Thermal vapor condensation of uniform graphitic carbon nitride films with remarkable photocurrent density for photoelectrochemical applications
Graphitic carbon nitride (g-CN) is a promising material for photoelectrochemical (PEC) H2 generation due to its appropriate band gap, low cost and nontoxicity. However, current techniques, including drop casting and spin coating, fail to deposit uniform g-CN films on solid substrates. In this work,...
Saved in:
Published in: | Nano energy Vol. 15; pp. 353 - 361 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier Ltd
01-07-2015
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Graphitic carbon nitride (g-CN) is a promising material for photoelectrochemical (PEC) H2 generation due to its appropriate band gap, low cost and nontoxicity. However, current techniques, including drop casting and spin coating, fail to deposit uniform g-CN films on solid substrates. In this work, we report on a thermal vapor condensation method of depositing uniform g-CN films on various substrates using melamine as precursor. Surface morphology and film thickness of the g-CN film can be effectively tuned by changing the substrate and precursor mass, respectively. The g-CN film shows photocurrent density as high as 0.12mAcm−2, the highest to date for g-CN based photoanode, at the bias of 1.55V versus reversible hydrogen electrode with Na2S as the sacrificial reagent. The improved photoresponse of the g-CN film results from intimate contact between the film and the substrate, enhanced light absorption, decreased charge transport and charge transfer resistance with the increase of the process temperature. The success enables the g-CN films being effectively applied in multiple electronic and photoelectronic devices.
In this work, we report a thermal vapor condensation method of depositing uniform graphitic carbon nitride (g-CN) films on various substrates using melamine as precursor. The optimal photocurrent density of the g-CN film is 0.12mAcm−2 at the bias of 1.55V versus reversible hydrogen electrode with Na2S as sacrificial reagent. The improved photoresponse of the g-CN film results from intimate contact between the film and the substrate, enhanced light absorption, decreased charge transport and charge transfer resistance with the increase of the process temperature. [Display omitted]
•Uniform graphitic carbon nitride films are deposited by thermal vapor condensation.•Surface morphology and film thickness can be flexibly tuned.•The optimal photocurrent density of the g-CN film is as high as 0.12mA/cm2 at 1.55Vvs RHE with Na2S. |
---|---|
AbstractList | Graphitic carbon nitride (g-CN) is a promising material for photoelectrochemical (PEC) H2 generation due to its appropriate band gap, low cost and nontoxicity. However, current techniques, including drop casting and spin coating, fail to deposit uniform g-CN films on solid substrates. In this work, we report on a thermal vapor condensation method of depositing uniform g-CN films on various substrates using melamine as precursor. Surface morphology and film thickness of the g-CN film can be effectively tuned by changing the substrate and precursor mass, respectively. The g-CN film shows photocurrent density as high as 0.12mAcm−2, the highest to date for g-CN based photoanode, at the bias of 1.55V versus reversible hydrogen electrode with Na2S as the sacrificial reagent. The improved photoresponse of the g-CN film results from intimate contact between the film and the substrate, enhanced light absorption, decreased charge transport and charge transfer resistance with the increase of the process temperature. The success enables the g-CN films being effectively applied in multiple electronic and photoelectronic devices.
