.celrep.2024.114875_bib37 article-title: Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade publication-title: Science doi: 10.1126/science.aaf2807 contributor: fullname: Pauken – volume: 12 start-page: 253 year: 2012 ident: 10.1016/j.celrep.2024.114875_bib46 article-title: Coordinated regulation of myeloid cells by tumours publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3175 contributor: fullname: Gabrilovich – volume: 31 start-page: 823 year: 2009 ident: 10.1016/j.celrep.2024.114875_bib62 article-title: Selective expression of the chemokine receptor XCR1 on cross-presenting dendritic cells determines cooperation with CD8+ T cells publication-title: Immunity doi: 10.1016/j.immuni.2009.08.027 contributor: fullname: Dorner – volume: 10 start-page: 2688 year: 2019 ident: 10.1016/j.celrep.2024.114875_bib103 article-title: Adenoviral vaccine targeting multiple neoantigens as strategy to eradicate large tumors combined with checkpoint blockade publication-title: Nat. Commun. doi: 10.1038/s41467-019-10594-2 contributor: fullname: D'Alise – volume: 571 start-page: 270 year: 2019 ident: 10.1016/j.celrep.2024.114875_bib39 article-title: TOX is a critical regulator of tumour-specific T cell differentiation publication-title: Nature doi: 10.1038/s41586-019-1324-y contributor: fullname: Scott – volume: 1 start-page: 229 year: 2013 ident: 10.1016/j.celrep.2024.114875_bib66 article-title: Increased frequency of ICOS+ CD4 T cells as a pharmacodynamic biomarker for anti-CTLA-4 therapy publication-title: Cancer Immunol. Res. doi: 10.1158/2326-6066.CIR-13-0020 contributor: fullname: Ng Tang – volume: 32 start-page: 381 year: 2014 ident: 10.1016/j.celrep.2024.114875_bib68 article-title: The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2859 contributor: fullname: Trapnell – volume: 351 start-page: 1463 year: 2016 ident: 10.1016/j.celrep.2024.114875_bib112 article-title: Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade publication-title: Science doi: 10.1126/science.aaf1490 contributor: fullname: McGranahan – volume: 574 start-page: 696 year: 2019 ident: 10.1016/j.celrep.2024.114875_bib23 article-title: MHC-II neoantigens shape tumour immunity and response to immunotherapy publication-title: Nature doi: 10.1038/s41586-019-1671-8 contributor: fullname: Alspach – volume: 9 year: 2019 ident: 10.1016/j.celrep.2024.114875_bib80 article-title: Identification of a neo-epitope dominating endogenous CD8 T cell responses to MC-38 colorectal cancer publication-title: OncoImmunology contributor: fullname: Hos – volume: 413 start-page: 732 year: 2001 ident: 10.1016/j.celrep.2024.114875_bib106 article-title: Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3 publication-title: Nature doi: 10.1038/35099560 contributor: fullname: Alexopoulou – volume: 564 start-page: 268 year: 2018 ident: 10.1016/j.celrep.2024.114875_bib91 article-title: Lineage tracking reveals dynamic relationships of T cells in colorectal cancer publication-title: Nature doi: 10.1038/s41586-018-0694-x contributor: fullname: Zhang – year: 2024 ident: 10.1016/j.celrep.2024.114875_bib101 article-title: Final, 10-Year Outcomes with Nivolumab plus Ipilimumab in Advanced Melanoma publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2407417 contributor: fullname: Wolchok – volume: 175 start-page: 1014 year: 2018 ident: 10.1016/j.celrep.2024.114875_bib22 article-title: High-Dimensional Analysis Delineates Myeloid and Lymphoid Compartment Remodeling during Successful Immune-Checkpoint Cancer Therapy publication-title: Cell doi: 10.1016/j.cell.2018.09.030 contributor: fullname: Gubin – volume: 585 start-page: 107 year: 2020 ident: 10.1016/j.celrep.2024.114875_bib10 article-title: An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma publication-title: Nature doi: 10.1038/s41586-020-2537-9 contributor: fullname: Sahin – volume: 19 start-page: 747 year: 2013 ident: 10.1016/j.celrep.2024.114875_bib19 article-title: Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells