Further improved stability results for generalized neural networks with time-varying delays
This paper is concerned with a new Lyapunov–Krasovskii functional (LKF) approach to delay-dependent stability for generalized neural networks with time-varying delays (DNN). A new LKF is constructed by employing more information of the DNN. The state, the activation function and their ramifications...
Saved in:
Published in: | Neurocomputing (Amsterdam) Vol. 367; pp. 308 - 318 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier B.V
20-11-2019
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | This paper is concerned with a new Lyapunov–Krasovskii functional (LKF) approach to delay-dependent stability for generalized neural networks with time-varying delays (DNN). A new LKF is constructed by employing more information of the DNN. The state, the activation function and their ramifications are introduced, and more cross terms of the activation function and their ramifications are included in the LKF. Moreover, the new LKF also makes best of the characteristic of the activation function. On the other hand, when estimating the derivative of the LKF, we take advantages of some equations and inequalities that reveal the relationship among the state, the activation function and their ramifications, employ advanced inequalities to deal with integrals arising from the derivative of the LKF, thus resulting in a tight upper bound of the derivative of the LKF. By checking the negative definiteness of the upper bound that is a quadratic function in the time-delay, a novel delay-dependent stability result is derived. Finally, three examples are given to illustrate the stability result is less conservative than some recently reported ones. |
---|---|
AbstractList | This paper is concerned with a new Lyapunov–Krasovskii functional (LKF) approach to delay-dependent stability for generalized neural networks with time-varying delays (DNN). A new LKF is constructed by employing more information of the DNN. The state, the activation function and their ramifications are introduced, and more cross terms of the activation function and their ramifications are included in the LKF. Moreover, the new LKF also makes best of the characteristic of the activation function. On the other hand, when estimating the derivative of the LKF, we take advantages of some equations and inequalities that reveal the relationship among the state, the activation function and their ramifications, employ advanced inequalities to deal with integrals arising from the derivative of the LKF, thus resulting in a tight upper bound of the derivative of the LKF. By checking the negative definiteness of the upper bound that is a quadratic function in the time-delay, a novel delay-dependent stability result is derived. Finally, three examples are given to illustrate the stability result is less conservative than some recently reported ones. |
Author | Feng, Zongying Shao, Hanyong Shao, Lin |
Author_xml | – sequence: 1 givenname: Zongying surname: Feng fullname: Feng, Zongying organization: The Research Institute of Automation, Qufu Normal University, Rizhao 276826, China – sequence: 2 givenname: Hanyong surname: Shao fullname: Shao, Hanyong email: hanyongshao@163.com organization: The Research Institute of Automation, Qufu Normal University, Rizhao 276826, China – sequence: 3 givenname: Lin surname: Shao fullname: Shao, Lin organization: College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China |
BookMark | eNp9kM1OwzAQhC1UJNrCG3DwCySs7ThOLkioooBUiQucOFhJvGld8lPZbqvy9LgqZ07fHHZmRzMjk2EckJB7BikDlj9s0wH3zdinHFiZgkojrsiUFYonBS_yCZlCyWXCBeM3ZOb9FoApxssp-VruXdigo7bfufGAhvpQ1baz4UQd-n0XPG1HR9c4oKs6-xMv4rMoI8JxdN-eHm3Y0GB7TA6VO9lhTQ121cnfkuu26jze_XFOPpfPH4vXZPX-8rZ4WiWNgDwkyFqRm5ajqqQSQhQ1GtFmAplUoEopMyNUixIKMJXhdZmXGRQSGyVrAKjEnGSX3MaN3jts9c7ZPlbRDPR5IL3Vl4H0eSANSkdE2-PFhrHbwaLTvrE4NGiswyZoM9r_A34BrB909g |
CitedBy_id | crossref_primary_10_1109_TCYB_2020_3031087 crossref_primary_10_1016_j_amc_2023_128289 crossref_primary_10_1016_j_ins_2021_08_055 crossref_primary_10_1109_TNNLS_2022_3202799 crossref_primary_10_1016_j_neucom_2020_05_045 crossref_primary_10_1016_j_neucom_2021_01_098 crossref_primary_10_1016_j_ins_2023_03_041 crossref_primary_10_1109_TNNLS_2022_3159625 crossref_primary_10_1186_s13660_023_02973_7 crossref_primary_10_1016_j_jfranklin_2020_04_049 crossref_primary_10_1016_j_knosys_2022_109630 crossref_primary_10_1002_mma_9425 crossref_primary_10_3934_math_20231136 crossref_primary_10_1016_j_neucom_2020_02_059 crossref_primary_10_1016_j_amc_2020_125431 crossref_primary_10_1109_ACCESS_2021_3089374 crossref_primary_10_1016_j_neunet_2021_11_007 crossref_primary_10_1016_j_amc_2020_125631 crossref_primary_10_1080_21642583_2020_1858363 crossref_primary_10_1016_j_jfranklin_2024_106871 crossref_primary_10_1109_ACCESS_2023_3326715 crossref_primary_10_1007_s12555_022_0875_0 crossref_primary_10_1016_j_neucom_2020_07_021 crossref_primary_10_1016_j_neucom_2022_02_015 |
