Fractional Consistent Riccati Expansion Method and Soliton-Cnoidal Solutions for the Time-Fractional Extended Shallow Water Wave Equation in (2 + 1)-Dimension
In this work, a fractional consistent Riccati expansion (FCRE) method is proposed to seek soliton and soliton-cnoidal solutions for fractional nonlinear evolutional equations. The method is illustrated by the time-fractional extended shallow water wave equation in the (2 + 1)-dimension, which includ...
Saved in:
Published in: | Fractal and fractional Vol. 8; no. 10; p. 599 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Basel
MDPI AG
01-10-2024
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | In this work, a fractional consistent Riccati expansion (FCRE) method is proposed to seek soliton and soliton-cnoidal solutions for fractional nonlinear evolutional equations. The method is illustrated by the time-fractional extended shallow water wave equation in the (2 + 1)-dimension, which includes a lot of KdV-type equations as particular cases, such as the KdV equation, potential KdV equation, Boiti–Leon–Manna–Pempinelli (BLMP) equation, and so on. A rich variety of exact solutions, including soliton solutions, soliton-cnoidal solutions, and three-wave interaction solutions, have been obtained. Comparing with the fractional sub-equation method, G′/G-expansion method, and exp-function method, the proposed method gives new results. The method presented here can also be applied to other fractional nonlinear evolutional equations. |
---|---|
AbstractList | In this work, a fractional consistent Riccati expansion (FCRE) method is proposed to seek soliton and soliton-cnoidal solutions for fractional nonlinear evolutional equations. The method is illustrated by the time-fractional extended shallow water wave equation in the (2 + 1)-dimension, which includes a lot of KdV-type equations as particular cases, such as the KdV equation, potential KdV equation, Boiti–Leon–Manna–Pempinelli (BLMP) equation, and so on. A rich variety of exact solutions, including soliton solutions, soliton-cnoidal solutions, and three-wave interaction solutions, have been obtained. Comparing with the fractional sub-equation method, G[sup.′]/G-expansion method, and exp-function method, the proposed method gives new results. The method presented here can also be applied to other fractional nonlinear evolutional equations. In this work, a fractional consistent Riccati expansion (FCRE) method is proposed to seek soliton and soliton-cnoidal solutions for fractional nonlinear evolutional equations. The method is illustrated by the time-fractional extended shallow water wave equation in the (2 + 1)-dimension, which includes a lot of KdV-type equations as particular cases, such as the KdV equation, potential KdV equation, Boiti–Leon–Manna–Pempinelli (BLMP) equation, and so on. A rich variety of exact solutions, including soliton solutions, soliton-cnoidal solutions, and three-wave interaction solutions, have been obtained. Comparing with the fractional sub-equation method, G′/G -expansion method, and exp-function method, the proposed method gives new results. The method presented here can also be applied to other fractional nonlinear evolutional equations. |
Audience | Academic |
Author | Wang, Gangwei Zhang, Lihua Shen, Bo Jia, Meizhi Wang, Zhenli |
Author_xml | – sequence: 1 givenname: Lihua surname: Zhang fullname: Zhang, Lihua – sequence: 2 givenname: Bo surname: Shen fullname: Shen, Bo – sequence: 3 givenname: Meizhi surname: Jia fullname: Jia, Meizhi – sequence: 4 givenname: Zhenli surname: Wang fullname: Wang, Zhenli – sequence: 5 givenname: Gangwei surname: Wang fullname: Wang, Gangwei |