publication-title: Nat. Med. doi: 10.1038/nm.3161 contributor: fullname: Robbins – volume: 520 start-page: 692 year: 2015 ident: 10.1016/j.celrep.2024.114875_bib27 article-title: Mutant MHC class II epitopes drive therapeutic immune responses to cancer publication-title: Nature doi: 10.1038/nature14426 contributor: fullname: Kreiter – volume: 37 year: 2021 ident: 10.1016/j.celrep.2024.114875_bib110 article-title: Targeting TREM2 on tumor-associated macrophages enhances immunotherapy publication-title: Cell Rep. doi: 10.1016/j.celrep.2021.109844 contributor: fullname: Binnewies – volume: 24 start-page: 213 year: 2024 ident: 10.1016/j.celrep.2024.114875_bib15 article-title: Challenges in developing personalized neoantigen cancer vaccines publication-title: Nat. Rev. Immunol. doi: 10.1038/s41577-023-00937-y contributor: fullname: Katsikis – volume: 42 start-page: 1582 year: 2024 ident: 10.1016/j.celrep.2024.114875_bib98 article-title: Combination anti-PD-1 and anti-CTLA-4 therapy generates waves of clonal responses that include progenitor-exhausted CD8(+) T cells publication-title: Cancer Cell doi: 10.1016/j.ccell.2024.08.007 contributor: fullname: Wang – volume: 482 start-page: 405 year: 2012 ident: 10.1016/j.celrep.2024.114875_bib54 article-title: Expression of tumour-specific antigens underlies cancer immunoediting publication-title: Nature doi: 10.1038/nature10803 contributor: fullname: DuPage – volume: 210 start-page: 1695 year: 2013 ident: 10.1016/j.celrep.2024.114875_bib71 article-title: Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma publication-title: J. Exp. Med. doi: 10.1084/jem.20130579 contributor: fullname: Simpson – volume: 14 start-page: 135 year: 2014 ident: 10.1016/j.celrep.2024.114875_bib2 article-title: Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy publication-title: Nat. Rev. Cancer doi: 10.1038/nrc3670 contributor: fullname: Coulie – volume: 348 start-page: 69 year: 2015 ident: 10.1016/j.celrep.2024.114875_bib4 article-title: Neoantigens in cancer immunotherapy publication-title: Science doi: 10.1126/science.aaa4971 contributor: fullname: Schumacher – volume: 20 start-page: 326 year: 2019 ident: 10.1016/j.celrep.2024.114875_bib31 article-title: Subsets of exhausted CD8(+) T cells differentially mediate tumor control and respond to checkpoint blockade publication-title: Nat. Immunol. doi: 10.1038/s41590-019-0312-6 contributor: fullname: Miller – volume: 125 start-page: 3413 year: 2015 ident: 10.1016/j.celrep.2024.114875_bib3 article-title: Tumor neoantigens: building a framework for personalized cancer immunotherapy publication-title: J. Clin. Invest. doi: 10.1172/JCI80008 contributor: fullname: Gubin – volume: 14 start-page: 768 year: 2014 ident: 10.1016/j.celrep.2024.114875_bib58 article-title: T cell differentiation in chronic infection and cancer: functional adaptation or exhaustion? publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3740 contributor: fullname: Speiser – volume: 51 start-page: 840 year: 2019 ident: 10.1016/j.celrep.2024.114875_bib34 article-title: TCF-1-Centered Transcriptional Network Drives an Effector versus Exhausted CD8 T Cell-Fate Decision publication-title: Immunity doi: 10.1016/j.immuni.2019.09.013 contributor: fullname: Chen – volume: 39 start-page: 51 year: 2021 ident: 10.1016/j.celrep.2024.114875_bib64 article-title: Cytokine Regulation and Function in T Cells publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev-immunol-061020-053702 contributor: fullname: Dong – volume: 482 start-page: 400 year: 2012 ident: 10.1016/j.celrep.2024.114875_bib18 article-title: Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting publication-title: Nature doi: 10.1038/nature10755 contributor: fullname: Matsushita – volume: 5 start-page: 106 year: 2017 ident: 10.1016/j.celrep.2024.114875_bib114 article-title: Temporally Distinct PD-L1 Expression by Tumor and Host Cells Contributes to Immune Escape publication-title: Cancer