Cites_doi | 10.1109/TNNLS.2012.2224883 10.1007/s11071-013-1122-2 10.1016/j.jfranklin.2017.11.011 10.1016/j.isatra.2015.03.006 10.1109/TNN.2008.2001265 10.1049/iet-cta.2012.0585 10.1109/TNN.2011.2169425 10.1016/j.neucom.2018.08.044 10.1016/j.neucom.2018.06.038 10.1016/j.automatica.2015.08.025 10.1109/TNNLS.2015.2449898 10.1016/j.isatra.2018.05.016 10.1016/j.neunet.2014.02.012 10.1109/TNNLS.2013.2256796 10.1016/j.neunet.2017.01.008 10.1109/TNNLS.2015.2411734 10.1016/j.neunet.2016.12.005 10.1016/j.neucom.2014.12.038 10.1016/j.neucom.2014.08.038 10.1016/j.neucom.2016.04.058 10.1016/j.neucom.2018.08.090 10.1016/j.automatica.2010.10.014 10.1007/s00034-010-9164-x 10.1109/TCYB.2017.2776283 10.1109/TNNLS.2017.2661862 10.1109/TCYB.2017.2690676 10.1016/j.neucom.2012.09.012 10.1109/TNNLS.2014.2347290 10.1016/j.jfranklin.2018.06.023 10.1016/j.neucom.2015.02.055 10.1109/TNN.2011.2114366 10.1016/j.neucom.2016.01.041 10.1109/TCSII.2008.2001981 10.1109/TNNLS.2018.2797279 10.1109/TCSII.2007.916727 10.1109/31.7601 10.1016/j.cnsns.2011.08.016 10.1109/TNN.2011.2132762 10.1109/TNNLS.2013.2285564 10.1016/j.neucom.2010.01.006 10.1016/j.neucom.2014.01.024 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. |
Copyright_xml | – notice: 2019 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.neucom.2019.07.019 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-8286 |
EndPage | 318 |
ExternalDocumentID | 10_1016_j_neucom_2019_07_019 S0925231219309506 |
GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N AAQXK AAXKI AAYXX ABXDB ACNNM ADJOM ADMUD AFJKZ AKRWK ASPBG AVWKF AZFZN CITATION FEDTE FGOYB HLZ HVGLF HZ~ R2- SBC SEW WUQ XPP |
ID | FETCH-LOGICAL-c306t-e1f36df2e7a573338bed3f43e157079554d37fe5080dad2b9694085ec75b000a3 |
ISSN | 0925-2312 |
IngestDate | Thu Sep 26 16:07:30 EDT 2024 Fri Feb 23 02:27:02 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Asymptotic stability Integral inequality Neural networks Lyapunov–Krasovskii functional |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c306t-e1f36df2e7a573338bed3f43e157079554d37fe5080dad2b9694085ec75b000a3 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1016_j_neucom_2019_07_019 elsevier_sciencedirect_doi_10_1016_j_neucom_2019_07_019 |
PublicationCentury | 2000 |
PublicationDate | 2019-11-20 |
PublicationDateYYYYMMDD | 2019-11-20 |
PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-20 day: 20 |
PublicationDecade | 2010 |
PublicationTitle | Neurocomputing (Amsterdam) |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Ding, Wang, Wu, Zhang (bib0012) 2016; 214 Zhang, He, Jiang, Lin, Wu (bib0017) 2017; 294 Li, Zheng, Lin (bib0025) 2011; 22 Wang, Yang, Zuo (bib0026) 2012; 17 Kwon, Park, Park, Lee, Cha (bib0010) 2014; 239 Manivannan, Samidurai, Cao, Alsaedi, Alsaadi (bib0023) 2017; 87 Zhang, Han, Wang, Zhang (bib0039) 2017; 47 Kwon, Park, Lee, Park, Cha (bib0011) 2013; 24 Yang, Wang, Wang (bib0048) 2017; 88 Zhang, Yi (bib0003) 2011; 22 Shao (bib0031) 2008; 55 Zhang, Han, Wang (bib0035) 2018; 29 Shao, Li, Shao (bib0036) 2018; 80 Li, Wang, Song, Fei (bib0044) 2013; 24 Shao, Han (bib0014) 2011; 22 Zhang, Han (bib0040) 2018; 29 Park, Ko, Jeong (bib0033) 2011; 47 Kwon, Park, Lee, Cha (bib0016) 2013; 103 Zhang, Han (bib0045) 2014; 54 Shao, Li, Zhu (bib0029) 2017; 311 Zeng, He, Wu, Xiao (bib0047) 2015; 161 A. Seuret, F. Gouaisbaut, Delay-dependent reciprocally convex combination lemma, Rapport LAAS n16006. 2016. ⟨hal-01257670⟩. Kim (bib0043) 2016; 64 Kwon, Park, Lee, Cha (bib0009) 2014; 76 Shi, Zhu, Zhong, Zeng, Zhang, Wang (bib0020) 2015; 58 Ji, He, Zhang, Wu (bib0027) 2014; 138 Lian, Xiao, Wang, Zhang, Xiao (bib0006) 2019; 346 Shao (bib0013) 2010; 73 Liu, Lee, Kwon, Park (bib0028) 2015; 149 Shao (bib0007) 2008; 19 Park, Lee, Kwon, Ryu (bib0037) 2018; 355 Chua, Yang (bib0001) 1988; 35 Wang, Zhang, Han (bib0004) 2016; 27 Gu (bib0041) 2000; 3 Michel, Liu (bib0002) 2002 Zhang, Lam, Xu (bib0022) 2015; 26 Shao (bib0024) 2008; 55 Zhang, Han, Ge, Ding (bib0005) 2018; 313 Chen, Yang, Zhong (bib0021) 2016; 191 Zhu, Yue, Wang (bib0015) 2013; 7 Shao (bib0008) 2010; 29 Ge, Hua, Guan (bib0018) 2014; 25 Wang, Ma, Wen (bib0019) 2015; 155 Zhang, He, Jiang, Wu (bib0032) 2016; 27 Lee, Lee, Park (bib0042) 2018; 355 Zhang, Han, Zeng (bib0030) 2018; 48 Wang, Yan, Cheng, Zhong (bib0046) 2017; 314 Hua, Wang, Wu (bib0038) 2019; 332 Zeng (10.1016/j.neucom.2019.07.019_bib0047) 2015; 161 Zhang (10.1016/j.neucom.2019.07.019_bib0032) 2016; 27 Park (10.1016/j.neucom.2019.07.019_bib0037) 2018; 355 Wang (10.1016/j.neucom.2019.07.019_bib0004) 2016; 27 Zhang (10.1016/j.neucom.2019.07.019_bib0003) 2011; 22 Kwon (10.1016/j.neucom.2019.07.019_bib0010) 2014; 239 Kim (10.1016/j.neucom.2019.07.019_bib0043) 2016; 64 Liu (10.1016/j.neucom.2019.07.019_bib0028) 2015; 149 Chua (10.1016/j.neucom.2019.07.019_bib0001) 1988; 35 Zhang (10.1016/j.neucom.2019.07.019_bib0005) 2018; 313 Kwon (10.1016/j.neucom.2019.07.019_bib0011) 2013; 24 Zhang (10.1016/j.neucom.2019.07.019_bib0039) 2017; 47 Ge (10.1016/j.neucom.2019.07.019_bib0018) 2014; 25 Lian (10.1016/j.neucom.2019.07.019_bib0006) 2019; 346 Zhang (10.1016/j.neucom.2019.07.019_bib0035) 2018; 29 Zhang (10.1016/j.neucom.2019.07.019_bib0030) 2018; 48 Zhang (10.1016/j.neucom.2019.07.019_bib0017) 2017; 294 Li (10.1016/j.neucom.2019.07.019_bib0025) 2011; 22 Shao (10.1016/j.neucom.2019.07.019_bib0036) 2018; 80 Shi (10.1016/j.neucom.2019.07.019_bib0020) 2015; 58 Michel (10.1016/j.neucom.2019.07.019_bib0002) 2002 Kwon (10.1016/j.neucom.2019.07.019_bib0016) 2013; 103 Shao (10.1016/j.neucom.2019.07.019_bib0007) 2008; 19 Li (10.1016/j.neucom.2019.07.019_bib0044) 2013; 24 10.1016/j.neucom.2019.07.019_bib0034 Shao (10.1016/j.neucom.2019.07.019_bib0024) 2008; 55 Wang (10.1016/j.neucom.2019.07.019_bib0046) 2017; 314 Shao (10.1016/j.neucom.2019.07.019_bib0013) 2010; 73 Ji (10.1016/j.neucom.2019.07.019_bib0027) 2014; 138 Zhang (10.1016/j.neucom.2019.07.019_bib0022) 2015; 26 Yang (10.1016/j.neucom.2019.07.019_bib0048) 2017; 88 Wang (10.1016/j.neucom.2019.07.019_bib0019) 2015; 155 Lee (10.1016/j.neucom.2019.07.019_bib0042) 2018; 355 Shao (10.1016/j.neucom.2019.07.019_bib0008) 2010; 29 Kwon (10.1016/j.neucom.2019.07.019_bib0009) 2014; 76 Zhang (10.1016/j.neucom.2019.07.019_bib0040) 2018; 29 Shao (10.1016/j.neucom.2019.07.019_bib0014) 2011; 22 Zhu (10.1016/j.neucom.2019.07.019_bib0015) 2013; 7 Shao (10.1016/j.neucom.2019.07.019_bib0029) 2017; 311 Zhang (10.1016/j.neucom.2019.07.019_bib0045) 2014; 54 Wang (10.1016/j.neucom.2019.07.019_bib0026) 2012; 17 Shao (10.1016/j.neucom.2019.07.019_bib0031) 2008; 55 Manivannan (10.1016/j.neucom.2019.07.019_bib0023) 2017; 87 Chen (10.1016/j.neucom.2019.07.019_bib0021) 2016; 191 Park (10.1016/j.neucom.2019.07.019_bib0033) 2011; 47 Ding (10.1016/j.neucom.2019.07.019_bib0012) 2016; 214 Gu (10.1016/j.neucom.2019.07.019_bib0041) 2000; 3 Hua (10.1016/j.neucom.2019.07.019_bib0038) 2019; 332 |
References_xml | – volume: 3 start-page: 2805 year: 2000 end-page: 2810 ident: bib0041 article-title: An integral inequality in the stability problem of time-delay systems publication-title: Proceedings of the 39th IEEE Conference on Decision and Control contributor: fullname: Gu – volume: 22 start-page: 1021 year: 2011 end-page: 1031 ident: bib0003 article-title: Selectable and unselectable sets of neurons in recurrent neural networks with saturated piecewise linear transfer function publication-title: IEEE Trans. Neural Netw. contributor: fullname: Yi – volume: 7 start-page: 354 year: 2013 end-page: 362 ident: bib0015 article-title: Delay-dependent stability analysis for neural networks with additive time-varying delay components publication-title: IET Control Theory Appl. contributor: fullname: Wang – volume: 24 start-page: 1459 year: 2013 end-page: 1466 ident: bib0044 article-title: Combined convex technique on delay-dependent stability for delayed neural networks publication-title: IEEE Trans. Neural Netw. Learn. Syst. contributor: fullname: Fei – volume: 47 start-page: 235 year: 2011 end-page: 238 ident: bib0033 article-title: Reciprocally convex approach to stability of systems with time-varying delays publication-title: Automatica contributor: fullname: Jeong – volume: 346 start-page: 30 year: 2019 end-page: 37 ident: bib0006 article-title: Further results on sampled-data synchronization control for chaotic neural networks with actuator saturation publication-title: Neurocomputing contributor: fullname: Xiao – volume: 24 start-page: 181 year: 2013 end-page: 193 ident: bib0011 article-title: Stability for neural networks with time-varying delays via some new approaches publication-title: IEEE Trans. Neural Netw. Learn. Syst. contributor: fullname: Cha – volume: 35 start-page: 1273 year: 1988 end-page: 1290 ident: bib0001 article-title: Cellular neural networks: applications publication-title: IEEE Trans. Circuits Syst. contributor: fullname: Yang – volume: 55 start-page: 1071 year: 2008 end-page: 1075 ident: bib0031 article-title: Improved delay-dependent globally asymptotic stability criteria for neural networks with a constant delay publication-title: IEEE Trans. Circuits Syst. II Express Briefs contributor: fullname: Shao – volume: 103 start-page: 114 year: 2013 end-page: 120 ident: bib0016 article-title: Analysis on delay-dependent stability for neural networks with time-varying delays publication-title: Neurocomputing contributor: fullname: Cha – volume: 27 start-page: 1486 year: 2016 end-page: 1501 ident: bib0032 article-title: Stability analysis for delayed neural networks considering both conservativeness and complexity publication-title: IEEE Trans. Neural Netw. Learn. Syst. contributor: fullname: Wu – volume: 19 start-page: 1647 year: 2008 end-page: 1651 ident: bib0007 article-title: Delay-dependent stability for recurrent neural networks with time-varying delays publication-title: IEEE Trans. Neural Netw. contributor: fullname: Shao – volume: 80 start-page: 35 year: 2018 end-page: 42 ident: bib0036 article-title: Improved delay-dependent stability result for neural networks with time-varying delays publication-title: ISA Trans. contributor: fullname: Shao – volume: 294 start-page: 102 year: 2017 end-page: 120 ident: bib0017 article-title: Delay-dependent stability analysis of neural networks with time-varying delay: a generalized free-weighting-matrix approach publication-title: Appl. Math. Comput. contributor: fullname: Wu – volume: 26 start-page: 1480 year: 2015 end-page: 1492 ident: bib0022 article-title: Stability analysis of distributed delay neural networks based on relaxed Lyapunov–Krasovskii functionals publication-title: IEEE Trans. Neural Netw. Learn. Syst. contributor: fullname: Xu – volume: 22 start-page: 2138 year: 2011 end-page: 2143 ident: bib0025 article-title: Delay-slope-dependent stability results of recurrent neural networks publication-title: IEEE Trans. Neural Netw. contributor: fullname: Lin – year: 2002 ident: bib0002 article-title: Qualitative Analysis and Synthesis of Recurrent Neural Networks contributor: fullname: Liu – volume: 313 start-page: 392 year: 2018 end-page: 401 ident: bib0005 article-title: An overview of recent developments in Lyapunov–Krasovskii functionals and stability criteria for recurrent neural networks with time-varying delays publication-title: Neurocomputing contributor: fullname: Ding – volume: 29 start-page: 5319 year: 2018 end-page: 5329 ident: bib0035 article-title: Admissible delay upper bounds for global asymptotic stability of neural networks with time-varying delays publication-title: IEEE Trans. Neural Netw. Learn. Syst. contributor: fullname: Wang – volume: 47 start-page: 3184 year: 2017 end-page: 3194 ident: bib0039 article-title: Neuronal state estimation for neural networks with two additive time-varying delay components publication-title: IEEE Trans. Cybern. contributor: fullname: Zhang – volume: 355 start-page: 421 year: 2018 end-page: 435 ident: bib0042 article-title: Orthogonal-polynomials-based integral inequality and its applications to systems with additive time-varying delays publication-title: J. Frankl. Inst. contributor: fullname: Park – volume: 88 start-page: 49 year: 2017 end-page: 57 ident: bib0048 article-title: Stability analysis of delayed neural networks via a new integral inequality publication-title: Neural Netw. contributor: fullname: Wang – volume: 155 start-page: 146 year: 2015 end-page: 152 ident: bib0019 article-title: Less conservative stability criteria for neural networks with interval time-varying delay based on delay-partitioning approach publication-title: Neurocomputing contributor: fullname: Wen – volume: 17 start-page: 1447 year: 2012 end-page: 1459 ident: bib0026 article-title: On exponential stability analysis for neural networks with time-varying delays and general activation functions publication-title: Commun. Nonlinear Sci. Numer. Simul. contributor: fullname: Zuo – volume: 161 start-page: 148 year: 2015 end-page: 154 ident: bib0047 article-title: Stability analysis of generalized neural networks with time-varying delays via a new integral inequality publication-title: Neurocomputing contributor: fullname: Xiao – volume: 214 start-page: 53 year: 2016 end-page: 60 ident: bib0012 article-title: Stability criterion for delayed neural networks via Wirtinger-based multiple integral inequality publication-title: Neurocomputing contributor: fullname: Zhang – volume: 87 start-page: 149 year: 2017 end-page: 159 ident: bib0023 article-title: Global exponential stability and dissipativity of generalized neural networks with time-varying delay signals publication-title: Neural Netw. contributor: fullname: Alsaadi – volume: 73 start-page: 1528 year: 2010 end-page: 1532 ident: bib0013 article-title: Less conservative delay-dependent stability criteria for neural networks with time-varying delays publication-title: Neurocomputing contributor: fullname: Shao – volume: 55 start-page: 591 year: 2008 end-page: 595 ident: bib0024 article-title: Delay-dependent approaches to globally exponential stability for recurrent neural networks publication-title: IEEE Trans. Circuits Syst. II Express Briefs contributor: fullname: Shao – volume: 239 start-page: 346 year: 2014 end-page: 357 ident: bib0010 article-title: New and improved results on stability of static neural networks with interval time-varying delays publication-title: Appl. Math. Comput. contributor: fullname: Cha – volume: 149 start-page: 1544 year: 2015 end-page: 1551 ident: bib0028 article-title: New approach to stability criteria for generalized neural networks with interval time-varying delays publication-title: Neurocomputing contributor: fullname: Park – volume: 332 start-page: 1 year: 2019 end-page: 9 ident: bib0038 article-title: Stability analysis of neural networks with time-varying delay using a new augmented Lyapunov–Krasovskii functional publication-title: Neurocomputing contributor: fullname: Wu – volume: 29 start-page: 1376 year: 2018 end-page: 1381 ident: bib0040 article-title: State estimation for static neural networks with time-varying delays based on an improved reciprocally convex inequality publication-title: IEEE Trans. Neural Netw. Learn. Syst. contributor: fullname: Han – volume: 54 start-page: 57 year: 2014 end-page: 69 ident: bib0045 article-title: Global asymptotic stability analysis for delayed neural networks using a matrix-based quadratic convex approach publication-title: Neural Netw. contributor: fullname: Han – volume: 311 start-page: 324 year: 2017 end-page: 334 ident: bib0029 article-title: New stability results for delayed neural networks publication-title: Appl. Math. Comput. contributor: fullname: Zhu – volume: 76 start-page: 221 year: 2014 end-page: 236 ident: bib0009 article-title: New augmented Lyapunov–Krasovskii functional approach to stability analysis of neural networks with time-varying delays publication-title: Nonlinear Dyn. contributor: fullname: Cha – volume: 58 start-page: 85 year: 2015 end-page: 95 ident: bib0020 article-title: Stability analysis of neutral type neural networks with mixed time-varying delays using triple-integral and delay-partitioning methods publication-title: ISA Trans. contributor: fullname: Wang – volume: 48 start-page: 1660 year: 2018 end-page: 1671 ident: bib0030 article-title: Hierarchical type stability criteria for delayed neural networks via canonical Bessel-Legendre inequalities publication-title: IEEE Trans. Cybern. contributor: fullname: Zeng – volume: 191 start-page: 380 year: 2016 end-page: 387 ident: bib0021 article-title: Delay-partitioning approach to stability analysis of generalized neural networks with time-varying delay via new integral inequality publication-title: Neurocomputing contributor: fullname: Zhong – volume: 29 start-page: 637 year: 2010 end-page: 647 ident: bib0008 article-title: Novel delay-dependent stability results for neural networks with time-varying delays publication-title: Circuits Syst. Signal Process. contributor: fullname: Shao – volume: 138 start-page: 383 year: 2014 end-page: 391 ident: bib0027 article-title: Novel stability criteria for recurrent neural networks with time-varying delay publication-title: Neurocomputing contributor: fullname: Wu – volume: 25 start-page: 1378 year: 2014 end-page: 1383 ident: bib0018 article-title: New delay-dependent stability criteria for neural networks with time-varying delay using delay-decomposition approach publication-title: IEEE Trans. Neural Netw. Learn. Syst. contributor: fullname: Guan – volume: 64 start-page: 121 year: 2016 end-page: 125 ident: bib0043 article-title: Further improvement of Jensen inequality and application to stability of time-delayed systems publication-title: Automatica contributor: fullname: Kim – volume: 314 start-page: 322 year: 2017 end-page: 333 ident: bib0046 article-title: New criteria of stability analysis for generalized neural networks subject to time-varying delayed signals publication-title: Appl. Math. Comput. contributor: fullname: Zhong – volume: 27 start-page: 77 year: 2016 end-page: 88 ident: bib0004 article-title: Event-triggered generalized dissipativity filtering for neural networks with time-varying delays publication-title: IEEE Trans. Neural Netw. Learn. Syst. contributor: fullname: Han – volume: 355 start-page: 6531 year: 2018 end-page: 6548 ident: bib0037 article-title: Enhanced stability criteria of neural networks with time-varying delays via a generalized free-weighting matrix integral inequality publication-title: J. Frankl. Inst. contributor: fullname: Ryu – volume: 22 start-page: 812 year: 2011 end-page: 818 ident: bib0014 article-title: New delay-dependent stability criteria for neural networks with two additive time-varying delay components publication-title: IEEE Trans. Neural Netw. contributor: fullname: Han – volume: 24 start-page: 181 issue: 2 year: 2013 ident: 10.1016/j.neucom.2019.07.019_bib0011 article-title: Stability for neural networks with time-varying delays via some new approaches publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2012.2224883 contributor: fullname: Kwon – volume: 76 start-page: 221 issue: 1 year: 2014 ident: 10.1016/j.neucom.2019.07.019_bib0009 article-title: New augmented Lyapunov–Krasovskii functional approach to stability analysis of neural networks with time-varying delays publication-title: Nonlinear Dyn. doi: 10.1007/s11071-013-1122-2 contributor: fullname: Kwon – volume: 311 start-page: 324 year: 2017 ident: 10.1016/j.neucom.2019.07.019_bib0029 article-title: New stability results for delayed neural networks publication-title: Appl. Math. Comput. contributor: fullname: Shao – volume: 355 start-page: 421 issue: 1 year: 2018 ident: 10.1016/j.neucom.2019.07.019_bib0042 article-title: Orthogonal-polynomials-based