Classical Solution of the Second Mixed Problem for the Telegraph Equation with a Nonlinear Potential
For the telegraph equation with a nonlinear potential, we consider a mixed problem in the first quadrant in which the Cauchy conditions are specified on the spatial semiaxis and the Neumann condition is set on the temporal semiaxis. The solution is constructed by the method of characteristics in an...
Saved in:
Published in: | Differential equations Vol. 59; no. 9; pp. 1216 - 1234 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Moscow
Pleiades Publishing
01-09-2023
Springer Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | For the telegraph equation with a nonlinear potential, we consider a mixed problem in the first quadrant in which the Cauchy conditions are specified on the spatial semiaxis and the Neumann condition is set on the temporal semiaxis. The solution is constructed by the method of characteristics in an implicit analytical form as a solution of some integral equations. The solvability of these equations is studied, as well as the dependence of the solutions on the smoothness of the initial data. For the problem under consideration, the uniqueness of the solution is proved and conditions are established under which a classical solution exists. If the matching conditions are not met, then a problem with conjugation conditions is constructed, and if the data is not smooth enough, then a mild solution is constructed. |
---|---|
ISSN: | 0012-2661 1608-3083 |
DOI: | 10.1134/S0012266123090070 |