BookMark | eNptks9uEzEQxi1UJEroE3CxxAWEtvjPbnZ9rEJKKxUhQRFHa2KPG0cbO7UdKC_Ds-JNKtQDtuSxR9_3szWel-QkxICEvObsXErFPrgEpsB4CANnrFPqGTkVHWsbyTk7ebJ_Qc5y3jDGRK9kx_pT8udysvkYYKSLGLLPBUOhX70xUDxdPuygJmOgn7Gso6UQLP0WR19iaBYhelt99byfEJm6mGhZI731W2yekJcPlWqxWtcwjvEX_QEFU11_Il3e72GSUR_oW0HfU_6u-Vj9h2tfkecOxoxnj3FGvl8ubxdXzc2XT9eLi5vGSNaXRlg12BZbp9TcWJz3Tg4t4qoXyrZ9B0Z1thMOgVkubMfBgFMWrOAraZQZ5IxcH7k2wkbvkt9C-q0jeH1IxHSnIRVvRtR921uOzoJQXWuEgB7d4ITrKhBXK1FZb46sXYr3e8xFb-I-1TJkLblgczGwllXV-VF1BxXqg4ul1qtOi1tv6g87X_MXA2-ZktOYEXk0mBRzTuj-PZMzPTWC_k8jyL97iK2i |
Cites_doi | 10.1016/j.physleta.2011.01.029 10.1140/epjp/s13360-021-01188-3 10.1016/j.cnsns.2012.01.005 10.1016/B978-0-12-531680-4.50007-1 10.1016/j.physleta.2011.11.030 10.1017/CBO9780511543043 10.1007/s40314-018-0627-1 10.1063/1.4960543 10.1177/1461348419844145 10.1016/j.cnsns.2012.11.032 10.3934/math.2024362 10.3389/fphy.2023.1309182 10.1108/HFF-01-2021-0019 10.1515/fca-2017-0030 10.1007/s11071-015-2156-4 10.1142/S0217979220500848 10.1016/j.camwa.2015.05.002 10.2298/TSCI190930450A 10.3390/fractalfract6090520 10.1016/S0378-4754(96)00054-7 10.1080/00207160412331296706 10.1016/j.physleta.2023.129082 10.1016/j.chaos.2024.114806 10.1016/j.aml.2020.106326 10.1016/j.rinp.2023.106950 10.1088/0305-4470/38/7/L04 10.1142/S0217984922500592 10.1007/s11082-022-04141-5 10.1002/mma.8259 10.1016/j.aml.2008.06.003 10.1016/j.jmaa.2012.04.006 10.1007/s11071-022-07468-6 10.2298/TSCI160111018A 10.2298/TSCI200331247B 10.1016/j.cnsns.2017.11.015 10.1016/j.physa.2017.10.010 10.1088/0951-7715/7/3/012 10.1111/sapm.12072 10.3390/sym14091855 10.1007/s40819-023-01496-5 10.1142/S0218348X22501791 10.1142/S0218348X20501418 10.1088/0253-6102/58/5/02 10.1209/0295-5075/114/20003 10.1016/0375-9601(93)91187-A 10.1016/j.cnsns.2023.107755 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PIMPY PQEST PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.3390/fractalfract8100599 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Databases Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Engineering Database Technology Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic Engineering Collection |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2504-3110 |
ExternalDocumentID | oai_doaj_org_article_747d1efda2954c22a7ef8f2f59daebb2 A814093333 10_3390_fractalfract8100599 |
GroupedDBID | 8FE 8FG AADQD AAYXX ABJCF ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ IAO ITC L6V M7S MODMG M~E OK1 PIMPY PROAC PTHSS ABUWG AZQEC DWQXO PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c307t-2d98d4e4f996cde67f384eeb729d475ac95d52fea0d12d51acaf9dad21b3c9c83 |
IEDL.DBID | DOA |
ISSN | 2504-3110 |
IngestDate | Mon Oct 28 19:37:35 EDT 2024 Fri Oct 25 21:05:43 EDT 2024 Tue Nov 12 23:34:19 EST 2024 Fri Nov 22 01:37:46 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c307t-2d98d4e4f996cde67f384eeb729d475ac95d52fea0d12d51acaf9dad21b3c9c83 |
OpenAccessLink | https://doaj.org/article/747d1efda2954c22a7ef8f2f59daebb2 |
PQID | 3120628040 |
PQPubID | 2055410 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_747d1efda2954c22a7ef8f2f59daebb2 proquest_journals_3120628040 gale_infotracacademiconefile_A814093333 crossref_primary_10_3390_fractalfract8100599 |
PublicationCentury | 2000 |
PublicationDate | 2024-10-01 |
PublicationDateYYYYMMDD | 2024-10-01 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Fractal and fractional |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | He (ref_29) 2012; 376 He (ref_41) 2021; 136 Chen (ref_51) 2004; 157 Kavya (ref_7) 2024; 130 Baskonus (ref_37) 2022; 45 Gerasimov (ref_4) 1948; 12 Ma (ref_14) 2024; 182 Saad (ref_11) 2018; 37 Wang (ref_22) 2015; 82 Inc (ref_20) 2018; 493 Biswas (ref_47) 2023; 9 Wazwaz (ref_54) 2005; 82 ref_17 ref_16 Zhang (ref_18) 2022; 30 Sahoo (ref_24) 2015; 70 Clarkson (ref_44) 1994; 7 Gilson (ref_43) 1993; 180 Baleanu (ref_5) 2016; 20 Saha (ref_53) 2012; 17 Naveed (ref_31) 2020; 24 ref_21 Lou (ref_34) 2005; 38 Baskonus (ref_38) 2022; 26 Jumarie (ref_2) 2009; 22 Raza (ref_50) 2023; 485 Zulfiqar (ref_28) 2022; 54 Poonam (ref_42) 2024; 38 Baleanu (ref_19) 2018; 59 Chen (ref_46) 2020; 34 ref_33 Chen (ref_15) 2024; 9 Zhang (ref_40) 2022; 36 Kiryakova (ref_6) 2017; 20 Li (ref_10) 2016; 15 Yang (ref_12) 2016; 26 Ain (ref_30) 2020; 28 Zhang (ref_52) 2009; 208 Wang (ref_9) 2013; 18 Wazwaz (ref_39) 2022; 32 Lou (ref_35) 2015; 134 Zheng (ref_27) 2012; 58 Wang (ref_32) 2016; 114 Cattani (ref_8) 2024; 139 Murad (ref_25) 2023; 53 Ren (ref_36) 2020; 105 Clarkson (ref_45) 1997; 43 ref_1 He (ref_13) 2019; 38 ref_3 Han (ref_49) 2022; 109 ref_48 Zhang (ref_26) 2011; 375 Sahadevan (ref_23) 2012; 393 |
References_xml | – volume: 375 start-page: 1069 year: 2011 ident: ref_26 article-title: Fractional sub-equation method and its applications to nonlinear fractional PDEs publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2011.01.029 contributor: fullname: Zhang – volume: 136 start-page: 192 year: 2021 ident: ref_41 article-title: M-lump and interaction solutions of a (2 + 1)-dimensional extended shallow water wave equation publication-title: Eur. Phys. J. Plus. doi: 10.1140/epjp/s13360-021-01188-3 contributor: fullname: He – volume: 17 start-page: 3539 year: 2012 ident: ref_53 article-title: Bifurcation of travelling wave solutions for the generalized KP-MEW equations publication-title: Commun. Nonlinear Sci. Numer. Simulat. doi: 10.1016/j.cnsns.2012.01.005 contributor: fullname: Saha – ident: ref_21 doi: 10.1016/B978-0-12-531680-4.50007-1 – volume: 376 start-page: 257 year: 2012 ident: ref_29 article-title: Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2011.11.030 contributor: fullname: He – volume: 208 start-page: 144 year: 2009 ident: ref_52 article-title: Travelling wave solutions for the generalized Zakharov-Kuznetsov equation with higher-order nonlinear terms publication-title: Appl. Math. Comput. contributor: fullname: Zhang – ident: ref_33 doi: 10.1017/CBO9780511543043 – volume: 37 start-page: 5203 year: 2018 ident: ref_11 article-title: New fractional derivatives applied to the Korteweg-deVries and Korteweg-de Vries-Burger’s equations publication-title: Comp. Appl. Math. doi: 10.1007/s40314-018-0627-1 contributor: fullname: Saad – volume: 26 start-page: 084312 year: 2016 ident: ref_12 article-title: A new method for exact solutions of variant types of time-fractional Korteweg-de Vries equations in shallow water waves publication-title: Chaos. Interdiscip. J. Nonlinear Sci. doi: 10.1063/1.4960543 contributor: fullname: Yang – volume: 139 start-page: 2261 year: 2024 ident: ref_8 article-title: Introduction to the special issue on recent developments on computational biology-I publication-title: Comput. Model. Eng. Sci. contributor: fullname: Cattani – ident: ref_1 – volume: 38 start-page: 1252 year: 2019 ident: ref_13 article-title: The simpler, the better: Analytical methods for nonlinear oscillators and fractional oscillators publication-title: J. Low Freq. Noise Vib. Act. Control doi: 10.1177/1461348419844145 contributor: fullname: He – volume: 18 start-page: 2321 year: 2013 ident: ref_9 article-title: Lie symmetry analysis to the time fractional generalized fifth-order KdV equation publication-title: Commun. Nonlinear. Sci. Numer. Simulat. doi: 10.1016/j.cnsns.2012.11.032 contributor: fullname: Wang – volume: 9 start-page: 7471 year: 2024 ident: ref_15 article-title: Modeling and analysis of demand-supply dynamics with a collectability factor using delay differential equations in economic growth via the Caputo operator publication-title: AIMS Math. doi: 10.3934/math.2024362 contributor: fullname: Chen – ident: ref_16 doi: 10.3389/fphy.2023.1309182 – volume: 32 start-page: 138 year: 2022 ident: ref_39 article-title: New integrable (2 + 1)-and (3 + 1)-dimensional shallow water wave equations: Multiple soliton solutions and lump solutions publication-title: Int. J. Numer. Methods Heat Fluid Flow doi: 10.1108/HFF-01-2021-0019 contributor: fullname: Wazwaz – volume: 12 start-page: 251 year: 1948 