Thermal vapor condensation of uniform graphitic carbon nitride films with remarkable photocurrent density for photoelectrochemical applications

Graphitic carbon nitride (g-CN) is a promising material for photoelectrochemical (PEC) H2 generation due to its appropriate band gap, low cost and nontoxicity. However, current techniques, including drop casting and spin coating, fail to deposit uniform g-CN films on solid substrates. In this work,...

Full description

Saved in:
Bibliographic Details
Published in:Nano energy Vol. 15; pp. 353 - 361
Main Authors: Bian, Juncao, Li, Qian, Huang, Chao, Li, Jianfu, Guo, Yao, Zaw, Myowin, Zhang, Rui-Qin
Format: Journal Article
Language:English
Published: Elsevier Ltd 01-07-2015
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Graphitic carbon nitride (g-CN) is a promising material for photoelectrochemical (PEC) H2 generation due to its appropriate band gap, low cost and nontoxicity. However, current techniques, including drop casting and spin coating, fail to deposit uniform g-CN films on solid substrates. In this work, we report on a thermal vapor condensation method of depositing uniform g-CN films on various substrates using melamine as precursor. Surface morphology and film thickness of the g-CN film can be effectively tuned by changing the substrate and precursor mass, respectively. The g-CN film shows photocurrent density as high as 0.12mAcm−2, the highest to date for g-CN based photoanode, at the bias of 1.55V versus reversible hydrogen electrode with Na2S as the sacrificial reagent. The improved photoresponse of the g-CN film results from intimate contact between the film and the substrate, enhanced light absorption, decreased charge transport and charge transfer resistance with the increase of the process temperature. The success enables the g-CN films being effectively applied in multiple electronic and photoelectronic devices. In this work, we report a thermal vapor condensation method of depositing uniform graphitic carbon nitride (g-CN) films on various substrates using melamine as precursor. The optimal photocurrent density of the g-CN film is 0.12mAcm−2 at the bias of 1.55V versus reversible hydrogen electrode with Na2S as sacrificial reagent. The improved photoresponse of the g-CN film results from intimate contact between the film and the substrate, enhanced light absorption, decreased charge transport and charge transfer resistance with the increase of the process temperature. [Display omitted] •Uniform graphitic carbon nitride films are deposited by thermal vapor condensation.•Surface morphology and film thickness can be flexibly tuned.•The optimal photocurrent density of the g-CN film is as high as 0.12mA/cm2 at 1.55Vvs RHE with Na2S.
AbstractList Graphitic carbon nitride (g-CN) is a promising material for photoelectrochemical (PEC) H2 generation due to its appropriate band gap, low cost and nontoxicity. However, current techniques, including drop casting and spin coating, fail to deposit uniform g-CN films on solid substrates. In this work, we report on a thermal vapor condensation method of depositing uniform g-CN films on various substrates using melamine as precursor. Surface morphology and film thickness of the g-CN film can be effectively tuned by changing the substrate and precursor mass, respectively. The g-CN film shows photocurrent density as high as 0.12mAcm−2, the highest to date for g-CN based photoanode, at the bias of 1.55V versus reversible hydrogen electrode with Na2S as the sacrificial reagent. The improved photoresponse of the g-CN film results from intimate contact between the film and the substrate, enhanced light absorption, decreased charge transport and charge transfer resistance with the increase of the process temperature. The success enables the g-CN films being effectively applied in multiple electronic and photoelectronic devices. In this work, we report a thermal vapor condensation method of depositing uniform graphitic carbon nitride (g-CN) films on various substrates using melamine as precursor. The optimal photocurrent density of the g-CN film is 0.12mAcm−2 at the bias of 1.55V versus reversible hydrogen electrode with Na2S as sacrificial reagent. The improved photoresponse of the g-CN film results from intimate contact between the film and the substrate, enhanced light absorption, decreased charge transport and charge transfer resistance with the increase of the process temperature. [Display omitted] •Uniform graphitic carbon nitride films are deposited by thermal vapor condensation.•Surface morphology and film thickness can be flexibly tuned.•The optimal photocurrent density of the g-CN film is as high as 0.12mA/cm2 at 1.55Vvs RHE with Na2S.