Immunol. Res. doi: 10.1158/2326-6066.CIR-16-0391 contributor: fullname: Noguchi – volume: 28 start-page: 3917 year: 2022 ident: 10.1016/j.celrep.2024.114875_bib113 article-title: Cancer Immunoediting in the Era of Immuno-oncology publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-21-1804 contributor: fullname: Gubin – volume: 618 start-page: 1033 year: 2023 ident: 10.1016/j.celrep.2024.114875_bib29 article-title: CD4(+) T cell-induced inflammatory cell death controls immune-evasive tumours publication-title: Nature doi: 10.1038/s41586-023-06199-x contributor: fullname: Kruse – volume: 41 start-page: 1023 year: 2020 ident: 10.1016/j.celrep.2024.114875_bib89 article-title: Transcription Factor Bhlhe40 in Immunity and Autoimmunity publication-title: Trends Immunol. doi: 10.1016/j.it.2020.09.002 contributor: fullname: Cook – volume: 21 start-page: 360 year: 2021 ident: 10.1016/j.celrep.2024.114875_bib96 article-title: Therapeutic cancer vaccines publication-title: Nat. Rev. Cancer doi: 10.1038/s41568-021-00346-0 contributor: fullname: Saxena – volume: 52 start-page: 201 year: 2020 ident: 10.1016/j.celrep.2024.114875_bib86 article-title: The Transcription Factor Bhlhe40 Programs Mitochondrial Regulation of Resident CD8(+) T Cell Fitness and Functionality publication-title: Immunity doi: 10.1016/j.immuni.2019.12.008 contributor: fullname: Li – volume: 184 start-page: 6101 year: 2021 ident: 10.1016/j.celrep.2024.114875_bib56 article-title: Neoantigen-driven B cell and CD4 T follicular helper cell collaboration promotes anti-tumor CD8 T cell responses publication-title: Cell doi: 10.1016/j.cell.2021.11.007 contributor: fullname: Cui – volume: 547 start-page: 222 year: 2017 ident: 10.1016/j.celrep.2024.114875_bib6 article-title: Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer publication-title: Nature doi: 10.1038/nature23003 contributor: fullname: Sahin – volume: 116 start-page: 22699 year: 2019 ident: 10.1016/j.celrep.2024.114875_bib26 article-title: Combination anti-CTLA-4 plus anti-PD-1 checkpoint blockade utilizes cellular mechanisms partially distinct from monotherapies publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1821218116 contributor: fullname: Wei – volume: 30 start-page: 428 year: 2017 ident: 10.1016/j.celrep.2024.114875_bib57 article-title: UV-induced somatic mutations elicit a functional T cell response in the YUMMER1.7 mouse melanoma model publication-title: Pigment Cell Melanoma Res. doi: 10.1111/pcmr.12591 contributor: fullname: Wang – volume: 596 start-page: 119 year: 2021 ident: 10.1016/j.celrep.2024.114875_bib59 article-title: Phenotype, specificity and avidity of antitumour CD8(+) T cells in melanoma publication-title: Nature doi: 10.1038/s41586-021-03704-y contributor: fullname: Oliveira – volume: 1 start-page: 32 year: 2013 ident: 10.1016/j.celrep.2024.114875_bib70 article-title: Anti-CTLA-4 antibodies of IgG2a isotype enhance antitumor activity through reduction of intratumoral regulatory T cells publication-title: Cancer Immunol. Res. doi: 10.1158/2326-6066.CIR-13-0013 contributor: fullname: Selby – volume: 212 start-page: 1829 year: 2024 ident: 10.1016/j.celrep.2024.114875_bib90 article-title: Bhlhe40 Promotes CD4+ T Helper 1 Cell and Suppresses T Follicular Helper Cell Differentiation during Viral Infection publication-title: J. Immunol. doi: 10.4049/jimmunol.2300355 contributor: fullname: Nguyen – volume: 170 start-page: 1120 year: 2017 ident: 10.1016/j.celrep.2024.114875_bib25 article-title: Distinct Cellular Mechanisms Underlie Anti-CTLA-4 and Anti-PD-1 Checkpoint Blockade publication-title: Cell doi: 10.1016/j.cell.2017.07.024 contributor: fullname: Wei – volume: 605 start-page: 532 year: 2022 ident: 10.1016/j.celrep.2024.114875_bib67 article-title: Landscape of helper and regulatory antitumour CD4(+) T cells in melanoma publication-title: Nature doi: 10.1038/s41586-022-04682-5 contributor: fullname: Oliveira – volume: 182 start-page: 886 year: 2020 ident: 10.1016/j.celrep.2024.114875_bib77 article-title: TREM2 Modulation Remodels the Tumor Myeloid Landscape Enhancing Anti-PD-1 Immunotherapy publication-title: Cell doi: 10.1016/j.cell.2020.07.013 contributor: fullname: Molgora – volume: 133 year: 2023 ident: 10.1016/j.celrep.2024.114875_bib85 article-title: Linked CD4+/CD8+ T cell neoantigen vaccination overcomes immune checkpoint blockade resistance and enables tumor regression publication-title: J. Clin. Invest. doi: 10.1172/JCI164258 contributor: fullname: Dolina – volume: 185 start-page: 4317 year: 2022 ident: 10.1016/j.celrep.2024.114875_bib82 article-title: Systemic vaccination induces CD8(+) T cells and remodels the tumor microenvironment publication-title: Cell doi: 10.1016/j.cell.2022.10.006 contributor: fullname: Baharom – volume: 56 start-page: 2231 year: 2023 ident: 10.1016/j.celrep.2024.114875_bib30 article-title: CD8(+) T cells in the cancer-immunity cycle publication-title: Immunity doi: 10.1016/j.immuni.2023.09.005 contributor: fullname: Giles – volume: 14 year: 2023 ident: 10.1016/j.celrep.2024.114875_bib81 article-title: MC38 colorectal tumor cell lines from two different sources display substantial differences in transcriptome, mutanome and neoantigen expression publication-title: Front. Immunol. doi: 10.3389/fimmu.2023.1102282 contributor: fullname: Schrors – volume: 182 start-page: 872 year: 2020 ident: 10.1016/j.celrep.2024.114875_bib76 article-title: Coupled scRNA-Seq and Intracellular Protein Activity Reveal an Immunosuppressive Role of TREM2 in Cancer publication-title: Cell doi: 10.1016/j.cell.2020.06.032 contributor: fullname: Katzenelenbogen – volume: 287 start-page: 17493 year: 2012 ident: 10.1016/j.celrep.2024.114875_bib115 article-title: Siglec-15 protein regulates formation of functional osteoclasts in concert with DNAX-activating protein of 12 kDa (DAP12) publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.324194 contributor: fullname: Ishida-Kitagawa – volume: 78 start-page: 4573 year: 2018 ident: 10.1016/j.celrep.2024.114875_bib92 article-title: CD4(+) T-cell-Mediated Rejection of MHC Class II-Positive Tumor Cells Is Dependent on Antigen Secretion and Indirect Presentation on Host APCs publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-17-2426 contributor: fullname: Haabeth – volume: 43 start-page: 546 year: 2022 ident: 10.1016/j.celrep.2024.114875_bib74 article-title: Macrophage diversity in cancer revisited in the era of single-cell omics publication-title: Trends Immunol. doi: 10.1016/j.it.2022.04.008 contributor: fullname: Ma – volume: 375 start-page: 877 year: 2022 ident: 10.1016/j.celrep.2024.114875_bib61 article-title: Molecular signatures of antitumor neoantigen-reactive T cells from metastatic human cancers publication-title: Science doi: 10.1126/science.abl5447 contributor: fullname: Lowery – volume: 565 start-page: 234 year: 2019 ident: 10.1016/j.celrep.2024.114875_bib8 article-title: Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial publication-title: Nature doi: 10.1038/s41586-018-0792-9 contributor: fullname: Keskin – volume: 50 start-page: 181 year: 2019 ident: 10.1016/j.celrep.2024.114875_bib35 article-title: Checkpoint Blockade Immunotherapy Induces Dynamic Changes in PD-1(-)CD8(+) Tumor-Infiltrating T Cells publication-title: Immunity doi: 10.1016/j.immuni.2018.11.014 contributor: fullname: Kurtulus – volume: 218 year: 2021 ident: 10.1016/j.celrep.2024.114875_bib60 article-title: Single-cell analyses identify circulating anti-tumor CD8 T cells and markers for their enrichment publication-title: J. Exp. Med. doi: 10.1084/jem.20200920 contributor: fullname: Pauken – volume: 3 start-page: 437 year: 2022 ident: 10.1016/j.celrep.2024.114875_bib84 article-title: Concurrent delivery of immune checkpoint blockade modulates T cell dynamics to enhance neoantigen vaccine-generated antitumor immunity publication-title: Nat. Cancer doi: 10.1038/s43018-022-00352-7 contributor: fullname: Liu – volume: 