ident: ref_4 article-title: Generalization of laws of the linear deformation and their application to problems of the internal friction publication-title: Prikl. Mat. Mekhanika contributor: fullname: Gerasimov – volume: 20 start-page: 567 year: 2017 ident: ref_6 article-title: Editorial note, FCAA related news, events and books (FCAA–volume 20–3–2017) publication-title: Fract. Calc. Appl. Anal. doi: 10.1515/fca-2017-0030 contributor: fullname: Kiryakova – volume: 82 start-page: 281 year: 2015 ident: ref_22 article-title: Symmetry analysis and conservation laws for the class of time-fractional nonlinear dispersive equation publication-title: Nonlinear Dyn. doi: 10.1007/s11071-015-2156-4 contributor: fullname: Wang – volume: 34 start-page: 2050084 year: 2020 ident: ref_46 article-title: Abundant analytical solutions of the fractional nonlinear (2 + 1)-dimensional BLMP equation arising in incompressible fluid publication-title: Int. J. Mod. Phys. B doi: 10.1142/S0217979220500848 contributor: fullname: Chen – volume: 70 start-page: 158 year: 2015 ident: ref_24 article-title: Improved fractional sub-equation method for (3 + 1)-dimensional generalized fractional KdV-Zakharov-Kuznetsov equations publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2015.05.002 contributor: fullname: Sahoo – volume: 24 start-page: 3023 year: 2020 ident: ref_31 article-title: Application of He’s fractional derivative and fractional complex transform for time fractional Camassa-Holm equation publication-title: Therm. Sci. doi: 10.2298/TSCI190930450A contributor: fullname: Naveed – ident: ref_17 doi: 10.3390/fractalfract6090520 – volume: 43 start-page: 39 year: 1997 ident: ref_45 article-title: Symmetries and exact solutions for a 2 + 1-dimensional shallow water wave equation publication-title: Math. Comput. Simulat. doi: 10.1016/S0378-4754(96)00054-7 contributor: fullname: Clarkson – volume: 82 start-page: 235 year: 2005 ident: ref_54 article-title: The tanh method and the sinecosine method for solving the KP-MEW equation publication-title: Int. J. Comput. Math. doi: 10.1080/00207160412331296706 contributor: fullname: Wazwaz – volume: 485 start-page: 129082 year: 2023 ident: ref_50 article-title: A novel investigation of extended (3 + 1)-dimensional shallow water wave equation with constant coefficients utilizing bilinear form publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2023.129082 contributor: fullname: Raza – ident: ref_3 – volume: 182 start-page: 114806 year: 2024 ident: ref_14 article-title: Option pricing in the illiquid markets under the mixed fractional Brownian motion model publication-title: Chaos. Soliton. Fract. doi: 10.1016/j.chaos.2024.114806 contributor: fullname: Ma – volume: 105 start-page: 106326 year: 2020 ident: ref_36 article-title: Consistent Riccati expansion and rational solutions of the Drinfel’d-Sokolov-Wilson equation publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2020.106326 contributor: fullname: Ren – volume: 53 start-page: 106950 year: 2023 ident: ref_25 article-title: Optical soliton solutions for time -fractional Ginzburg-Landau equation by a modified sub-equation method publication-title: Results Phys. doi: 10.1016/j.rinp.2023.106950 contributor: fullname: Murad – volume: 38 start-page: 129 year: 2005 ident: ref_34 article-title: Non-Lie symmetry groups of (2 + 1)-dimensional nonlinear systems obtained from a simple direct method publication-title: J. Phys. A Math. Gen. doi: 10.1088/0305-4470/38/7/L04 contributor: fullname: Lou – volume: 36 start-page: 22500592 year: 2022 ident: ref_40 article-title: Novel interaction phenomena of the new (2 + 1)-dimensional extended shallow water wave equation publication-title: Mod. Phys. Lett. B doi: 10.1142/S0217984922500592 contributor: fullname: Zhang – volume: 54 start-page: 1 year: 2022 ident: ref_28 article-title: Analysis of some new wave solutions