Author Li, Qian
Guo, Yao
Huang, Chao
Li, Jianfu
Zaw, Myowin
Bian, Juncao
Zhang, Rui-Qin
Author_xml – sequence: 1
  givenname: Juncao
  surname: Bian
  fullname: Bian, Juncao
  organization: Department of Physics and Materials Science and Centre for Functional Photonics (CFP), City University of Hong Kong, Hong Kong, China
– sequence: 2
  givenname: Qian
  surname: Li
  fullname: Li, Qian
  organization: Department of Physics, The Chinese University of Hong Kong, Hong Kong, China
– sequence: 3
  givenname: Chao
  surname: Huang
  fullname: Huang, Chao
  organization: Department of Physics and Materials Science and Centre for Functional Photonics (CFP), City University of Hong Kong, Hong Kong, China
– sequence: 4
  givenname: Jianfu
  surname: Li
  fullname: Li, Jianfu
  organization: Department of Physics and Materials Science and Centre for Functional Photonics (CFP), City University of Hong Kong, Hong Kong, China
– sequence: 5
  givenname: Yao
  surname: Guo
  fullname: Guo, Yao
  organization: Department of Physics and Materials Science and Centre for Functional Photonics (CFP), City University of Hong Kong, Hong Kong, China
– sequence: 6
  givenname: Myowin
  surname: Zaw
  fullname: Zaw, Myowin
  organization: Department of Physics and Materials Science and Centre for Functional Photonics (CFP), City University of Hong Kong, Hong Kong, China
– sequence: 7
  givenname: Rui-Qin
  surname: Zhang
  fullname: Zhang, Rui-Qin
  email: aprqz@cityu.edu.hk
  organization: Department of Physics and Materials Science and Centre for Functional Photonics (CFP), City University of Hong Kong, Hong Kong, China
BookMark eNp9kE1OwzAQhb0oEqX0Bix8gQbbSdxkg4Qq_qRKbMracpwxcUnsyHaLegqujKOwZjYz0tN7M_PdoIV1FhC6oySjhPL7Y2aldWAzRmiZkSIjlC3QkjFKN6wqy2u0DuFIUvGSbilbop9DB36QPT7L0XmsnG3BBhmNs9hpfLJGOz_gTy_HzkSjsJK-SZo10ZsWsDb9EPC3iR32MEj_JZse8Ni56NTJe7ART4EmXnAKmgXoQUXvVAeDUWm1HMc-DdPOcIuutOwDrP_6Cn08Px12r5v9-8vb7nG_UTnhcdNoDVRCDRWvtjUURZogZwRoJRlRRdmQXPG25g3nqq2VSi9DLnmhK07qvMlXqJhzlXcheNBi9CbdfxGUiImlOIqZpZhYClKIxDLZHmYbpNvOBrwIyoBV0BqfnhKtM_8H_ALAXYhe
CitedBy_id crossref_primary_10_1021_acs_jpcc_1c06864
crossref_primary_10_1016_j_scitotenv_2024_170357
crossref_primary_10_1016_j_ijhydene_2024_05_277
crossref_primary_10_1021_acsami_6b02853
crossref_primary_10_1007_s43673_024_00123_9
crossref_primary_10_1016_j_ccr_2021_214338
crossref_primary_10_1016_j_apcatb_2018_06_046
crossref_primary_10_1038_nmat4693
crossref_primary_10_1039_D2CY00849A
crossref_primary_10_1016_j_ijhydene_2019_08_114
crossref_primary_10_1016_j_nanoen_2017_01_018
crossref_primary_10_1016_j_ijhydene_2020_04_110
crossref_primary_10_1016_j_jcis_2021_07_052
crossref_primary_10_1021_acsami_7b06637
crossref_primary_10_1063_5_0202516
crossref_primary_10_1002_smll_202208049
crossref_primary_10_1039_D0SE00752H
crossref_primary_10_1039_C6RA16300A
crossref_primary_10_1039_C6RA16699G
crossref_primary_10_1002_ange_202204407
crossref_primary_10_1016_j_ijhydene_2021_11_133
crossref_primary_10_1002_cssc_202401041
crossref_primary_10_1039_C5CS00767D
crossref_primary_10_1021_acs_jpcc_1c10561
crossref_primary_10_1021_acsami_2c18694
crossref_primary_10_1016_j_jece_2022_108189
crossref_primary_10_2139_ssrn_4172704
crossref_primary_10_1016_j_jallcom_2024_175053
crossref_primary_10_1039_C8NJ06509H
crossref_primary_10_1002_ente_201800280
crossref_primary_10_1016_j_ijhydene_2021_03_126
crossref_primary_10_1007_s40843_022_2202_3
crossref_primary_10_1002_chem_201803201
crossref_primary_10_35848_1347_4065_aba7d6
crossref_primary_10_1038_srep35304
crossref_primary_10_1088_1361_6463_ac8e15
crossref_primary_10_1002_cptc_201800256
crossref_primary_10_1002_ange_201810225
crossref_primary_10_1149_2162_8777_ac040b
crossref_primary_10_1016_j_apsusc_2021_150103
crossref_primary_10_1016_j_apsusc_2022_155838
crossref_primary_10_1016_j_apsusc_2016_08_038
crossref_primary_10_1021_acssuschemeng_8b05780
crossref_primary_10_1002_admi_202200313
crossref_primary_10_1039_D0TA04593D
crossref_primary_10_1016_j_mtcata_2023_100003
crossref_primary_10_1039_D3YA00506B
crossref_primary_10_1016_j_apcatb_2019_117855
crossref_primary_10_1002_admi_201802085
crossref_primary_10_1002_ange_201911822
crossref_primary_10_1021_acsami_8b21670
crossref_primary_10_1021_acs_chemmater_0c01798
crossref_primary_10_1021_acs_jpclett_9b01248
crossref_primary_10_1039_D1SE00670C
crossref_primary_10_3389_fnano_2021_684788
crossref_primary_10_1016_j_carbon_2018_05_035
crossref_primary_10_1002_admi_201600265
crossref_primary_10_1039_C8CY02105H
crossref_primary_10_1039_C9TA02880C
crossref_primary_10_1039_C7NR09244J
crossref_primary_10_1021_acs_jpcc_7b04071
crossref_primary_10_1002_ente_201700138
crossref_primary_10_1016_j_cis_2020_102229
crossref_primary_10_1016_j_apsusc_2016_11_143
crossref_primary_10_1021_acsami_7b00433
crossref_primary_10_1016_j_progpolymsci_2023_101734
crossref_primary_10_1039_C8TA08001A
crossref_primary_10_1016_j_jphotochem_2019_111859
crossref_primary_10_1016_j_surfin_2021_101092
crossref_primary_10_2139_ssrn_4145392
crossref_primary_10_1007_s00339_022_06220_6
crossref_primary_10_1016_j_apcatb_2022_122170
crossref_primary_10_1039_C5TA06838J
crossref_primary_10_1002_smll_202401123
crossref_primary_10_1016_j_ijhydene_2021_04_147
crossref_primary_10_1039_C7CS00840F
crossref_primary_10_1039_D2TC02533G
crossref_primary_10_1002_sstr_202400123
crossref_primary_10_1002_adfm_202102540
crossref_primary_10_1039_D1NA00041A
crossref_primary_10_1002_adfm_201702695
crossref_primary_10_1039_C9MH01497G
crossref_primary_10_1016_j_jallcom_2018_08_180
crossref_primary_10_1016_j_mtla_2023_101724
crossref_primary_10_1007_s42114_022_00505_3
crossref_primary_10_1016_j_apsusc_2018_04_172
crossref_primary_10_1039_D0TA07345H
crossref_primary_10_1680_jsuin_22_00048
crossref_primary_10_1002_aenm_201700886
crossref_primary_10_1016_j_cej_2022_135684
crossref_primary_10_1142_S1793604720510066
crossref_primary_10_1002_adfm_202305106
crossref_primary_10_1016_j_jmat_2021_01_004
crossref_primary_10_1021_acs_chemrev_1c00971
crossref_primary_10_1016_j_jallcom_2020_157298
crossref_primary_10_1002_anie_202211587
crossref_primary_10_1021_acsami_3c09284
crossref_primary_10_1016_j_apcatb_2022_121065
crossref_primary_10_1021_acsami_2c20874
crossref_primary_10_1016_j_jcis_2016_10_077
crossref_primary_10_1002_cey2_225
crossref_primary_10_1021_acsami_9b08263
crossref_primary_10_1088_1361_6463_ab420b
crossref_primary_10_1007_s00214_019_2525_z
crossref_primary_10_1016_j_jallcom_2019_153064
crossref_primary_10_1002_slct_202203688
crossref_primary_10_1002_smtd_202300418
crossref_primary_10_3390_nano12142374
crossref_primary_10_1039_C7TA06081E
crossref_primary_10_1016_j_apsusc_2020_145535
crossref_primary_10_1246_cl_210432
crossref_primary_10_1016_j_cej_2022_137645
crossref_primary_10_1002_ange_202211587
crossref_primary_10_3389_fmats_2019_00052
crossref_primary_10_1016_j_jphotochem_2024_115463
crossref_primary_10_2139_ssrn_4110646
crossref_primary_10_1002_anie_201911822
crossref_primary_10_1016_j_jechem_2023_02_008
crossref_primary_10_1038_s41467_021_23367_7
crossref_primary_10_1016_j_matlet_2023_135783
crossref_primary_10_1016_j_chemosphere_2023_141014
crossref_primary_10_1002_cctc_202101299
crossref_primary_10_1002_cplu_202300650
crossref_primary_10_1002_smll_202303602
crossref_primary_10_1016_j_renene_2021_03_121
crossref_primary_10_1016_j_jece_2019_103456
crossref_primary_10_1002_slct_202200876
crossref_primary_10_1021_acssuschemeng_7b03760
crossref_primary_10_1039_D0TA06550A
crossref_primary_10_1002_anie_201806514
crossref_primary_10_1016_j_ijhydene_2019_02_100
crossref_primary_10_1021_acs_chemrev_7b00689
crossref_primary_10_1002_admi_201800859
crossref_primary_10_1002_adma_201800128
crossref_primary_10_1002_aesr_202000073
crossref_primary_10_1002_smll_202200510
crossref_primary_10_1016_j_jallcom_2022_168342
crossref_primary_10_3390_catal12111399
crossref_primary_10_1039_C9SE00785G
crossref_primary_10_1002_adfm_201603021
crossref_primary_10_1016_j_jallcom_2020_154307
crossref_primary_10_1016_j_molliq_2022_119947
crossref_primary_10_1002_asia_201600857
crossref_primary_10_1016_j_jcis_2021_05_145
crossref_primary_10_1002_cssc_201600863
crossref_primary_10_1002_cssc_201801295
crossref_primary_10_1021_acsnano_0c06116
crossref_primary_10_1021_acsami_0c15159
crossref_primary_10_1039_D3SE00780D
crossref_primary_10_1039_D0NR06139E
crossref_primary_10_3390_ma13010114
crossref_primary_10_1016_j_cplett_2018_07_038
crossref_primary_10_1002_anie_201810225
crossref_primary_10_1016_j_jhazmat_2017_10_006
crossref_primary_10_1021_accountsmr_1c00148
crossref_primary_10_1016_j_carbon_2017_02_096
crossref_primary_10_1021_acs_nanolett_5b04496
crossref_primary_10_1002_adsu_202100005
crossref_primary_10_1016_j_nanoen_2017_12_024
crossref_primary_10_1038_s41467_020_18535_0
crossref_primary_10_3390_nano10091831
crossref_primary_10_1002_asia_201800487
crossref_primary_10_1016_j_cej_2023_148445
crossref_primary_10_1021_acsami_6b09699
crossref_primary_10_1088_1757_899X_499_1_012003
crossref_primary_10_1016_j_mtchem_2021_100770
crossref_primary_10_1002_cssc_202400948
crossref_primary_10_1016_j_bios_2023_115400
crossref_primary_10_1016_j_jhazmat_2018_12_115
crossref_primary_10_1021_acs_nanolett_8b02740
crossref_primary_10_1016_j_jallcom_2019_152916
crossref_primary_10_3390_catal13050814
crossref_primary_10_1002_tcr_202100067
crossref_primary_10_1016_j_susmat_2018_e00089
crossref_primary_10_1111_jace_17484
crossref_primary_10_1016_j_chemosphere_2023_140634
crossref_primary_10_1021_acs_chemmater_0c01856
crossref_primary_10_1007_s40820_017_0148_2
crossref_primary_10_1002_anie_202204407
crossref_primary_10_1021_acs_chemrev_6b00075
crossref_primary_10_1002_cssc_202100313
crossref_primary_10_1002_cey2_48
crossref_primary_10_1039_C8CY02318B
crossref_primary_10_1016_j_matt_2021_02_014
crossref_primary_10_1039_C5RA21228F
crossref_primary_10_1021_acs_jpcc_8b04257
crossref_primary_10_1002_ange_201703372
crossref_primary_10_1002_adma_201908140
crossref_primary_10_1002_ange_201711669
crossref_primary_10_1016_j_cattod_2019_02_022
crossref_primary_10_1002_adom_202202737
crossref_primary_10_1002_ange_201806514
crossref_primary_10_1016_j_jssc_2020_121187
crossref_primary_10_1002_asia_201700178
crossref_primary_10_1016_j_ccr_2024_215879
crossref_primary_10_1016_j_matchemphys_2023_127626
crossref_primary_10_1002_aenm_201600263
crossref_primary_10_1002_anie_201703372
crossref_primary_10_1016_j_apcatb_2018_05_084
crossref_primary_10_1016_j_apcatb_2019_117771
crossref_primary_10_1016_j_nanoen_2020_104648
crossref_primary_10_1016_j_joule_2017_11_010
crossref_primary_10_1021_acs_chemrev_1c00686
crossref_primary_10_1039_D0TA01772H
crossref_primary_10_1016_j_susmat_2020_e00209
crossref_primary_10_1002_anie_201711669
crossref_primary_10_1016_j_apcatb_2019_118180
crossref_primary_10_1016_j_ijhydene_2019_04_140
Cites_doi 10.1016/j.nanoen.2013.06.016
10.1021/la900923z
10.1039/b800274f
10.1002/anie.200903886
10.1021/ja308249k
10.1002/anie.201309415
10.1002/adma.201404543
10.1021/nn300679d
10.1021/am4059183
10.1002/cssc.201100691
10.1038/35104607
10.1021/cr1002326
10.1002/aenm.201300171
10.1021/ja508329c
10.1016/j.apcatb.2013.05.077
10.1016/j.apcatb.2012.01.021
10.1039/c2jm32053c
10.1038/ncomms2729
10.1021/la904023j
10.1039/C0EE00418A
10.1038/nmat2317
10.1021/am401802r
10.1002/anie.201106656
10.1002/cssc.201000014
10.1021/ja071789h
10.1016/j.apcatb.2013.06.026
10.1021/cm901762h
10.1002/cphc.201402898
ContentType Journal Article
Copyright 2015 Elsevier Ltd
Copyright_xml – notice: 2015 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.nanoen.2015.04.012
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Film
EndPage 361
ExternalDocumentID 10_1016_j_nanoen_2015_04_012
S2211285515001792
GroupedDBID --K
--M
.~1
0R~
1~.
1~5
4.4
457
4G.
5VS
7-5
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FNPLU
FYGXN
GBLVA
HZ~
JARJE
KOM
M41
MAGPM
MO0
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
RIG
ROL
SDF
SPC
SPCBC
SSM
SSR
SSZ
T5K
~G-
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
ID FETCH-LOGICAL-c306t-bffe1ae9e86879e449e8e320e18a20c45b03c6d96b66cd9cc000e3a64f86093b3
ISSN 2211-2855
IngestDate Thu Sep 26 17:02:03 EDT 2024
Fri Feb 23 02:46:09 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Photoanode
Film
Thermal vapor condensation
Graphitic carbon nitride
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-bffe1ae9e86879e449e8e320e18a20c45b03c6d96b66cd9cc000e3a64f86093b3
PageCount 9
ParticipantIDs crossref_primary_10_1016_j_nanoen_2015_04_012
elsevier_sciencedirect_doi_10_1016_j_nanoen_2015_04_012
PublicationCentury 2000
PublicationDate July 2015
2015-07-00
PublicationDateYYYYMMDD 2015-07-01
PublicationDate_xml – month: 07
  year: 2015
  text: July 2015
PublicationDecade 2010
PublicationTitle Nano energy
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Cheng, Tian, Liu, Ge, Qusti, Asiri, Al-Youbi, Sun (bib14) 2013; 5
Liu, Wang, Chen, Moehwald, Fiechter, van de Krol, Wen, Jiang, Antonietti (bib24) 2015; 27
Xu, Herraiz-Cardona, Yang, Gimenez, Antonietti, Shalom (bib23) 2015
Bian, Li, Kalytchuk, Wang, Li, Lau, Niehaus, Rogach, Zhang (bib25) 2015; 16
Ye, Liu, Jiang, Peng, Zan (bib12) 2013; 142–143
Guo, Dong, Yang, Li (bib31) 2013; 3
Zhang, Antonietti (bib28) 2010; 5
Zhang, Chen, Takanabe, Maeda, Domen, Epping, Fu, Antonietti, Wang (bib16) 2010; 49
Zhang, Du, Schneider, Jarosz, Eisenberg (bib8) 2007; 129
Sridharan, Jang, Park (bib13) 2013; 142–143
Lee, Chi, Liau (bib7) 2010; 22
Hong, Xia, Wang, Xu (bib11) 2012; 22
Yan, Li, Zou (bib27) 2009; 25
Zhang, Xie, Wang, Zhang, Pan, Xie (bib17) 2013; 135
Xu, Shalom, Piersimoni, Antonietti, Neher, Brenner (bib22) 2015
Thomas, Fischer, Goettmann, Antonietti, Müller, Schlögl, Carlsson (bib26) 2008; 18
Hwang, Hahn, Liu, Yang (bib4) 2012
Yang, Lublow, Orthmann, Merschjann, Tyborski, Rusu, Kubala, Thomas, Arrigo, Havecker, Schedel-Niedrig (bib30) 2012; 5
Cho, Lee, Feng, Logar, Rao, Cai, Kim, Sinclair, Zheng (bib5) 2013; 4
Xu, Brenner, Chabanne, Neher, Antonietti, Shalom (bib21) 2014; 136
Yang, Guo, Liu, Yuan, Guo, Zhang, Guo, Huo (bib18) 2013; 142-143
Zhang, Sun, Maeda, Domen, Liu, Antonietti, Fu, Wang (bib29) 2011; 4
Walter, Warren, Mckone, Boettcher, Mi, Santori, Lewis (bib1) 2010; 110
Zhang, Zhang, Chen, Lin, Möhlmann, Dołęga, Lipner, Antonietti, Blechert, Wang (bib15) 2012; 51
Huang, Wang, Pan, Tian, Zhang, Zhang (bib32) 2013; 2
Gratzel (bib2) 2001; 414
Ge, Han (bib19) 2012; 117–118
Yan, Li, Zou (bib10) 2010; 26
Wang, Maeda, Thomas, Takanabe, Xin, Carlsson, Domen, Antonietti (bib9) 2009; 8
Bian, Huang, Wang, Hung, Daoud, Zhang (bib6) 2014; 6
Leung, Fu, Wang, Ni, Leung, Wang, Fu (bib3) 2010; 3
Shalom, Gimenez, Schipper, Herraiz-Cardona, Bisquert, Antonietti (bib20) 2014; 53
Hwang (10.1016/j.nanoen.2015.04.012_bib4) 2012
Liu (10.1016/j.nanoen.2015.04.012_bib24) 2015; 27
Yang (10.1016/j.nanoen.2015.04.012_bib18) 2013; 142-143
Xu (10.1016/j.nanoen.2015.04.012_bib22) 2015
Zhang (10.1016/j.nanoen.2015.04.012_bib16) 2010; 49
Lee (10.1016/j.nanoen.2015.04.012_bib7) 2010; 22
Hong (10.1016/j.nanoen.2015.04.012_bib11) 2012; 22
Walter (10.1016/j.nanoen.2015.04.012_bib1) 2010; 110
Zhang (10.1016/j.nanoen.2015.04.012_bib8) 2007; 129
Cheng (10.1016/j.nanoen.2015.04.012_bib14) 2013; 5
Zhang (10.1016/j.nanoen.2015.04.012_bib17) 2013; 135
Shalom (10.1016/j.nanoen.2015.04.012_bib20) 2014; 53
Bian (10.1016/j.nanoen.2015.04.012_bib25) 2015; 16
Thomas (10.1016/j.nanoen.2015.04.012_bib26) 2008; 18
Gratzel (10.1016/j.nanoen.2015.04.012_bib2) 2001; 414
Wang (10.1016/j.nanoen.2015.04.012_bib9) 2009; 8
Huang (10.1016/j.nanoen.2015.04.012_bib32) 2013; 2
Xu (10.1016/j.nanoen.2015.04.012_bib23) 2015
Ye (10.1016/j.nanoen.2015.04.012_bib12) 2013; 142–143
Yang (10.1016/j.nanoen.2015.04.012_bib30) 2012; 5
Leung (10.1016/j.nanoen.2015.04.012_bib3) 2010; 3
Yan (10.1016/j.nanoen.2015.04.012_bib10) 2010; 26
Zhang (10.1016/j.nanoen.2015.04.012_bib28) 2010; 5
Guo (10.1016/j.nanoen.2015.04.012_bib31) 2013; 3
Ge (10.1016/j.nanoen.2015.04.012_bib19) 2012; 117–118
Bian (10.1016/j.nanoen.2015.04.012_bib6) 2014; 6
Zhang (10.1016/j.nanoen.2015.04.012_bib29) 2011; 4
Sridharan (10.1016/j.nanoen.2015.04.012_bib13) 2013; 142–143
Zhang (10.1016/j.nanoen.2015.04.012_bib15) 2012; 51
Yan (10.1016/j.nanoen.2015.04.012_bib27) 2009; 25
Xu (10.1016/j.nanoen.2015.04.012_bib21) 2014; 136
Cho (10.1016/j.nanoen.2015.04.012_bib5) 2013; 4
References_xml – volume: 49
  start-page: 441
  year: 2010
  end-page: 444
  ident: bib16
  publication-title: Angew. Chem. Int. Ed.
  contributor:
    fullname: Wang
– volume: 135
  start-page: 18
  year: 2013
  end-page: 21
  ident: bib17
  publication-title: J. Am. Chem. Soc.
  contributor:
    fullname: Xie
– volume: 142–143
  start-page: 1
  year: 2013
  end-page: 7
  ident: bib12
  publication-title: Appl. Catal. B Environ.
  contributor:
    fullname: Zan
– volume: 4
  start-page: 675
  year: 2011
  end-page: 678
  ident: bib29
  publication-title: Energy Environ. Sci.
  contributor:
    fullname: Wang
– volume: 117–118
  start-page: 268
  year: 2012
  end-page: 274
  ident: bib19
  publication-title: Appl. Catal. B Environ.
  contributor:
    fullname: Han
– volume: 5
  start-page: 1307
  year: 2010
  end-page: 1311
  ident: bib28
  publication-title: Chem. Asian J.
  contributor:
    fullname: Antonietti
– volume: 136
  start-page: 13486
  year: 2014
  end-page: 13489
  ident: bib21
  publication-title: J. Am. Chem. Soc.
  contributor:
    fullname: Shalom
– volume: 3
  start-page: 997
  year: 2013
  end-page: 1003
  ident: bib31
  publication-title: Adv. Energy Mater.
  contributor:
    fullname: Li
– volume: 5
  start-page: 6815
  year: 2013
  end-page: 6819
  ident: bib14
  publication-title: ACS Appl. Mater. Interfaces
  contributor:
    fullname: Sun
– volume: 3
  start-page: 681
  year: 2010
  end-page: 694
  ident: bib3
  publication-title: ChemSusChem
  contributor:
    fullname: Fu
– volume: 6
  start-page: 4883
  year: 2014
  end-page: 4890
  ident: bib6
  publication-title: ACS Appl. Mater. Interfaces
  contributor:
    fullname: Zhang
– volume: 2
  start-page: 1337
  year: 2013
  end-page: 1346
  ident: bib32
  publication-title: Nano Energy
  contributor:
    fullname: Zhang
– volume: 51
  start-page: 3183
  year: 2012
  end-page: 3187
  ident: bib15
  publication-title: Angew. Chem. Int. Ed.
  contributor:
    fullname: Wang
– volume: 142-143
  start-page: 828
  year: 2013
  end-page: 837
  ident: bib18
  publication-title: Appl. Catal. B Environ.
  contributor:
    fullname: Huo
– volume: 25
  start-page: 10397
  year: 2009
  end-page: 10401
  ident: bib27
  publication-title: Langmuir
  contributor:
    fullname: Zou
– volume: 5
  start-page: 1227
  year: 2012
  end-page: 1232
  ident: bib30
  publication-title: ChemSusChem
  contributor:
    fullname: Schedel-Niedrig
– volume: 142–143
  start-page: 718
  year: 2013
  end-page: 728
  ident: bib13
  publication-title: Appl. Catal. B Environ.
  contributor:
    fullname: Park
– volume: 8
  start-page: 76
  year: 2009
  end-page: 80
  ident: bib9
  publication-title: Nat. Mater.
  contributor:
    fullname: Antonietti
– volume: 53
  start-page: 3654
  year: 2014
  end-page: 3659
  ident: bib20
  publication-title: Angew. Chem. Int. Ed.
  contributor:
    fullname: Antonietti
– volume: 16
  start-page: 954
  year: 2015
  end-page: 959
  ident: bib25
  publication-title: ChemPhysChem
  contributor:
    fullname: Zhang
– volume: 129
  start-page: 7726
  year: 2007
  end-page: 7727
  ident: bib8
  publication-title: J. Am. Chem. Soc.
  contributor:
    fullname: Eisenberg
– start-page: 5060
  year: 2012
  end-page: 5069
  ident: bib4
  publication-title: ACS Nano
  contributor:
    fullname: Yang
– volume: 110
  start-page: 6446
  year: 2010
  end-page: 6473
  ident: bib1
  publication-title: Chem. Rev.
  contributor:
    fullname: Lewis
– volume: 414
  start-page: 338
  year: 2001
  end-page: 344
  ident: bib2
  publication-title: Nature
  contributor:
    fullname: Gratzel
– volume: 27
  start-page: 712
  year: 2015
  end-page: 718
  ident: bib24
  publication-title: Adv. Mater.
  contributor:
    fullname: Antonietti
– volume: 18
  start-page: 4893
  year: 2008
  end-page: 4908
  ident: bib26
  publication-title: J. Mater. Chem.
  contributor:
    fullname: Carlsson
– volume: 22
  start-page: 922
  year: 2010
  end-page: 927
  ident: bib7
  publication-title: Chem. Mater.
  contributor:
    fullname: Liau
– year: 2015
  ident: bib23
  publication-title: Adv. Opt. Mater.
  contributor:
    fullname: Shalom
– year: 2015
  ident: bib22
  publication-title: Adv. Opt. Mater.
  contributor:
    fullname: Brenner
– volume: 4
  start-page: 1723
  year: 2013
  ident: bib5
  publication-title: Nat. Commun.
  contributor:
    fullname: Zheng
– volume: 22
  start-page: 15006
  year: 2012
  end-page: 15012
  ident: bib11
  publication-title: J. Mater. Chem.
  contributor:
    fullname: Xu
– volume: 26
  start-page: 3894
  year: 2010
  end-page: 3901
  ident: bib10
  publication-title: Langmuir
  contributor:
    fullname: Zou
– volume: 2
  start-page: 1337
  year: 2013
  ident: 10.1016/j.nanoen.2015.04.012_bib32
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2013.06.016
  contributor:
    fullname: Huang
– volume: 25
  start-page: 10397
  year: 2009
  ident: 10.1016/j.nanoen.2015.04.012_bib27
  publication-title: Langmuir
  doi: 10.1021/la900923z
  contributor:
    fullname: Yan
– volume: 18
  start-page: 4893
  year: 2008
  ident: 10.1016/j.nanoen.2015.04.012_bib26
  publication-title: J. Mater. Chem.
  doi: 10.1039/b800274f
  contributor:
    fullname: Thomas
– volume: 49
  start-page: 441
  year: 2010
  ident: 10.1016/j.nanoen.2015.04.012_bib16
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200903886
  contributor:
    fullname: Zhang
– volume: 135
  start-page: 18
  year: 2013
  ident: 10.1016/j.nanoen.2015.04.012_bib17
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja308249k
  contributor:
    fullname: Zhang
– volume: 53
  start-page: 3654
  year: 2014
  ident: 10.1016/j.nanoen.2015.04.012_bib20
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201309415
  contributor:
    fullname: Shalom
– volume: 27
  start-page: 712
  year: 2015
  ident: 10.1016/j.nanoen.2015.04.012_bib24
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201404543
  contributor:
    fullname: Liu
– start-page: 5060
  year: 2012
  ident: 10.1016/j.nanoen.2015.04.012_bib4
  publication-title: ACS Nano
  doi: 10.1021/nn300679d
  contributor:
    fullname: Hwang
– volume: 6
  start-page: 4883
  year: 2014
  ident: 10.1016/j.nanoen.2015.04.012_bib6
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am4059183
  contributor:
    fullname: Bian
– volume: 5
  start-page: 1227
  year: 2012
  ident: 10.1016/j.nanoen.2015.04.012_bib30
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201100691
  contributor:
    fullname: Yang
– volume: 414
  start-page: 338
  year: 2001
  ident: 10.1016/j.nanoen.2015.04.012_bib2
  publication-title: Nature
  doi: 10.1038/35104607
  contributor:
    fullname: Gratzel
– volume: 5
  start-page: 1307
  year: 2010
  ident: 10.1016/j.nanoen.2015.04.012_bib28
  publication-title: Chem. Asian J.
  contributor:
    fullname: Zhang
– volume: 110
  start-page: 6446
  year: 2010
  ident: 10.1016/j.nanoen.2015.04.012_bib1
  publication-title: Chem. Rev.
  doi: 10.1021/cr1002326
  contributor:
    fullname: Walter
– volume: 3
  start-page: 997
  year: 2013
  ident: 10.1016/j.nanoen.2015.04.012_bib31
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201300171
  contributor:
    fullname: Guo
– volume: 136
  start-page: 13486
  year: 2014
  ident: 10.1016/j.nanoen.2015.04.012_bib21
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja508329c
  contributor:
    fullname: Xu
– volume: 142–143
  start-page: 718
  year: 2013
  ident: 10.1016/j.nanoen.2015.04.012_bib13
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2013.05.077
  contributor:
    fullname: Sridharan
– volume: 117–118
  start-page: 268
  year: 2012
  ident: 10.1016/j.nanoen.2015.04.012_bib19
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2012.01.021
  contributor:
    fullname: Ge
– volume: 22
  start-page: 15006
  year: 2012
  ident: 10.1016/j.nanoen.2015.04.012_bib11
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm32053c
  contributor:
    fullname: Hong
– volume: 4
  start-page: 1723
  year: 2013
  ident: 10.1016/j.nanoen.2015.04.012_bib5
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2729
  contributor:
    fullname: Cho
– volume: 142–143
  start-page: 1
  year: 2013
  ident: 10.1016/j.nanoen.2015.04.012_bib12
  publication-title: Appl. Catal. B Environ.
  contributor:
    fullname: Ye
– volume: 26
  start-page: 3894
  year: 2010
  ident: 10.1016/j.nanoen.2015.04.012_bib10
  publication-title: Langmuir
  doi: 10.1021/la904023j
  contributor:
    fullname: Yan
– volume: 4
  start-page: 675
  year: 2011
  ident: 10.1016/j.nanoen.2015.04.012_bib29
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C0EE00418A
  contributor:
    fullname: Zhang
– volume: 8
  start-page: 76
  year: 2009
  ident: 10.1016/j.nanoen.2015.04.012_bib9
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2317
  contributor:
    fullname: Wang
– volume: 5
  start-page: 6815
  year: 2013
  ident: 10.1016/j.nanoen.2015.04.012_bib14
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am401802r
  contributor:
    fullname: Cheng
– volume: 51
  start-page: 3183
  year: 2012
  ident: 10.1016/j.nanoen.2015.04.012_bib15
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201106656
  contributor:
    fullname: Zhang
– volume: 3
  start-page: 681
  year: 2010
  ident: 10.1016/j.nanoen.2015.04.012_bib3
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201000014
  contributor:
    fullname: Leung
– volume: 129
  start-page: 7726
  year: 2007
  ident: 10.1016/j.nanoen.2015.04.012_bib8
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja071789h
  contributor:
    fullname: Zhang
– volume: 142-143
  start-page: 828
  year: 2013
  ident: 10.1016/j.nanoen.2015.04.012_bib18
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2013.06.026
  contributor:
    fullname: Yang
– volume: 22
  start-page: 922
  year: 2010
  ident: 10.1016/j.nanoen.2015.04.012_bib7
  publication-title: Chem. Mater.
  doi: 10.1021/cm901762h
  contributor:
    fullname: Lee
– volume: 16
  start-page: 954
  year: 2015
  ident: 10.1016/j.nanoen.2015.04.012_bib25
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.201402898
  contributor:
    fullname: Bian
– year: 2015
  ident: 10.1016/j.nanoen.2015.04.012_bib23
  publication-title: Adv. Opt. Mater.
  contributor:
    fullname: Xu
– year: 2015
  ident: 10.1016/j.nanoen.2015.04.012_bib22
  publication-title: Adv. Opt. Mater.
  contributor:
    fullname: Xu
SSID ssj0000651712
Score 2.5641677
Snippet Graphitic carbon nitride (g-CN) is a promising material for photoelectrochemical (PEC) H2 generation due to its appropriate band gap, low cost and nontoxicity....
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 353
SubjectTerms Graphitic carbon nitride
Photoanode
Thermal vapor condensation
Title Thermal vapor condensation of uniform graphitic carbon nitride films with remarkable photocurrent density for photoelectrochemical applications
URI https://dx.doi.org/10.1016/j.nanoen.2015.04.012
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELWW7QUOCAqI0hb5wG0VlMRO4hyrdqvSAxJqkXqLHGeitrBJtd3wN_jLHX_EMW2FAIlLFOXLu5mX8fN45pmQD6kC5MGgIp6lEHFZox8Ues4VZMvauGVgQxdnxecLcbTky9lsXAtwOvZfLY3H0Na6cvYvrO0figdwH22OW7Q6bv_U7uhrvy9-SGTWOqkcHcut54VDpyuxVgujU60T37Q0dY3n8MteXzWgdZpWruJtDSu5_mZKq24u-02vnJSTfuCVS_Q0J9xSOsprDwST4iH5RU_eL8AUG06xeemKQzole58dZFIMvgTIPRlcXPvw8v5lp3hZO4TRiyTzma4upDaW1Uw5TOj5UhyVRqmw-r3eTWeBn2VWYdh12czquT_oDWxg4vpjh38PtNhtkhldW5e4_avO9pluVTeKFFm7KezXt1L0XtmcbB18Wl6c-tAdsrakMPPo_oeORZkmc_Bhc4-TnoDInL8gz90IhB5Y6LwkM-i2ybNAl3KbzI8RBa_IT4clarBEQyzRvqUOS9RjiVosUYclarBENZbohCUaYok6LFF8EH0MSzTE0mvy9Xh5fngSuQU8IoUj0U1Uty0kEkoQuShK4Bz3gKUxJEKmseJZHTOVN2Ve57lqSqXw3QKTOW9FHpesZm_IvOs7eEtoXqikBs5iaEsuhUJWXyZNEZdCchyBsB0SjW-4urE6LdWYwHhdWYtU2iJVzCu0yA4pRjNUjmtaDlkheH5757t_vnOXPJ0-gT0y36wH2CdPbpvhvYPYHVBRqyY
link.rule.ids 315,782,786,27935,27936
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal+vapor+condensation+of+uniform+graphitic+carbon+nitride+films+with+remarkable+photocurrent+density+for+photoelectrochemical+applications&rft.jtitle=Nano+energy&rft.au=Bian%2C+Juncao&rft.au=Li%2C+Qian&rft.au=Huang%2C+Chao&rft.au=Li%2C+Jianfu&rft.date=2015-07-01&rft.pub=Elsevier+Ltd&rft.issn=2211-2855&rft.volume=15&rft.spage=353&rft.epage=361&rft_id=info:doi/10.1016%2Fj.nanoen.2015.04.012&rft.externalDocID=S2211285515001792
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-2855&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-2855&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-2855&client=summon