632 start-page: 182 year: 2024 ident: 10.1016/j.celrep.2024.114875_bib97 article-title: Neoantigen-specific cytotoxic Tr1 CD4 T cells suppress cancer immunotherapy publication-title: Nature doi: 10.1038/s41586-024-07752-y contributor: fullname: Sultan – volume: 22 start-page: 41 year: 2021 ident: 10.1016/j.celrep.2024.114875_bib83 article-title: Intravenous nanoparticle vaccination generates stem-like TCF1(+) neoantigen-specific CD8(+) T cells publication-title: Nat. Immunol. doi: 10.1038/s41590-020-00810-3 contributor: fullname: Baharom – volume: 515 start-page: 572 year: 2014 ident: 10.1016/j.celrep.2024.114875_bib20 article-title: Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing publication-title: Nature doi: 10.1038/nature14001 contributor: fullname: Yadav – volume: 25 start-page: 1251 year: 2019 ident: 10.1016/j.celrep.2024.114875_bib44 article-title: Clonal replacement of tumor-specific T cells following PD-1 blockade publication-title: Nat. Med. doi: 10.1038/s41591-019-0522-3 contributor: fullname: Yost – volume: 12 year: 2024 ident: 10.1016/j.celrep.2024.114875_bib104 article-title: Second-generation checkpoint inhibitors and Treg depletion synergize with a mouse cancer vaccine in accordance with tumor microenvironment characterization publication-title: J. Immunother. Cancer contributor: fullname: Becker – volume: 373 start-page: 23 year: 2015 ident: 10.1016/j.celrep.2024.114875_bib99 article-title: Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1504030 contributor: fullname: Larkin |
SSID | ssj0000601194 |
Score | 2.4595804 |
Snippet | The goal of therapeutic cancer vaccines and immune checkpoint therapy (ICT) is to promote T cells with anti-tumor capabilities. Here, we compared mutant... The goal of therapeutic cancer vaccines and immune checkpoint therapy (ICT) is to promote T cells with anti-tumor capabilities. Here, we compared mutant... |
SourceID | doaj proquest crossref pubmed elsevier |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 114875 |
SubjectTerms | anti-CTLA-4/anti-PD-1 cancer immunotherapy CD4 T cells combination immunotherapy CP: Cancer CP: Immunology immune checkpoint therapy intratumoral macrophages neoantigen cancer vaccines neoantigen-specific CD8 T cells TREM2 tumor microenvironment |
Title | Comparing neoantigen cancer vaccines and immune checkpoint therapy unveils an effective vaccine and anti-TREM2 macrophage-targeting dual therapy |
URI | https://dx.doi.org/10.1016/j.celrep.2024.114875 https://www.ncbi.nlm.nih.gov/pubmed/39446585 https://www.proquest.com/docview/3120594180 https://doaj.org/article/eb47593abbe54523acb581af90620b62 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELVapEpcKmih3dIiV-rVahw7iXOksIgK0UMLUm-W7YzLwjaL9gOJf8FPZiZOVvSAuPSa-Et-Y3ssz3vD2Be8IteRmL9gohe6MU4gzFKomLtYNjooTUThk1_Vj9_maEwyOetUXxQTluSB08R9BU-KdMp5D5QOW7ngCyNdJH3dzPe7b1Y-ukylPZi0zPTAlesCugJM50ASlbkmhdwutPDRWdRJ9v9zJD3lcnZHz_EWe937jPwgjXWbvYD2DXuVskjevWX3hymXYPuHtzDDmSKBTR4Izjm_dYGezhfctQ2fEBkEOOIUrm9mk3bJE_3qjq_aW5hMqRRPER64CQ51u6rUrDj_OT7L-V9Hab8ucSMSKY6ceiZK19DaDrs4Hp8fnog-0YIIuMSXoqozE9CPgCL3REYtNORFU3uvJWj04CCrgwmxyWufqdrj5BsZwHn8VeEZW6ldttHOWnjPuIlSxVgqJ6tSZ94Yh5D5CEZCFY0qR0wMU25vkp6GHQLNrmyCyBJENkE0Yt8Il3VZUsPuPqCN2N5G7HM2MmLVgKrtHYvkMGBTk2e6_zwYgcV1R48pDqFcLaySOUndSJON2LtkHetBEtkYPbviw_8Y_B7bpAER_zEvP7KN5XwFn9jLRbPaR5v_frrfWf4DqKMIqQ |
link.rule.ids | 315,782,786,866,2106,27933,27934 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparing+neoantigen+cancer+vaccines+and+immune+checkpoint+therapy+unveils+an+effective+vaccine+and+anti-TREM2+macrophage-targeting+dual+therapy&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Keshari%2C+Sunita&rft.au=Shavkunov%2C+Alexander+S.&rft.au=Miao%2C+Qi&rft.au=Saha%2C+Akata&rft.date=2024-11-26&rft.pub=Elsevier+Inc&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=43&rft.issue=11&rft_id=info:doi/10.1016%2Fj.celrep.2024.114875&rft.externalDocID=S2211124724012269 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon |