Inhibition of human immunodeficiency virus type 1 replication by the K10-K42 peptide of GAP31 is due to induction of rapid but nonspecific precipitation of viral and nonviral proteins
The 33-amino acid peptide K10-K42 has previously been described as having potent anti-HIV-1 activity, and antiviral efficacy against hepatitis B and human cytomegalovirus in vitro. Although the exact mechanism of antiviral activity was unknown, it was hypothesised that the K10-K42 peptide inhibited...
Saved in:
Published in: | AIDS research and human retroviruses Vol. 15; no. 5; p. 429 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
20-03-1999
|
Subjects: | |
Online Access: | Get more information |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The 33-amino acid peptide K10-K42 has previously been described as having potent anti-HIV-1 activity, and antiviral efficacy against hepatitis B and human cytomegalovirus in vitro. Although the exact mechanism of antiviral activity was unknown, it was hypothesised that the K10-K42 peptide inhibited HIV-1 by interfering with one or more of the intracellular processes of reverse transcription, integration, and/or viral gene expression. We performed a series of experiments to identify and characterize the inhibitory mechanism, and to determine whether intracellular expression of the K10-K42 peptide would potentiate its antiviral efficacy in vitro. Surprisingly, our results revealed that the antiviral activity of the K10-K42 peptide could be explained without implicating intracellular inhibition of HIV-1 replication. The activity appeared to be due to an extraordinary capacity of the K10-K42 peptide to precipitate viral and nonviral proteins in vitro. The protein-precipitating capacity of the K10-K42 peptide was sequence specific and a scrambled version of the 33-amino acid peptide did not retain the activity. Although the unusual biochemical properties of the K10-K42 peptide probably negate a number of potential therapeutic applications, they do merit further investigation. Moreover, these findings provide a plausible explanation of the mechanism by which the K10-K42 peptide can inhibit replication of viruses from families as genetically and functionally diverse as Retroviridae, Hepadnaviridae, and Herpesviridae. |
---|---|
ISSN: | 0889-2229 |
DOI: | 10.1089/088922299311178 |