integral inequality and its applications to systems with additive time-varying delays publication-title: J. Frankl. Inst. doi: 10.1016/j.jfranklin.2017.11.011 contributor: fullname: Lee – volume: 58 start-page: 85 year: 2015 ident: 10.1016/j.neucom.2019.07.019_bib0020 article-title: Stability analysis of neutral type neural networks with mixed time-varying delays using triple-integral and delay-partitioning methods publication-title: ISA Trans. doi: 10.1016/j.isatra.2015.03.006 contributor: fullname: Shi – volume: 19 start-page: 1647 issue: 9 year: 2008 ident: 10.1016/j.neucom.2019.07.019_bib0007 article-title: Delay-dependent stability for recurrent neural networks with time-varying delays publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2008.2001265 contributor: fullname: Shao – volume: 239 start-page: 346 year: 2014 ident: 10.1016/j.neucom.2019.07.019_bib0010 article-title: New and improved results on stability of static neural networks with interval time-varying delays publication-title: Appl. Math. Comput. contributor: fullname: Kwon – volume: 7 start-page: 354 issue: 3 year: 2013 ident: 10.1016/j.neucom.2019.07.019_bib0015 article-title: Delay-dependent stability analysis for neural networks with additive time-varying delay components publication-title: IET Control Theory Appl. doi: 10.1049/iet-cta.2012.0585 contributor: fullname: Zhu – volume: 22 start-page: 2138 issue: 12 year: 2011 ident: 10.1016/j.neucom.2019.07.019_bib0025 article-title: Delay-slope-dependent stability results of recurrent neural networks publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2011.2169425 contributor: fullname: Li – volume: 332 start-page: 1 year: 2019 ident: 10.1016/j.neucom.2019.07.019_bib0038 article-title: Stability analysis of neural networks with time-varying delay using a new augmented Lyapunov–Krasovskii functional publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.08.044 contributor: fullname: Hua – volume: 313 start-page: 392 year: 2018 ident: 10.1016/j.neucom.2019.07.019_bib0005 article-title: An overview of recent developments in Lyapunov–Krasovskii functionals and stability criteria for recurrent neural networks with time-varying delays publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.06.038 contributor: fullname: Zhang – volume: 64 start-page: 121 year: 2016 ident: 10.1016/j.neucom.2019.07.019_bib0043 article-title: Further improvement of Jensen inequality and application to stability of time-delayed systems publication-title: Automatica doi: 10.1016/j.automatica.2015.08.025 contributor: fullname: Kim – volume: 27 start-page: 1486 issue: 7 year: 2016 ident: 10.1016/j.neucom.2019.07.019_bib0032 article-title: Stability analysis for delayed neural networks considering both conservativeness and complexity publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2015.2449898 contributor: fullname: Zhang – volume: 80 start-page: 35 year: 2018 ident: 10.1016/j.neucom.2019.07.019_bib0036 article-title: Improved delay-dependent stability result for neural networks with time-varying delays publication-title: ISA Trans. doi: 10.1016/j.isatra.2018.05.016 contributor: fullname: Shao – volume: 54 start-page: 57 year: 2014 ident: 10.1016/j.neucom.2019.07.019_bib0045 article-title: Global asymptotic stability analysis for delayed neural networks using a matrix-based quadratic convex approach publication-title: Neural Netw. doi: 10.1016/j.neunet.2014.02.012 contributor: fullname: Zhang – volume: 24 start-page: 1459 issue: 9 year: 2013 ident: 10.1016/j.neucom.2019.07.019_bib0044 article-title: Combined convex technique on delay-dependent stability for delayed neural networks publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2013.2256796 contributor: fullname: Li – volume: 88 start-page: 49 year: 2017 ident: 10.1016/j.neucom.2019.07.019_bib0048 article-title: Stability analysis of delayed neural networks via a new integral inequality publication-title: Neural Netw. doi: 10.1016/j.neunet.2017.01.008 contributor: fullname: Yang – volume: 27 start-page: 77 issue: 1 year: 2016 ident: 10.1016/j.neucom.2019.07.019_bib0004 article-title: Event-triggered generalized dissipativity filtering for neural networks with time-varying delays publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2015.2411734 contributor: fullname: Wang – volume: 87 start-page: 149 year: 2017 ident: 10.1016/j.neucom.2019.07.019_bib0023 article-title: Global exponential stability and dissipativity of generalized neural networks with time-varying delay signals publication-title: Neural Netw. doi: 10.1016/j.neunet.2016.12.005 contributor: fullname: Manivannan – volume: 155 start-page: 146 year: 2015 ident: 10.1016/j.neucom.2019.07.019_bib0019 article-title: Less conservative stability criteria for neural networks with interval time-varying delay based on delay-partitioning approach publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.12.038 contributor: fullname: Wang – volume: 314 start-page: 322 issue: Supplement C year: 2017 ident: 10.1016/j.neucom.2019.07.019_bib0046 article-title: New criteria of stability analysis for generalized neural networks subject to time-varying delayed signals publication-title: Appl. Math. Comput. contributor: fullname: Wang – year: 2002 ident: 10.1016/j.neucom.2019.07.019_bib0002 contributor: fullname: Michel – volume: 149 start-page: 1544 issue: Part C year: 2015 ident: 10.1016/j.neucom.2019.07.019_bib0028 article-title: New approach to stability criteria for generalized neural networks with interval time-varying delays publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.08.038 contributor: fullname: Liu – volume: 3 start-page: 2805 year: 2000 ident: 10.1016/j.neucom.2019.07.019_bib0041 article-title: An integral inequality in the stability problem of time-delay systems contributor: fullname: Gu – volume: 214 start-page: 53 year: 2016 ident: 10.1016/j.neucom.2019.07.019_bib0012 article-title: Stability criterion for delayed neural networks via Wirtinger-based multiple integral inequality publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.04.058 contributor: fullname: Ding – volume: 346 start-page: 30 year: 2019 ident: 10.1016/j.neucom.2019.07.019_bib0006 article-title: Further results on sampled-data synchronization control for chaotic neural networks with actuator saturation publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.08.090 contributor: fullname: Lian – volume: 47 start-page: 235 issue: 1 year: 2011 ident: 10.1016/j.neucom.2019.07.019_bib0033 article-title: Reciprocally convex approach to stability of systems with time-varying delays publication-title: Automatica doi: 10.1016/j.automatica.2010.10.014 contributor: fullname: Park – volume: 29 start-page: 637 issue: 4 year: 2010 ident: 10.1016/j.neucom.2019.07.019_bib0008 article-title: Novel delay-dependent stability results for neural networks with time-varying delays publication-title: Circuits Syst. Signal Process. doi: 10.1007/s00034-010-9164-x contributor: fullname: Shao – ident: 10.1016/j.neucom.2019.07.019_bib0034 – volume: 294 start-page: 102 issue: Supplement C year: 2017 ident: 10.1016/j.neucom.2019.07.019_bib0017 article-title: Delay-dependent stability analysis of neural networks with time-varying delay: a generalized free-weighting-matrix approach publication-title: Appl. Math. Comput. contributor: fullname: Zhang – volume: 48 start-page: 1660 issue: 5 year: 2018 ident: 10.1016/j.neucom.2019.07.019_bib0030 article-title: Hierarchical type stability criteria for delayed neural networks via canonical Bessel-Legendre inequalities publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2017.2776283 contributor: fullname: Zhang – volume: 29 start-page: 1376 issue: 4 year: 2018 ident: 10.1016/j.neucom.2019.07.019_bib0040 article-title: State estimation for static neural networks with time-varying delays based on an improved reciprocally convex inequality publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2017.2661862 contributor: fullname: Zhang – volume: 47 start-page: 3184 issue: 10 year: 2017 ident: 10.1016/j.neucom.2019.07.019_bib0039 article-title: Neuronal state estimation for neural networks with two additive time-varying delay components publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2017.2690676 contributor: fullname: Zhang – volume: 103 start-page: 114 year: 2013 ident: 10.1016/j.neucom.2019.07.019_bib0016 article-title: Analysis on delay-dependent stability for neural networks with time-varying delays publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.09.012 contributor: fullname: Kwon – volume: 26 start-page: 1480 issue: 7 year: 2015 ident: 10.1016/j.neucom.2019.07.019_bib0022 article-title: Stability analysis of distributed delay neural networks based on relaxed Lyapunov–Krasovskii functionals publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2014.2347290 contributor: fullname: Zhang – volume: 355 start-page: 6531 issue: 14 year: 2018 ident: 10.1016/j.neucom.2019.07.019_bib0037 article-title: Enhanced stability criteria of neural networks with time-varying delays via a generalized free-weighting matrix integral inequality publication-title: J. Frankl. Inst. doi: 10.1016/j.jfranklin.2018.06.023 contributor: fullname: Park – volume: 161 start-page: 148 issue: Supplement C year: 2015 ident: 10.1016/j.neucom.2019.07.019_bib0047 article-title: Stability analysis of generalized neural networks with time-varying delays via a new integral inequality publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.02.055 contributor: fullname: Zeng – volume: 22 start-page: 812 issue: 5 year: 2011 ident: 10.1016/j.neucom.2019.07.019_bib0014 article-title: New delay-dependent stability criteria for neural networks with two additive time-varying delay components publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2011.2114366 contributor: fullname: Shao – volume: 191 start-page: 380 year: 2016 ident: 10.1016/j.neucom.2019.07.019_bib0021 article-title: Delay-partitioning approach to stability analysis of generalized neural networks with time-varying delay via new integral inequality publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.01.041 contributor: fullname: Chen – volume: 55 start-page: 1071 issue: 10 year: 2008 ident: 10.1016/j.neucom.2019.07.019_bib0031 article-title: Improved delay-dependent globally asymptotic stability criteria for neural networks with a constant delay publication-title: IEEE Trans. Circuits Syst. II Express Briefs doi: 10.1109/TCSII.2008.2001981 contributor: fullname: Shao – volume: 29 start-page: 5319 issue: 11 year: 2018 ident: 10.1016/j.neucom.2019.07.019_bib0035 article-title: Admissible delay upper bounds for global asymptotic stability of neural networks with time-varying delays publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2018.2797279 contributor: fullname: Zhang – volume: 55 start-page: 591 issue: 6 year: 2008 ident: 10.1016/j.neucom.2019.07.019_bib0024 article-title: Delay-dependent approaches to globally exponential stability for recurrent neural networks publication-title: IEEE Trans. Circuits Syst. II Express Briefs doi: 10.1109/TCSII.2007.916727 contributor: fullname: Shao – volume: 35 start-page: 1273 issue: 10 year: 1988 ident: 10.1016/j.neucom.2019.07.019_bib0001 article-title: Cellular neural networks: applications publication-title: IEEE Trans. Circuits Syst. doi: 10.1109/31.7601 contributor: fullname: Chua – volume: 17 start-page: 1447 issue: 3 year: 2012 ident: 10.1016/j.neucom.2019.07.019_bib0026 article-title: On exponential stability analysis for neural networks with time-varying delays and general activation functions publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2011.08.016 contributor: fullname: Wang – volume: 22 start-page: 1021 issue: 7 year: 2011 ident: 10.1016/j.neucom.2019.07.019_bib0003 article-title: Selectable and unselectable sets of neurons in recurrent neural networks with saturated piecewise linear transfer function publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2011.2132762 contributor: fullname: Zhang – volume: 25 start-page: 1378 issue: 7 year: 2014 ident: 10.1016/j.neucom.2019.07.019_bib0018 article-title: New delay-dependent stability criteria for neural networks with time-varying delay using delay-decomposition approach publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2013.2285564 contributor: fullname: Ge – volume: 73 start-page: 1528 issue: 7 year: 2010 ident: 10.1016/j.neucom.2019.07.019_bib0013 article-title: Less conservative delay-dependent stability criteria for neural networks with time-varying delays publication-title: Neurocomputing doi: 10.1016/j.neucom.2010.01.006 contributor: fullname: Shao – volume: 138 start-page: 383 year: 2014 ident: 10.1016/j.neucom.2019.07.019_bib0027 article-title: Novel stability criteria for recurrent neural networks with time-varying delay publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.01.024 contributor: fullname: Ji |
SSID | ssj0017129 |
Score | 2.4595134 |
Snippet | This paper is concerned with a new Lyapunov–Krasovskii functional (LKF) approach to delay-dependent stability for generalized neural networks with time-varying... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 308 |
SubjectTerms | Asymptotic stability Integral inequality Lyapunov–Krasovskii functional Neural networks |
Title | Further improved stability results for generalized neural networks with time-varying delays |
URI | https://dx.doi.org/10.1016/j.neucom.2019.07.019 |
Volume | 367 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PS8MwFA5zXrz4W_xNDt4ksiatbY9DN6aIFycMPZR0ScWhncxNmH-97yVpV5mICl66EegWko-vX17f-x4hR4ABmUZZyvqx5MyHow6LAu6zAJ6usQBWlqYWpnMTXvei85bfqtXKU3859q87DWOw11g5-4vdLn8UBuA77DlcYdfh-qN9b09GqOmw_HE0fAM5CfLPJMBOj-FkPXkaGwMG7JyM0ajHd3z9r433Rm4zwl29GzadZ29yZMqg0Epy-loVssbUo29aQrhgQ_MZPRcUAqwMLsDKGCq5G-YP0-IhaQwhpQnRdoCKhvPDV84O3EUjvBjL8nhjFiKbK5OxsUYeMBCSlna1Zdoo5KaGvUrFwrbmcGQqGlHluSwsT89Rvo0-DE5grTD_Bydl7FgdE382077BqeBMQLeCuESv9kUOFAUMudi8aPUuyzdQocetT6ObelF2aXID5__ra1lTkSrdVbLszhi0acGxRmo6XycrRf8O6uh8g9w7rNACK7TECnVYoYAVWsEKtVihBVYoYoVWsUItVjbJbbvVPesw12yD9eHUOGbay8SpyrgOJVpkiijVSmS-0F6AJoqgOpUIMw16vqGk4ml8GqM5nu6HAQpJKbZIPR_meptQlKx-lPqYHuh7MohF6nkqhaNJpjTP5A5hxVolL9ZTJSmSDQeJXdsE1zZphAl87JCwWNDE6UKr9xLAwLd37v75zj2yNIP3PqmPRxN9QBZe1eTQIeUDKyuJrw |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Further+improved+stability+results+for+generalized+neural+networks+with+time-varying+delays&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Feng%2C+Zongying&rft.au=Shao%2C+Hanyong&rft.au=Shao%2C+Lin&rft.date=2019-11-20&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=367&rft.spage=308&rft.epage=318&rft_id=info:doi/10.1016%2Fj.neucom.2019.07.019&rft.externalDocID=S0925231219309506 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |