Fractional Consistent Riccati Expansion Method and Soliton-Cnoidal Solutions for the Time-Fractional Extended Shallow Water Wave Equation in (2 + 1)-Dimension

In this work, a fractional consistent Riccati expansion (FCRE) method is proposed to seek soliton and soliton-cnoidal solutions for fractional nonlinear evolutional equations. The method is illustrated by the time-fractional extended shallow water wave equation in the (2 + 1)-dimension, which includ...

Full description

Saved in:
Bibliographic Details
Published in:Fractal and fractional Vol. 8; no. 10; p. 599
Main Authors: Zhang, Lihua, Shen, Bo, Jia, Meizhi, Wang, Zhenli, Wang, Gangwei
Format: Journal Article
Language:English
Published: Basel MDPI AG 01-10-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this work, a fractional consistent Riccati expansion (FCRE) method is proposed to seek soliton and soliton-cnoidal solutions for fractional nonlinear evolutional equations. The method is illustrated by the time-fractional extended shallow water wave equation in the (2 + 1)-dimension, which includes a lot of KdV-type equations as particular cases, such as the KdV equation, potential KdV equation, Boiti–Leon–Manna–Pempinelli (BLMP) equation, and so on. A rich variety of exact solutions, including soliton solutions, soliton-cnoidal solutions, and three-wave interaction solutions, have been obtained. Comparing with the fractional sub-equation method, G′/G-expansion method, and exp-function method, the proposed method gives new results. The method presented here can also be applied to other fractional nonlinear evolutional equations.
AbstractList In this work, a fractional consistent Riccati expansion (FCRE) method is proposed to seek soliton and soliton-cnoidal solutions for fractional nonlinear evolutional equations. The method is illustrated by the time-fractional extended shallow water wave equation in the (2 + 1)-dimension, which includes a lot of KdV-type equations as particular cases, such as the KdV equation, potential KdV equation, Boiti–Leon–Manna–Pempinelli (BLMP) equation, and so on. A rich variety of exact solutions, including soliton solutions, soliton-cnoidal solutions, and three-wave interaction solutions, have been obtained. Comparing with the fractional sub-equation method, G[sup.′]/G-expansion method, and exp-function method, the proposed method gives new results. The method presented here can also be applied to other fractional nonlinear evolutional equations.
In this work, a fractional consistent Riccati expansion (FCRE) method is proposed to seek soliton and soliton-cnoidal solutions for fractional nonlinear evolutional equations. The method is illustrated by the time-fractional extended shallow water wave equation in the (2 + 1)-dimension, which includes a lot of KdV-type equations as particular cases, such as the KdV equation, potential KdV equation, Boiti–Leon–Manna–Pempinelli (BLMP) equation, and so on. A rich variety of exact solutions, including soliton solutions, soliton-cnoidal solutions, and three-wave interaction solutions, have been obtained. Comparing with the fractional sub-equation method, G′/G -expansion method, and exp-function method, the proposed method gives new results. The method presented here can also be applied to other fractional nonlinear evolutional equations.
Audience Academic
Author Wang, Gangwei
Zhang, Lihua
Shen, Bo
Jia, Meizhi
Wang, Zhenli
Author_xml – sequence: 1
  givenname: Lihua
  surname: Zhang
  fullname: Zhang, Lihua
– sequence: 2
  givenname: Bo
  surname: Shen
  fullname: Shen, Bo
– sequence: 3
  givenname: Meizhi
  surname: Jia
  fullname: Jia, Meizhi
– sequence: 4
  givenname: Zhenli
  surname: Wang
  fullname: Wang, Zhenli
– sequence: 5
  givenname: Gangwei
  surname: Wang
  fullname: Wang, Gangwei
BookMark eNptks9uEzEQxi1UJEroE3CxxAWEtvjPbnZ9rEJKKxUhQRFHa2KPG0cbO7UdKC_Ds-JNKtQDtuSxR9_3szWel-QkxICEvObsXErFPrgEpsB4CANnrFPqGTkVHWsbyTk7ebJ_Qc5y3jDGRK9kx_pT8udysvkYYKSLGLLPBUOhX70xUDxdPuygJmOgn7Gso6UQLP0WR19iaBYhelt99byfEJm6mGhZI731W2yekJcPlWqxWtcwjvEX_QEFU11_Il3e72GSUR_oW0HfU_6u-Vj9h2tfkecOxoxnj3FGvl8ubxdXzc2XT9eLi5vGSNaXRlg12BZbp9TcWJz3Tg4t4qoXyrZ9B0Z1thMOgVkubMfBgFMWrOAraZQZ5IxcH7k2wkbvkt9C-q0jeH1IxHSnIRVvRtR921uOzoJQXWuEgB7d4ITrKhBXK1FZb46sXYr3e8xFb-I-1TJkLblgczGwllXV-VF1BxXqg4ul1qtOi1tv6g87X_MXA2-ZktOYEXk0mBRzTuj-PZMzPTWC_k8jyL97iK2i
Cites_doi 10.1016/j.physleta.2011.01.029
10.1140/epjp/s13360-021-01188-3
10.1016/j.cnsns.2012.01.005
10.1016/B978-0-12-531680-4.50007-1
10.1016/j.physleta.2011.11.030
10.1017/CBO9780511543043
10.1007/s40314-018-0627-1
10.1063/1.4960543
10.1177/1461348419844145
10.1016/j.cnsns.2012.11.032
10.3934/math.2024362
10.3389/fphy.2023.1309182
10.1108/HFF-01-2021-0019
10.1515/fca-2017-0030
10.1007/s11071-015-2156-4
10.1142/S0217979220500848
10.1016/j.camwa.2015.05.002
10.2298/TSCI190930450A
10.3390/fractalfract6090520
10.1016/S0378-4754(96)00054-7
10.1080/00207160412331296706
10.1016/j.physleta.2023.129082
10.1016/j.chaos.2024.114806
10.1016/j.aml.2020.106326
10.1016/j.rinp.2023.106950
10.1088/0305-4470/38/7/L04
10.1142/S0217984922500592
10.1007/s11082-022-04141-5
10.1002/mma.8259
10.1016/j.aml.2008.06.003
10.1016/j.jmaa.2012.04.006
10.1007/s11071-022-07468-6
10.2298/TSCI160111018A
10.2298/TSCI200331247B
10.1016/j.cnsns.2017.11.015
10.1016/j.physa.2017.10.010
10.1088/0951-7715/7/3/012
10.1111/sapm.12072
10.3390/sym14091855
10.1007/s40819-023-01496-5
10.1142/S0218348X22501791
10.1142/S0218348X20501418
10.1088/0253-6102/58/5/02
10.1209/0295-5075/114/20003
10.1016/0375-9601(93)91187-A
10.1016/j.cnsns.2023.107755
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.3390/fractalfract8100599
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Databases
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList

Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2504-3110
ExternalDocumentID oai_doaj_org_article_747d1efda2954c22a7ef8f2f59daebb2
A814093333
10_3390_fractalfract8100599
GroupedDBID 8FE
8FG
AADQD
AAYXX
ABJCF
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
ITC
L6V
M7S
MODMG
M~E
OK1
PIMPY
PROAC
PTHSS
ABUWG
AZQEC
DWQXO
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c307t-2d98d4e4f996cde67f384eeb729d475ac95d52fea0d12d51acaf9dad21b3c9c83
IEDL.DBID DOA
ISSN 2504-3110
IngestDate Mon Oct 28 19:37:35 EDT 2024
Fri Oct 25 21:05:43 EDT 2024
Tue Nov 12 23:34:19 EST 2024
Fri Nov 22 01:37:46 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c307t-2d98d4e4f996cde67f384eeb729d475ac95d52fea0d12d51acaf9dad21b3c9c83
OpenAccessLink https://doaj.org/article/747d1efda2954c22a7ef8f2f59daebb2
PQID 3120628040
PQPubID 2055410
ParticipantIDs doaj_primary_oai_doaj_org_article_747d1efda2954c22a7ef8f2f59daebb2
proquest_journals_3120628040
gale_infotracacademiconefile_A814093333
crossref_primary_10_3390_fractalfract8100599
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Fractal and fractional
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References He (ref_29) 2012; 376
He (ref_41) 2021; 136
Chen (ref_51) 2004; 157
Kavya (ref_7) 2024; 130
Baskonus (ref_37) 2022; 45
Gerasimov (ref_4) 1948; 12
Ma (ref_14) 2024; 182
Saad (ref_11) 2018; 37
Wang (ref_22) 2015; 82
Inc (ref_20) 2018; 493
Biswas (ref_47) 2023; 9
Wazwaz (ref_54) 2005; 82
ref_17
ref_16
Zhang (ref_18) 2022; 30
Sahoo (ref_24) 2015; 70
Clarkson (ref_44) 1994; 7
Gilson (ref_43) 1993; 180
Baleanu (ref_5) 2016; 20
Saha (ref_53) 2012; 17
Naveed (ref_31) 2020; 24
ref_21
Lou (ref_34) 2005; 38
Baskonus (ref_38) 2022; 26
Jumarie (ref_2) 2009; 22
Raza (ref_50) 2023; 485
Zulfiqar (ref_28) 2022; 54
Poonam (ref_42) 2024; 38
Baleanu (ref_19) 2018; 59
Chen (ref_46) 2020; 34
ref_33
Chen (ref_15) 2024; 9
Zhang (ref_40) 2022; 36
Kiryakova (ref_6) 2017; 20
Li (ref_10) 2016; 15
Yang (ref_12) 2016; 26
Ain (ref_30) 2020; 28
Zhang (ref_52) 2009; 208
Wang (ref_9) 2013; 18
Wazwaz (ref_39) 2022; 32
Lou (ref_35) 2015; 134
Zheng (ref_27) 2012; 58
Wang (ref_32) 2016; 114
Cattani (ref_8) 2024; 139
Murad (ref_25) 2023; 53
Ren (ref_36) 2020; 105
Clarkson (ref_45) 1997; 43
ref_1
He (ref_13) 2019; 38
ref_3
Han (ref_49) 2022; 109
ref_48
Zhang (ref_26) 2011; 375
Sahadevan (ref_23) 2012; 393
References_xml – volume: 375
  start-page: 1069
  year: 2011
  ident: ref_26
  article-title: Fractional sub-equation method and its applications to nonlinear fractional PDEs
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2011.01.029
  contributor:
    fullname: Zhang
– volume: 136
  start-page: 192
  year: 2021
  ident: ref_41
  article-title: M-lump and interaction solutions of a (2 + 1)-dimensional extended shallow water wave equation
  publication-title: Eur. Phys. J. Plus.
  doi: 10.1140/epjp/s13360-021-01188-3
  contributor:
    fullname: He
– volume: 17
  start-page: 3539
  year: 2012
  ident: ref_53
  article-title: Bifurcation of travelling wave solutions for the generalized KP-MEW equations
  publication-title: Commun. Nonlinear Sci. Numer. Simulat.
  doi: 10.1016/j.cnsns.2012.01.005
  contributor:
    fullname: Saha
– ident: ref_21
  doi: 10.1016/B978-0-12-531680-4.50007-1
– volume: 376
  start-page: 257
  year: 2012
  ident: ref_29
  article-title: Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2011.11.030
  contributor:
    fullname: He
– volume: 208
  start-page: 144
  year: 2009
  ident: ref_52
  article-title: Travelling wave solutions for the generalized Zakharov-Kuznetsov equation with higher-order nonlinear terms
  publication-title: Appl. Math. Comput.
  contributor:
    fullname: Zhang
– ident: ref_33
  doi: 10.1017/CBO9780511543043
– volume: 37
  start-page: 5203
  year: 2018
  ident: ref_11
  article-title: New fractional derivatives applied to the Korteweg-deVries and Korteweg-de Vries-Burger’s equations
  publication-title: Comp. Appl. Math.
  doi: 10.1007/s40314-018-0627-1
  contributor:
    fullname: Saad
– volume: 26
  start-page: 084312
  year: 2016
  ident: ref_12
  article-title: A new method for exact solutions of variant types of time-fractional Korteweg-de Vries equations in shallow water waves
  publication-title: Chaos. Interdiscip. J. Nonlinear Sci.
  doi: 10.1063/1.4960543
  contributor:
    fullname: Yang
– volume: 139
  start-page: 2261
  year: 2024
  ident: ref_8
  article-title: Introduction to the special issue on recent developments on computational biology-I
  publication-title: Comput. Model. Eng. Sci.
  contributor:
    fullname: Cattani
– ident: ref_1
– volume: 38
  start-page: 1252
  year: 2019
  ident: ref_13
  article-title: The simpler, the better: Analytical methods for nonlinear oscillators and fractional oscillators
  publication-title: J. Low Freq. Noise Vib. Act. Control
  doi: 10.1177/1461348419844145
  contributor:
    fullname: He
– volume: 18
  start-page: 2321
  year: 2013
  ident: ref_9
  article-title: Lie symmetry analysis to the time fractional generalized fifth-order KdV equation
  publication-title: Commun. Nonlinear. Sci. Numer. Simulat.
  doi: 10.1016/j.cnsns.2012.11.032
  contributor:
    fullname: Wang
– volume: 9
  start-page: 7471
  year: 2024
  ident: ref_15
  article-title: Modeling and analysis of demand-supply dynamics with a collectability factor using delay differential equations in economic growth via the Caputo operator
  publication-title: AIMS Math.
  doi: 10.3934/math.2024362
  contributor:
    fullname: Chen
– ident: ref_16
  doi: 10.3389/fphy.2023.1309182
– volume: 32
  start-page: 138
  year: 2022
  ident: ref_39
  article-title: New integrable (2 + 1)-and (3 + 1)-dimensional shallow water wave equations: Multiple soliton solutions and lump solutions
  publication-title: Int. J. Numer. Methods Heat Fluid Flow
  doi: 10.1108/HFF-01-2021-0019
  contributor:
    fullname: Wazwaz
– volume: 12
  start-page: 251
  year: 1948
  ident: ref_4
  article-title: Generalization of laws of the linear deformation and their application to problems of the internal friction
  publication-title: Prikl. Mat. Mekhanika
  contributor:
    fullname: Gerasimov
– volume: 20
  start-page: 567
  year: 2017
  ident: ref_6
  article-title: Editorial note, FCAA related news, events and books (FCAA–volume 20–3–2017)
  publication-title: Fract. Calc. Appl. Anal.
  doi: 10.1515/fca-2017-0030
  contributor:
    fullname: Kiryakova
– volume: 82
  start-page: 281
  year: 2015
  ident: ref_22
  article-title: Symmetry analysis and conservation laws for the class of time-fractional nonlinear dispersive equation
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-015-2156-4
  contributor:
    fullname: Wang
– volume: 34
  start-page: 2050084
  year: 2020
  ident: ref_46
  article-title: Abundant analytical solutions of the fractional nonlinear (2 + 1)-dimensional BLMP equation arising in incompressible fluid
  publication-title: Int. J. Mod. Phys. B
  doi: 10.1142/S0217979220500848
  contributor:
    fullname: Chen
– volume: 70
  start-page: 158
  year: 2015
  ident: ref_24
  article-title: Improved fractional sub-equation method for (3 + 1)-dimensional generalized fractional KdV-Zakharov-Kuznetsov equations
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2015.05.002
  contributor:
    fullname: Sahoo
– volume: 24
  start-page: 3023
  year: 2020
  ident: ref_31
  article-title: Application of He’s fractional derivative and fractional complex transform for time fractional Camassa-Holm equation
  publication-title: Therm. Sci.
  doi: 10.2298/TSCI190930450A
  contributor:
    fullname: Naveed
– ident: ref_17
  doi: 10.3390/fractalfract6090520
– volume: 43
  start-page: 39
  year: 1997
  ident: ref_45
  article-title: Symmetries and exact solutions for a 2 + 1-dimensional shallow water wave equation
  publication-title: Math. Comput. Simulat.
  doi: 10.1016/S0378-4754(96)00054-7
  contributor:
    fullname: Clarkson
– volume: 82
  start-page: 235
  year: 2005
  ident: ref_54
  article-title: The tanh method and the sinecosine method for solving the KP-MEW equation
  publication-title: Int. J. Comput. Math.
  doi: 10.1080/00207160412331296706
  contributor:
    fullname: Wazwaz
– volume: 485
  start-page: 129082
  year: 2023
  ident: ref_50
  article-title: A novel investigation of extended (3 + 1)-dimensional shallow water wave equation with constant coefficients utilizing bilinear form
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2023.129082
  contributor:
    fullname: Raza
– ident: ref_3
– volume: 182
  start-page: 114806
  year: 2024
  ident: ref_14
  article-title: Option pricing in the illiquid markets under the mixed fractional Brownian motion model
  publication-title: Chaos. Soliton. Fract.
  doi: 10.1016/j.chaos.2024.114806
  contributor:
    fullname: Ma
– volume: 105
  start-page: 106326
  year: 2020
  ident: ref_36
  article-title: Consistent Riccati expansion and rational solutions of the Drinfel’d-Sokolov-Wilson equation
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2020.106326
  contributor:
    fullname: Ren
– volume: 53
  start-page: 106950
  year: 2023
  ident: ref_25
  article-title: Optical soliton solutions for time -fractional Ginzburg-Landau equation by a modified sub-equation method
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2023.106950
  contributor:
    fullname: Murad
– volume: 38
  start-page: 129
  year: 2005
  ident: ref_34
  article-title: Non-Lie symmetry groups of (2 + 1)-dimensional nonlinear systems obtained from a simple direct method
  publication-title: J. Phys. A Math. Gen.
  doi: 10.1088/0305-4470/38/7/L04
  contributor:
    fullname: Lou
– volume: 36
  start-page: 22500592
  year: 2022
  ident: ref_40
  article-title: Novel interaction phenomena of the new (2 + 1)-dimensional extended shallow water wave equation
  publication-title: Mod. Phys. Lett. B
  doi: 10.1142/S0217984922500592
  contributor:
    fullname: Zhang
– volume: 54
  start-page: 1
  year: 2022
  ident: ref_28
  article-title: Analysis of some new wave solutions of fractional order generalized Pochhammer-Chree equation using exp-function method
  publication-title: Opt. Quant. Electron.
  doi: 10.1007/s11082-022-04141-5
  contributor:
    fullname: Zulfiqar
– volume: 45
  start-page: 8737
  year: 2022
  ident: ref_37
  article-title: A study on Caudrey-Dodd-Gibbon-Sawada-Kotera partial diferential equation
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.8259
  contributor:
    fullname: Baskonus
– volume: 22
  start-page: 378
  year: 2009
  ident: ref_2
  article-title: Table of some basic fractional calculus formula derived from a modified Riemann-Liouville derivative for non-differentiable functions
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2008.06.003
  contributor:
    fullname: Jumarie
– volume: 393
  start-page: 341
  year: 2012
  ident: ref_23
  article-title: Invariant analysis of time fractional generalized burgers and Korteweg-de vries equations
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2012.04.006
  contributor:
    fullname: Sahadevan
– volume: 109
  start-page: 1019
  year: 2022
  ident: ref_49
  article-title: Linear superposition formula of solutions for the extended (3 + 1)-dimensional shallow water wave equation
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-022-07468-6
  contributor:
    fullname: Han
– volume: 15
  start-page: 970
  year: 2016
  ident: ref_10
  article-title: Fractional complex transform for fractional differential equations
  publication-title: Math. Comput. Appl.
  contributor:
    fullname: Li
– volume: 20
  start-page: 763
  year: 2016
  ident: ref_5
  article-title: New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model
  publication-title: Therm. Sci.
  doi: 10.2298/TSCI160111018A
  contributor:
    fullname: Baleanu
– volume: 26
  start-page: 1229
  year: 2022
  ident: ref_38
  article-title: Studying on Kudryashov-Sinelshchikov dynamical equation arising in mixtures liquid and gas bubbles
  publication-title: Therm. Sci.
  doi: 10.2298/TSCI200331247B
  contributor:
    fullname: Baskonus
– volume: 38
  start-page: 24501042
  year: 2024
  ident: ref_42
  article-title: An enormous diversity of soliton solutions to the (2 + 1)-dimensional extended shallow water wave equation using three analytical methods
  publication-title: Int. J. Mod. Phys. B
  contributor:
    fullname: Poonam
– volume: 59
  start-page: 222
  year: 2018
  ident: ref_19
  article-title: Lie symmetry analysis, exact solutions and conservation laws for the time fractional Caudrey-Dodd-Gibbon-Sawada-Kotera equation
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2017.11.015
  contributor:
    fullname: Baleanu
– volume: 493
  start-page: 94
  year: 2018
  ident: ref_20
  article-title: Time-fractional Cahn-Allen and time-fractional Klein-Gordon equations: Lie symmetry analysis, explicit solutions and convergence analysis
  publication-title: Phys. A
  doi: 10.1016/j.physa.2017.10.010
  contributor:
    fullname: Inc
– volume: 157
  start-page: 765
  year: 2004
  ident: ref_51
  article-title: New double periodic and multiple soliton solutions of the generalized (2 + 1)-dimensional Boussinesq equation
  publication-title: Appl. Math. Comput.
  contributor:
    fullname: Chen
– volume: 7
  start-page: 975
  year: 1994
  ident: ref_44
  article-title: On a shallow water wave equation
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/7/3/012
  contributor:
    fullname: Clarkson
– volume: 134
  start-page: 372
  year: 2015
  ident: ref_35
  article-title: Consistent Riccati expansion for integrable systems
  publication-title: Stud. Appl. Math.
  doi: 10.1111/sapm.12072
  contributor:
    fullname: Lou
– ident: ref_48
  doi: 10.3390/sym14091855
– volume: 9
  start-page: 20
  year: 2023
  ident: ref_47
  article-title: Formation and shock solutions of the time fractional (2 + 1)- and (3 + 1)-dimensional Boiti-Leon-Manna-Pempinelli equations
  publication-title: Int. J. Appl. Comput. Math.
  doi: 10.1007/s40819-023-01496-5
  contributor:
    fullname: Biswas
– volume: 30
  start-page: 22501791
  year: 2022
  ident: ref_18
  article-title: Fractional complex transforms, reduced equations and exact solutions of the fractional Kraenkel-Manna-Merle system
  publication-title: Fractals
  doi: 10.1142/S0218348X22501791
  contributor:
    fullname: Zhang
– volume: 28
  start-page: 2050141
  year: 2020
  ident: ref_30
  article-title: The fractional complex transform: A novel approach to the time-fractional Schrodinger equation
  publication-title: Fractals
  doi: 10.1142/S0218348X20501418
  contributor:
    fullname: Ain
– volume: 58
  start-page: 623
  year: 2012
  ident: ref_27
  article-title: G′/G-expansion method for solving fractional partial differential equations in the theory of mathematical physics
  publication-title: Commun. Theor. Phys.
  doi: 10.1088/0253-6102/58/5/02
  contributor:
    fullname: Zheng
– volume: 114
  start-page: 20003
  year: 2016
  ident: ref_32
  article-title: Lie symmetry analysis, conservation laws and exact solutions of the generalizeded time fractional Burgers time fractional Burgers equation
  publication-title: EPL-Europhys. Lett.
  doi: 10.1209/0295-5075/114/20003
  contributor:
    fullname: Wang
– volume: 180
  start-page: 337
  year: 1993
  ident: ref_43
  article-title: A (2 + 1)-dimensional generalization of the AKNS shallow water wave equation
  publication-title: Phys. Lett. A
  doi: 10.1016/0375-9601(93)91187-A
  contributor:
    fullname: Gilson
– volume: 130
  start-page: 107755
  year: 2024
  ident: ref_7
  article-title: Mathematical modeling to investigate the influence of vaccination and booster doses on the spread of Omicron
  publication-title: Commun. Nonlinear. Sci. Numer. Simulat.
  doi: 10.1016/j.cnsns.2023.107755
  contributor:
    fullname: Kavya
SSID ssj0002793507
Score 2.3209157
Snippet In this work, a fractional consistent Riccati expansion (FCRE) method is proposed to seek soliton and soliton-cnoidal solutions for fractional nonlinear...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
StartPage 599
SubjectTerms Boiti–Leon–Manna–Pempinelli (BLMP) equation
Exact solutions
fractional consistent Riccati expansion (FCRE) method
fractional derivatives
Hypotheses
Korteweg-Devries equation
Methods
Shallow water
shallow water wave equation
Solitary waves
soliton-cnoidal solutions
Water waves
Wave equations
Wave interaction
Title Fractional Consistent Riccati Expansion Method and Soliton-Cnoidal Solutions for the Time-Fractional Extended Shallow Water Wave Equation in (2 + 1)-Dimension
URI https://www.proquest.com/docview/3120628040
https://doaj.org/article/747d1efda2954c22a7ef8f2f59daebb2
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELagJy6IFSAKZTUHpF0EVhs7aZxjt03Vy3KgILhZdmxLRSiFPlh-zf5WZuy0KtKivZBDIuXhWJ6x_c3Y8w1jb-TIGlEZyW2QI54rb7ktbckrnxcI93GGNBQ7vFiWH76qWU00OcdUX7QnLNEDp4YbItx1mQ_O0IJUI4QpfVBBhKJyxlubRt_R-MSY-haX0yqJSCfRDEm064eBgo7M93hRWaQl-Wsqioz9_xqX42Qzf8IedygRJql2Z-yBb5-y2_kmRSHgk5hnEwXU7uDjqiG3G9S_sWOT7wuuY1ZoMK2DJW1vW7d82q5XDr87esEAwSog-AOKAeEnJdedVxyWlGZlfQNfEI1u8PzLQ_0zEYPDqoVLAe8ge8tnlB6AfvuMfZ7Xn6YL3qVX4A127B0XrlIu93lAk6dxflwGqXLvLcJtl5eFaarCFSJ4M3KZcEVmGhOw0Z3IrGyqRsnnrNeuW_-CgUJJC6to1ZMCVZ2S3lfSBjT2VC6E67P3h5bWPxKLhkbrgwSj7xBMn12RNI6vEgV2vIGKoTvF0PcpRp9dkCw1ddQdFm66eAOsMVFe6Unk-pJ49NngIG7d9eCtlpmg8FIc417-j9q8Yo8EwqG0DXDAervN3r9mD7dufx419w-UQPhE
link.rule.ids 315,782,786,866,2106,27933,27934
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fractional+Consistent+Riccati+Expansion+Method+and+Soliton-Cnoidal+Solutions+for+the+Time-Fractional+Extended+Shallow+Water+Wave+Equation+in+%282+%2B+1%29-Dimension&rft.jtitle=Fractal+and+fractional&rft.au=Zhang%2C+Lihua&rft.au=Shen%2C+Bo&rft.au=Jia%2C+Meizhi&rft.au=Wang%2C+Zhenli&rft.date=2024-10-01&rft.pub=MDPI+AG&rft.eissn=2504-3110&rft.volume=8&rft.issue=10&rft.spage=599&rft_id=info:doi/10.3390%2Ffractalfract8100599&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-3110&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-3110&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-3110&client=summon