of fractional order generalized Pochhammer-Chree equation using exp-function method publication-title: Opt. Quant. Electron. doi: 10.1007/s11082-022-04141-5 contributor: fullname: Zulfiqar – volume: 45 start-page: 8737 year: 2022 ident: ref_37 article-title: A study on Caudrey-Dodd-Gibbon-Sawada-Kotera partial diferential equation publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.8259 contributor: fullname: Baskonus – volume: 22 start-page: 378 year: 2009 ident: ref_2 article-title: Table of some basic fractional calculus formula derived from a modified Riemann-Liouville derivative for non-differentiable functions publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2008.06.003 contributor: fullname: Jumarie – volume: 393 start-page: 341 year: 2012 ident: ref_23 article-title: Invariant analysis of time fractional generalized burgers and Korteweg-de vries equations publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2012.04.006 contributor: fullname: Sahadevan – volume: 109 start-page: 1019 year: 2022 ident: ref_49 article-title: Linear superposition formula of solutions for the extended (3 + 1)-dimensional shallow water wave equation publication-title: Nonlinear Dyn. doi: 10.1007/s11071-022-07468-6 contributor: fullname: Han – volume: 15 start-page: 970 year: 2016 ident: ref_10 article-title: Fractional complex transform for fractional differential equations publication-title: Math. Comput. Appl. contributor: fullname: Li – volume: 20 start-page: 763 year: 2016 ident: ref_5 article-title: New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model publication-title: Therm. Sci. doi: 10.2298/TSCI160111018A contributor: fullname: Baleanu – volume: 26 start-page: 1229 year: 2022 ident: ref_38 article-title: Studying on Kudryashov-Sinelshchikov dynamical equation arising in mixtures liquid and gas bubbles publication-title: Therm. Sci. doi: 10.2298/TSCI200331247B contributor: fullname: Baskonus – volume: 38 start-page: 24501042 year: 2024 ident: ref_42 article-title: An enormous diversity of soliton solutions to the (2 + 1)-dimensional extended shallow water wave equation using three analytical methods publication-title: Int. J. Mod. Phys. B contributor: fullname: Poonam – volume: 59 start-page: 222 year: 2018 ident: ref_19 article-title: Lie symmetry analysis, exact solutions and conservation laws for the time fractional Caudrey-Dodd-Gibbon-Sawada-Kotera equation publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2017.11.015 contributor: fullname: Baleanu – volume: 493 start-page: 94 year: 2018 ident: ref_20 article-title: Time-fractional Cahn-Allen and time-fractional Klein-Gordon equations: Lie symmetry analysis, explicit solutions and convergence analysis publication-title: Phys. A doi: 10.1016/j.physa.2017.10.010 contributor: fullname: Inc – volume: 157 start-page: 765 year: 2004 ident: ref_51 article-title: New double periodic and multiple soliton solutions of the generalized (2 + 1)-dimensional Boussinesq equation publication-title: Appl. Math. Comput. contributor: fullname: Chen – volume: 7 start-page: 975 year: 1994 ident: ref_44 article-title: On a shallow water wave equation publication-title: Nonlinearity doi: 10.1088/0951-7715/7/3/012 contributor: fullname: Clarkson – volume: 134 start-page: 372 year: 2015 ident: ref_35 article-title: Consistent Riccati expansion for integrable systems publication-title: Stud. Appl. Math. doi: 10.1111/sapm.12072 contributor: fullname: Lou – ident: ref_48 doi: 10.3390/sym14091855 – volume: 9 start-page: 20 year: 2023 ident: ref_47 article-title: Formation and shock solutions of the time fractional (2 + 1)- and (3 + 1)-dimensional Boiti-Leon-Manna-Pempinelli equations publication-title: Int. J. Appl. Comput. Math. doi: 10.1007/s40819-023-01496-5 contributor: fullname: Biswas – volume: 30 start-page: 22501791 year: 2022 ident: ref_18 article-title: Fractional complex transforms, reduced equations and exact solutions of the fractional Kraenkel-Manna-Merle system publication-title: Fractals doi: 10.1142/S0218348X22501791 contributor: fullname: Zhang – volume: 28 start-page: 2050141 year: 2020 ident: ref_30 article-title: The fractional complex transform: A novel approach to the time-fractional Schrodinger equation publication-title: Fractals doi: 10.1142/S0218348X20501418 contributor: fullname: Ain – volume: 58 start-page: 623 year: 2012 ident: ref_27 article-title: G′/G-expansion method for solving fractional partial differential equations in the theory of mathematical physics publication-title: Commun. Theor. Phys. doi: 10.1088/0253-6102/58/5/02 contributor: fullname: Zheng – volume: 114 start-page: 20003 year: 2016 ident: ref_32 article-title: Lie symmetry analysis, conservation laws and exact solutions of the generalizeded time fractional Burgers time fractional Burgers equation publication-title: EPL-Europhys. Lett. doi: 10.1209/0295-5075/114/20003 contributor: fullname: Wang – volume: 180 start-page: 337 year: 1993 ident: ref_43 article-title: A (2 + 1)-dimensional generalization of the AKNS shallow water wave equation publication-title: Phys. Lett. A doi: 10.1016/0375-9601(93)91187-A contributor: fullname: Gilson – volume: 130 start-page: 107755 year: 2024 ident: ref_7 article-title: Mathematical modeling to investigate the influence of vaccination and booster doses on the spread of Omicron publication-title: Commun. Nonlinear. Sci. Numer. Simulat. doi: 10.1016/j.cnsns.2023.107755 contributor: fullname: Kavya |
SSID | ssj0002793507 |
Score | 2.3209157 |
Snippet | In this work, a fractional consistent Riccati expansion (FCRE) method is proposed to seek soliton and soliton-cnoidal solutions for fractional nonlinear... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database |
StartPage | 599 |
SubjectTerms | Boiti–Leon–Manna–Pempinelli (BLMP) equation Exact solutions fractional consistent Riccati expansion (FCRE) method fractional derivatives Hypotheses Korteweg-Devries equation Methods Shallow water shallow water wave equation Solitary waves soliton-cnoidal solutions Water waves Wave equations Wave interaction |
Title | Fractional Consistent Riccati Expansion Method and Soliton-Cnoidal Solutions for the Time-Fractional Extended Shallow Water Wave Equation in (2 + 1)-Dimension |
URI | https://www.proquest.com/docview/3120628040 https://doaj.org/article/747d1efda2954c22a7ef8f2f59daebb2 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELagJy6IFSAKZTUHpF0EVhs7aZxjt03Vy3KgILhZdmxLRSiFPlh-zf5WZuy0KtKivZBDIuXhWJ6x_c3Y8w1jb-TIGlEZyW2QI54rb7ktbckrnxcI93GGNBQ7vFiWH76qWU00OcdUX7QnLNEDp4YbItx1mQ_O0IJUI4QpfVBBhKJyxlubRt_R-MSY-haX0yqJSCfRDEm064eBgo7M93hRWaQl-Wsqioz9_xqX42Qzf8IedygRJql2Z-yBb5-y2_kmRSHgk5hnEwXU7uDjqiG3G9S_sWOT7wuuY1ZoMK2DJW1vW7d82q5XDr87esEAwSog-AOKAeEnJdedVxyWlGZlfQNfEI1u8PzLQ_0zEYPDqoVLAe8ge8tnlB6AfvuMfZ7Xn6YL3qVX4A127B0XrlIu93lAk6dxflwGqXLvLcJtl5eFaarCFSJ4M3KZcEVmGhOw0Z3IrGyqRsnnrNeuW_-CgUJJC6to1ZMCVZ2S3lfSBjT2VC6E67P3h5bWPxKLhkbrgwSj7xBMn12RNI6vEgV2vIGKoTvF0PcpRp9dkCw1ddQdFm66eAOsMVFe6Unk-pJ49NngIG7d9eCtlpmg8FIc417-j9q8Yo8EwqG0DXDAervN3r9mD7dufx419w-UQPhE |
link.rule.ids | 315,782,786,866,2106,27933,27934 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fractional+Consistent+Riccati+Expansion+Method+and+Soliton-Cnoidal+Solutions+for+the+Time-Fractional+Extended+Shallow+Water+Wave+Equation+in+%282+%2B+1%29-Dimension&rft.jtitle=Fractal+and+fractional&rft.au=Zhang%2C+Lihua&rft.au=Shen%2C+Bo&rft.au=Jia%2C+Meizhi&rft.au=Wang%2C+Zhenli&rft.date=2024-10-01&rft.pub=MDPI+AG&rft.eissn=2504-3110&rft.volume=8&rft.issue=10&rft.spage=599&rft_id=info:doi/10.3390%2Ffractalfract8100599&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-3110&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-3110&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-3110&client=summon |