Constructive approach to the monotone rearrangement of functions
We detail a simple procedure (easily convertible to an algorithm) for constructing, from quasi-uniform samples of f, a sequence of linear spline functions converging to the monotone rearrangement of f, in the case where f is an almost everywhere continuous function defined on a bounded set Ω with ne...
Saved in:
Published in: | Expositiones mathematicae Vol. 40; no. 1; pp. 155 - 175 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier GmbH
01-03-2022
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We detail a simple procedure (easily convertible to an algorithm) for constructing, from quasi-uniform samples of f, a sequence of linear spline functions converging to the monotone rearrangement of f, in the case where f is an almost everywhere continuous function defined on a bounded set Ω with negligible boundary. Under additional assumptions on f and Ω, we prove that the convergence of the sequence is uniform. We also show that the same procedure applies to arbitrary measurable functions too, but with the substantial difference that in this case the procedure has only a theoretical interest and cannot be converted to an algorithm. |
---|---|
ISSN: | 0723-0869 1878-0792 |
DOI: | 10.1016/j.exmath.2021.10.004 |