In this work, we report a thermal vapor condensation method of depositing uniform graphitic carbon nitride (g-CN) films on various substrates using melamine as precursor. The optimal photocurrent density of the g-CN film is 0.12mAcm−2 at the bias of 1.55V versus reversible hydrogen electrode with Na2S as sacrificial reagent. The improved photoresponse of the g-CN film results from intimate contact between the film and the substrate, enhanced light absorption, decreased charge transport and charge transfer resistance with the increase of the process temperature. [Display omitted]
•Uniform graphitic carbon nitride films are deposited by thermal vapor condensation.•Surface morphology and film thickness can be flexibly tuned.•The optimal photocurrent density of the g-CN film is as high as 0.12mA/cm2 at 1.55Vvs RHE with Na2S. |
Author | Li, Qian Guo, Yao Huang, Chao Li, Jianfu Zaw, Myowin Bian, Juncao Zhang, Rui-Qin |
Author_xml | – sequence: 1 givenname: Juncao surname: Bian fullname: Bian, Juncao organization: Department of Physics and Materials Science and Centre for Functional Photonics (CFP), City University of Hong Kong, Hong Kong, China – sequence: 2 givenname: Qian surname: Li fullname: Li, Qian organization: Department of Physics, The Chinese University of Hong Kong, Hong Kong, China – sequence: 3 givenname: Chao surname: Huang fullname: Huang, Chao organization: Department of Physics and Materials Science and Centre for Functional Photonics (CFP), City University of Hong Kong, Hong Kong, China – sequence: 4 givenname: Jianfu surname: Li fullname: Li, Jianfu organization: Department of Physics and Materials Science and Centre for Functional Photonics (CFP), City University of Hong Kong, Hong Kong, China – sequence: 5 givenname: Yao surname: Guo fullname: Guo, Yao organization: Department of Physics and Materials Science and Centre for Functional Photonics (CFP), City University of Hong Kong, Hong Kong, China – sequence: 6 givenname: Myowin surname: Zaw fullname: Zaw, Myowin organization: Department of Physics and Materials Science and Centre for Functional Photonics (CFP), City University of Hong Kong, Hong Kong, China – sequence: 7 givenname: Rui-Qin surname: Zhang fullname: Zhang, Rui-Qin email: aprqz@cityu.edu.hk organization: Department of Physics and Materials Science and Centre for Functional Photonics (CFP), City University of Hong Kong, Hong Kong, China |
BookMark | eNp9kE1OwzAQhb0oEqX0Bix8gQbbSdxkg4Qq_qRKbMracpwxcUnsyHaLegqujKOwZjYz0tN7M_PdoIV1FhC6oySjhPL7Y2aldWAzRmiZkSIjlC3QkjFKN6wqy2u0DuFIUvGSbilbop9DB36QPT7L0XmsnG3BBhmNs9hpfLJGOz_gTy_HzkSjsJK-SZo10ZsWsDb9EPC3iR32MEj_JZse8Ni56NTJe7ART4EmXnAKmgXoQUXvVAeDUWm1HMc-DdPOcIuutOwDrP_6Cn08Px12r5v9-8vb7nG_UTnhcdNoDVRCDRWvtjUURZogZwRoJRlRRdmQXPG25g3nqq2VSi9DLnmhK07qvMlXqJhzlXcheNBi9CbdfxGUiImlOIqZpZhYClKIxDLZHmYbpNvOBrwIyoBV0BqfnhKtM_8H_ALAXYhe |
CitedBy_id | crossref_primary_10_1021_acs_jpcc_1c06864 crossref_primary_10_1016_j_scitotenv_2024_170357 crossref_primary_10_1016_j_ijhydene_2024_05_277 crossref_primary_10_1021_acsami_6b02853 crossref_primary_10_1007_s43673_024_00123_9 crossref_primary_10_1016_j_ccr_2021_214338 crossref_primary_10_1016_j_apcatb_2018_06_046 crossref_primary_10_1038_nmat4693 crossref_primary_10_1039_D2CY00849A crossref_primary_10_1016_j_ijhydene_2019_08_114 crossref_primary_10_1016_j_nanoen_2017_01_018 crossref_primary_10_1016_j_ijhydene_2020_04_110 crossref_primary_10_1016_j_jcis_2021_07_052 crossref_primary_10_1021_acsami_7b06637 crossref_primary_10_1063_5_0202516 crossref_primary_10_1002_smll_202208049 crossref_primary_10_1039_D0SE00752H crossref_primary_10_1039_C6RA16300A crossref_primary_10_1039_C6RA16699G crossref_primary_10_1002_ange_202204407 crossref_primary_10_1016_j_ijhydene_2021_11_133 crossref_primary_10_1002_cssc_202401041 crossref_primary_10_1039_C5CS00767D crossref_primary_10_1021_acs_jpcc_1c10561 crossref_primary_10_1021_acsami_2c18694 crossref_primary_10_1016_j_jece_2022_108189 crossref_primary_10_2139_ssrn_4172704 crossref_primary_10_1016_j_jallcom_2024_175053 crossref_primary_10_1039_C8NJ06509H crossref_primary_10_1002_ente_201800280 crossref_primary_10_1016_j_ijhydene_2021_03_126 crossref_primary_10_1007_s40843_022_2202_3 crossref_primary_10_1002_chem_201803201 crossref_primary_10_35848_1347_4065_aba7d6 crossref_primary_10_1038_srep35304 crossref_primary_10_1088_1361_6463_ac8e15 crossref_primary_10_1002_cptc_201800256 crossref_primary_10_1002_ange_201810225 crossref_primary_10_1149_2162_8777_ac040b crossref_primary_10_1016_j_apsusc_2021_150103 crossref_primary_10_1016_j_apsusc_2022_155838 crossref_primary_10_1016_j_apsusc_2016_08_038 crossref_primary_10_1021_acssuschemeng_8b05780 crossref_primary_10_1002_admi_202200313 crossref_primary_10_1039_D0TA04593D crossref_primary_10_1016_j_mtcata_2023_100003 crossref_primary_10_1039_D3YA00506B crossref_primary_10_1016_j_apcatb_2019_117855 crossref_primary_10_1002_admi_201802085 crossref_primary_10_1002_ange_201911822 crossref_primary_10_1021_acsami_8b21670 crossref_primary_10_1021_acs_chemmater_0c01798 crossref_primary_10_1021_acs_jpclett_9b01248 crossref_primary_10_1039_D1SE00670C crossref_primary_10_3389_fnano_2021_684788 crossref_primary_10_1016_j_carbon_2018_05_035 crossref_primary_10_1002_admi_201600265 crossref_primary_10_1039_C8CY02105H crossref_primary_10_1039_C9TA02880C crossref_primary_10_1039_C7NR09244J crossref_primary_10_1021_acs_jpcc_7b04071 crossref_primary_10_1002_ente_201700138 crossref_primary_10_1016_j_cis_2020_102229 crossref_primary_10_1016_j_apsusc_2016_11_143 crossref_primary_10_1021_acsami_7b00433 crossref_primary_10_1016_j_progpolymsci_2023_101734 crossref_primary_10_1039_C8TA08001A crossref_primary_10_1016_j_jphotochem_2019_111859 crossref_primary_10_1016_j_surfin_2021_101092 crossref_primary_10_2139_ssrn_4145392 crossref_primary_10_1007_s00339_022_06220_6 crossref_primary_10_1016_j_apcatb_2022_122170 crossref_primary_10_1039_C5TA06838J crossref_primary_10_1002_smll_202401123 crossref_primary_10_1016_j_ijhydene_2021_04_147 crossref_primary_10_1039_C7CS00840F crossref_primary_10_1039_D2TC02533G crossref_primary_10_1002_sstr_202400123 crossref_primary_10_1002_adfm_202102540 crossref_primary_10_1039_D1NA00041A crossref_primary_10_1002_adfm_201702695 crossref_primary_10_1039_C9MH01497G crossref_primary_10_1016_j_jallcom_2018_08_180 crossref_primary_10_1016_j_mtla_2023_101724 crossref_primary_10_1007_s42114_022_00505_3 crossref_primary_10_1016_j_apsusc_2018_04_172 crossref_primary_10_1039_D0TA07345H crossref_primary_10_1680_jsuin_22_00048 crossref_primary_10_1002_aenm_201700886 crossref_primary_10_1016_j_cej_2022_135684 crossref_primary_10_1142_S1793604720510066 crossref_primary_10_1002_adfm_202305106 crossref_primary_10_1016_j_jmat_2021_01_004 crossref_primary_10_1021_acs_chemrev_1c00971 crossref_primary_10_1016_j_jallcom_2020_157298 crossref_primary_10_1002_anie_202211587 crossref_primary_10_1021_acsami_3c09284 crossref_primary_10_1016_j_apcatb_2022_121065 crossref_primary_10_1021_acsami_2c20874 crossref_primary_10_1016_j_jcis_2016_10_077 crossref_primary_10_1002_cey2_225 crossref_primary_10_1021_acsami_9b08263 crossref_primary_10_1088_1361_6463_ab420b crossref_primary_10_1007_s00214_019_2525_z crossref_primary_10_1016_j_jallcom_2019_153064 crossref_primary_10_1002_slct_202203688 crossref_primary_10_1002_smtd_202300418 crossref_primary_10_3390_nano12142374 crossref_primary_10_1039_C7TA06081E crossref_primary_10_1016_j_apsusc_2020_145535 crossref_primary_10_1246_cl_210432 crossref_primary_10_1016_j_cej_2022_137645 crossref_primary_10_1002_ange_202211587 crossref_primary_10_3389_fmats_2019_00052 crossref_primary_10_1016_j_jphotochem_2024_115463 crossref_primary_10_2139_ssrn_4110646 crossref_primary_10_1002_anie_201911822 crossref_primary_10_1016_j_jechem_2023_02_008 crossref_primary_10_1038_s41467_021_23367_7 crossref_primary_10_1016_j_matlet_2023_135783 crossref_primary_10_1016_j_chemosphere_2023_141014 crossref_primary_10_1002_cctc_202101299 crossref_primary_10_1002_cplu_202300650 crossref_primary_10_1002_smll_202303602 crossref_primary_10_1016_j_renene_2021_03_121 crossref_primary_10_1016_j_jece_2019_103456 crossref_primary_10_1002_slct_202200876 crossref_primary_10_1021_acssuschemeng_7b03760 crossref_primary_10_1039_D0TA06550A crossref_primary_10_1002_anie_201806514 crossref_primary_10_1016_j_ijhydene_2019_02_100 crossref_primary_10_1021_acs_chemrev_7b00689 crossref_primary_10_1002_admi_201800859 crossref_primary_10_1002_adma_201800128 crossref_primary_10_1002_aesr_202000073 crossref_primary_10_1002_smll_202200510 crossref_primary_10_1016_j_jallcom_2022_168342 crossref_primary_10_3390_catal12111399 crossref_primary_10_1039_C9SE00785G crossref_primary_10_1002_adfm_201603021 crossref_primary_10_1016_j_jallcom_2020_154307 crossref_primary_10_1016_j_molliq_2022_119947 crossref_primary_10_1002_asia_201600857 crossref_primary_10_1016_j_jcis_2021_05_145 crossref_primary_10_1002_cssc_201600863 crossref_primary_10_1002_cssc_201801295 crossref_primary_10_1021_acsnano_0c06116 crossref_primary_10_1021_acsami_0c15159 crossref_primary_10_1039_D3SE00780D crossref_primary_10_1039_D0NR06139E crossref_primary_10_3390_ma13010114 crossref_primary_10_1016_j_cplett_2018_07_038 crossref_primary_10_1002_anie_201810225 crossref_primary_10_1016_j_jhazmat_2017_10_006 crossref_primary_10_1021_accountsmr_1c00148 crossref_primary_10_1016_j_carbon_2017_02_096 crossref_primary_10_1021_acs_nanolett_5b04496 crossref_primary_10_1002_adsu_202100005 crossref_primary_10_1016_j_nanoen_2017_12_024 crossref_primary_10_1038_s41467_020_18535_0 crossref_primary_10_3390_nano10091831 crossref_primary_10_1002_asia_201800487 crossref_primary_10_1016_j_cej_2023_148445 crossref_primary_10_1021_acsami_6b09699 crossref_primary_10_1088_1757_899X_499_1_012003 crossref_primary_10_1016_j_mtchem_2021_100770 crossref_primary_10_1002_cssc_202400948 crossref_primary_10_1016_j_bios_2023_115400 crossref_primary_10_1016_j_jhazmat_2018_12_115 crossref_primary_10_1021_acs_nanolett_8b02740 crossref_primary_10_1016_j_jallcom_2019_152916 crossref_primary_10_3390_catal13050814 crossref_primary_10_1002_tcr_202100067 crossref_primary_10_1016_j_susmat_2018_e00089 crossref_primary_10_1111_jace_17484 crossref_primary_10_1016_j_chemosphere_2023_140634 crossref_primary_10_1021_acs_chemmater_0c01856 crossref_primary_10_1007_s40820_017_0148_2 crossref_primary_10_1002_anie_202204407 crossref_primary_10_1021_acs_chemrev_6b00075 crossref_primary_10_1002_cssc_202100313 crossref_primary_10_1002_cey2_48 crossref_primary_10_1039_C8CY02318B crossref_primary_10_1016_j_matt_2021_02_014 crossref_primary_10_1039_C5RA21228F crossref_primary_10_1021_acs_jpcc_8b04257 crossref_primary_10_1002_ange_201703372 crossref_primary_10_1002_adma_201908140 crossref_primary_10_1002_ange_201711669 crossref_primary_10_1016_j_cattod_2019_02_022 crossref_primary_10_1002_adom_202202737 crossref_primary_10_1002_ange_201806514 crossref_primary_10_1016_j_jssc_2020_121187 crossref_primary_10_1002_asia_201700178 crossref_primary_10_1016_j_ccr_2024_215879 crossref_primary_10_1016_j_matchemphys_2023_127626 crossref_primary_10_1002_aenm_201600263 crossref_primary_10_1002_anie_201703372 crossref_primary_10_1016_j_apcatb_2018_05_084 crossref_primary_10_1016_j_apcatb_2019_117771 crossref_primary_10_1016_j_nanoen_2020_104648 crossref_primary_10_1016_j_joule_2017_11_010 crossref_primary_10_1021_acs_chemrev_1c00686 crossref_primary_10_1039_D0TA01772H crossref_primary_10_1016_j_susmat_2020_e00209 crossref_primary_10_1002_anie_201711669 crossref_primary_10_1016_j_apcatb_2019_118180 crossref_primary_10_1016_j_ijhydene_2019_04_140 |
Cites_doi | 10.1016/j.nanoen.2013.06.016 10.1021/la900923z 10.1039/b800274f 10.1002/anie.200903886 10.1021/ja308249k 10.1002/anie.201309415 10.1002/adma.201404543 10.1021/nn300679d 10.1021/am4059183 10.1002/cssc.201100691 10.1038/35104607 10.1021/cr1002326 10.1002/aenm.201300171 10.1021/ja508329c 10.1016/j.apcatb.2013.05.077 10.1016/j.apcatb.2012.01.021 10.1039/c2jm32053c 10.1038/ncomms2729 10.1021/la904023j 10.1039/C0EE00418A 10.1038/nmat2317 10.1021/am401802r 10.1002/anie.201106656 10.1002/cssc.201000014 10.1021/ja071789h 10.1016/j.apcatb.2013.06.026 10.1021/cm901762h 10.1002/cphc.201402898 |
ContentType | Journal Article |
Copyright | 2015 Elsevier Ltd |
Copyright_xml | – notice: 2015 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.nanoen.2015.04.012 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Film |
EndPage | 361 |
ExternalDocumentID | 10_1016_j_nanoen_2015_04_012 S2211285515001792 |
GroupedDBID | --K --M .~1 0R~ 1~. 1~5 4.4 457 4G. 5VS 7-5 8P~ AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC EBS EFJIC EFLBG EJD FDB FIRID FNPLU FYGXN GBLVA HZ~ JARJE KOM M41 MAGPM MO0 O-L O9- OAUVE P-8 P-9 PC. Q38 RIG ROL SDF SPC SPCBC SSM SSR SSZ T5K ~G- AAXKI AAYXX AFJKZ AKRWK CITATION |
ID | FETCH-LOGICAL-c306t-bffe1ae9e86879e449e8e320e18a20c45b03c6d96b66cd9cc000e3a64f86093b3 |
ISSN | 2211-2855 |
IngestDate | Thu Sep 26 17:02:03 EDT 2024 Fri Feb 23 02:46:09 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Photoanode Film Thermal vapor condensation Graphitic carbon nitride |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c306t-bffe1ae9e86879e449e8e320e18a20c45b03c6d96b66cd9cc000e3a64f86093b3 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1016_j_nanoen_2015_04_012 elsevier_sciencedirect_doi_10_1016_j_nanoen_2015_04_012 |
PublicationCentury | 2000 |
PublicationDate | July 2015 2015-07-00 |
PublicationDateYYYYMMDD | 2015-07-01 |
PublicationDate_xml | – month: 07 year: 2015 text: July 2015 |
PublicationDecade | 2010 |
PublicationTitle | Nano energy |
PublicationYear | 2015 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Cheng, Tian, Liu, Ge, Qusti, Asiri, Al-Youbi, Sun (bib14) 2013; 5 Liu, Wang, Chen, Moehwald, Fiechter, van de Krol, Wen, Jiang, Antonietti (bib24) 2015; 27 Xu, Herraiz-Cardona, Yang, Gimenez, Antonietti, Shalom (bib23) 2015 Bian, Li, Kalytchuk, Wang, Li, Lau, Niehaus, Rogach, Zhang (bib25) 2015; 16 Ye, Liu, Jiang, Peng, Zan (bib12) 2013; 142–143 Guo, Dong, Yang, Li (bib31) 2013; 3 Zhang, Antonietti (bib28) 2010; 5 Zhang, Chen, Takanabe, Maeda, Domen, Epping, Fu, Antonietti, Wang (bib16) 2010; 49 Zhang, Du, Schneider, Jarosz, Eisenberg (bib8) 2007; 129 Sridharan, Jang, Park (bib13) 2013; 142–143 Lee, Chi, Liau (bib7) 2010; 22 Hong, Xia, Wang, Xu (bib11) 2012; 22 Yan, Li, Zou (bib27) 2009; 25 Zhang, Xie, Wang, Zhang, Pan, Xie (bib17) 2013; 135 Xu, Shalom, Piersimoni, Antonietti, Neher, Brenner (bib22) 2015 Thomas, Fischer, Goettmann, Antonietti, Müller, Schlögl, Carlsson (bib26) 2008; 18 Hwang, Hahn, Liu, Yang (bib4) 2012 Yang, Lublow, Orthmann, Merschjann, Tyborski, Rusu, Kubala, Thomas, Arrigo, Havecker, Schedel-Niedrig (bib30) 2012; 5 Cho, Lee, Feng, Logar, Rao, Cai, Kim, Sinclair, Zheng (bib5) 2013; 4 Xu, Brenner, Chabanne, Neher, Antonietti, Shalom (bib21) 2014; 136 Yang, Guo, Liu, Yuan, Guo, Zhang, Guo, Huo (bib18) 2013; 142-143 Zhang, Sun, Maeda, Domen, Liu, Antonietti, Fu, Wang (bib29) 2011; 4 Walter, Warren, Mckone, Boettcher, Mi, Santori, Lewis (bib1) 2010; 110 Zhang, Zhang, Chen, Lin, Möhlmann, Dołęga, Lipner, Antonietti, Blechert, Wang (bib15) 2012; 51 Huang, Wang, Pan, Tian, Zhang, Zhang (bib32) 2013; 2 Gratzel (bib2) 2001; 414 Ge, Han (bib19) 2012; 117–118 Yan, Li, Zou (bib10) 2010; 26 Wang, Maeda, Thomas, Takanabe, Xin, Carlsson, Domen, Antonietti (bib9) 2009; 8 Bian, Huang, Wang, Hung, Daoud, Zhang (bib6) 2014; 6 Leung, Fu, Wang, Ni, Leung, Wang, Fu (bib3) 2010; 3 Shalom, Gimenez, Schipper, Herraiz-Cardona, Bisquert, Antonietti (bib20) 2014; 53 Hwang (10.1016/j.nanoen.2015.04.012_bib4) 2012 Liu (10.1016/j.nanoen.2015.04.012_bib24) 2015; 27 Yang (10.1016/j.nanoen.2015.04.012_bib18) 2013; 142-143 Xu (10.1016/j.nanoen.2015.04.012_bib22) 2015 Zhang (10.1016/j.nanoen.2015.04.012_bib16) 2010; 49 Lee (10.1016/j.nanoen.2015.04.012_bib7) 2010; 22 Hong (10.1016/j.nanoen.2015.04.012_bib11) 2012; 22 Walter (10.1016/j.nanoen.2015.04.012_bib1) 2010; 110 Zhang (10.1016/j.nanoen.2015.04.012_bib8) 2007; 129 Cheng (10.1016/j.nanoen.2015.04.012_bib14) 2013; 5 Zhang (10.1016/j.nanoen.2015.04.012_bib17) 2013; 135 Shalom (10.1016/j.nanoen.2015.04.012_bib20) 2014; 53 Bian (10.1016/j.nanoen.2015.04.012_bib25) 2015; 16 Thomas (10.1016/j.nanoen.2015.04.012_bib26) 2008; 18 Gratzel (10.1016/j.nanoen.2015.04.012_bib2) 2001; 414 Wang (10.1016/j.nanoen.2015.04.012_bib9) 2009; 8 Huang (10.1016/j.nanoen.2015.04.012_bib32) 2013; 2 Xu (10.1016/j.nanoen.2015.04.012_bib23) 2015 Ye (10.1016/j.nanoen.2015.04.012_bib12) 2013; 142–143 Yang (10.1016/j.nanoen.2015.04.012_bib30) 2012; 5 Leung (10.1016/j.nanoen.2015.04.012_bib3) 2010; 3 Yan (10.1016/j.nanoen.2015.04.012_bib10) 2010; 26 Zhang (10.1016/j.nanoen.2015.04.012_bib28) 2010; 5 Guo (10.1016/j.nanoen.2015.04.012_bib31) 2013; 3 Ge (10.1016/j.nanoen.2015.04.012_bib19) 2012; 117–118 Bian (10.1016/j.nanoen.2015.04.012_bib6) 2014; 6 Zhang (10.1016/j.nanoen.2015.04.012_bib29) 2011; 4 Sridharan (10.1016/j.nanoen.2015.04.012_bib13) 2013; 142–143 Zhang (10.1016/j.nanoen.2015.04.012_bib15) 2012; 51 Yan (10.1016/j.nanoen.2015.04.012_bib27) 2009; 25 Xu (10.1016/j.nanoen.2015.04.012_bib21) 2014; 136 Cho (10.1016/j.nanoen.2015.04.012_bib5) 2013; 4 |
References_xml | – volume: 49 start-page: 441 year: 2010 end-page: 444 ident: bib16 publication-title: Angew. Chem. Int. Ed. contributor: fullname: Wang – volume: 135 start-page: 18 year: 2013 end-page: 21 ident: bib17 publication-title: J. Am. Chem. Soc. contributor: fullname: Xie – volume: 142–143 start-page: 1 year: 2013 end-page: 7 ident: bib12 publication-title: Appl. Catal. B Environ. contributor: fullname: Zan – volume: 4 start-page: 675 year: 2011 end-page: 678 ident: bib29 publication-title: Energy Environ. Sci. contributor: fullname: Wang – volume: 117–118 start-page: 268 year: 2012 end-page: 274 ident: bib19 publication-title: Appl. Catal. B Environ. contributor: fullname: Han – volume: 5 start-page: 1307 year: 2010 end-page: 1311 ident: bib28 publication-title: Chem. Asian J. contributor: fullname: Antonietti – volume: 136 start-page: 13486 year: 2014 end-page: 13489 ident: bib21 publication-title: J. Am. Chem. Soc. contributor: fullname: Shalom – volume: 3 start-page: 997 year: 2013 end-page: 1003 ident: bib31 publication-title: Adv. Energy Mater. contributor: fullname: Li – volume: 5 start-page: 6815 year: 2013 end-page: 6819 ident: bib14 publication-title: ACS Appl. Mater. Interfaces contributor: fullname: Sun – volume: 3 start-page: 681 year: 2010 end-page: 694 ident: bib3 publication-title: ChemSusChem contributor: fullname: Fu – volume: 6 start-page: 4883 year: 2014 end-page: 4890 ident: bib6 publication-title: ACS Appl. Mater. Interfaces contributor: fullname: Zhang – volume: 2 start-page: 1337 year: 2013 end-page: 1346 ident: bib32 publication-title: Nano Energy contributor: fullname: Zhang – volume: 51 start-page: 3183 year: 2012 end-page: 3187 ident: bib15 publication-title: Angew. Chem. Int. Ed. contributor: fullname: Wang – volume: 142-143 start-page: 828 year: 2013 end-page: 837 ident: bib18 publication-title: Appl. Catal. B Environ. contributor: fullname: Huo – volume: 25 start-page: 10397 year: 2009 end-page: 10401 ident: bib27 publication-title: Langmuir contributor: fullname: Zou – volume: 5 start-page: 1227 year: 2012 end-page: 1232 ident: bib30 publication-title: ChemSusChem contributor: fullname: Schedel-Niedrig – volume: 142–143 start-page: 718 year: 2013 end-page: 728 ident: bib13 publication-title: Appl. Catal. B Environ. contributor: fullname: Park – volume: 8 start-page: 76 year: 2009 end-page: 80 ident: bib9 publication-title: Nat. Mater. contributor: fullname: Antonietti – volume: 53 start-page: 3654 year: 2014 end-page: 3659 ident: bib20 publication-title: Angew. Chem. Int. Ed. contributor: fullname: Antonietti – volume: 16 start-page: 954 year: 2015 end-page: 959 ident: bib25 publication-title: ChemPhysChem contributor: fullname: Zhang – volume: 129 start-page: 7726 year: 2007 end-page: 7727 ident: bib8 publication-title: J. Am. Chem. Soc. contributor: fullname: Eisenberg – start-page: 5060 year: 2012 end-page: 5069 ident: bib4 publication-title: ACS Nano contributor: fullname: Yang – volume: 110 start-page: 6446 year: 2010 end-page: 6473 ident: bib1 publication-title: Chem. Rev. contributor: fullname: Lewis – volume: 414 start-page: 338 year: 2001 end-page: 344 ident: bib2 publication-title: Nature contributor: fullname: Gratzel – volume: 27 start-page: 712 year: 2015 end-page: 718 ident: bib24 publication-title: Adv. Mater. contributor: fullname: Antonietti – volume: 18 start-page: 4893 year: 2008 end-page: 4908 ident: bib26 publication-title: J. Mater. Chem. contributor: fullname: Carlsson – volume: 22 start-page: 922 year: 2010 end-page: 927 ident: bib7 publication-title: Chem. Mater. contributor: fullname: Liau – year: 2015 ident: bib23 publication-title: Adv. Opt. Mater. contributor: fullname: Shalom – year: 2015 ident: bib22 publication-title: Adv. Opt. Mater. contributor: fullname: Brenner – volume: 4 start-page: 1723 year: 2013 ident: bib5 publication-title: Nat. Commun. contributor: fullname: Zheng – volume: 22 start-page: 15006 year: 2012 end-page: 15012 ident: bib11 publication-title: J. Mater. Chem. contributor: fullname: Xu – volume: 26 start-page: 3894 year: 2010 end-page: 3901 ident: bib10 publication-title: Langmuir contributor: fullname: Zou – volume: 2 start-page: 1337 year: 2013 ident: 10.1016/j.nanoen.2015.04.012_bib32 publication-title: Nano Energy doi: 10.1016/j.nanoen.2013.06.016 contributor: fullname: Huang – volume: 25 start-page: 10397 year: 2009 ident: 10.1016/j.nanoen.2015.04.012_bib27 publication-title: Langmuir doi: 10.1021/la900923z contributor: fullname: Yan – volume: 18 start-page: 4893 year: 2008 ident: 10.1016/j.nanoen.2015.04.012_bib26 publication-title: J. Mater. Chem. doi: 10.1039/b800274f contributor: fullname: Thomas – volume: 49 start-page: 441 year: 2010 ident: 10.1016/j.nanoen.2015.04.012_bib16 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200903886 contributor: fullname: Zhang – volume: 135 start-page: 18 year: 2013 ident: 10.1016/j.nanoen.2015.04.012_bib17 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja308249k contributor: fullname: Zhang – volume: 53 start-page: 3654 year: 2014 ident: 10.1016/j.nanoen.2015.04.012_bib20 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201309415 contributor: fullname: Shalom – volume: 27 start-page: 712 year: 2015 ident: 10.1016/j.nanoen.2015.04.012_bib24 publication-title: Adv. Mater. doi: 10.1002/adma.201404543 contributor: fullname: Liu – start-page: 5060 year: 2012 ident: 10.1016/j.nanoen.2015.04.012_bib4 publication-title: ACS Nano doi: 10.1021/nn300679d contributor: fullname: Hwang – volume: 6 start-page: 4883 year: 2014 ident: 10.1016/j.nanoen.2015.04.012_bib6 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am4059183 contributor: fullname: Bian – volume: 5 start-page: 1227 year: 2012 ident: 10.1016/j.nanoen.2015.04.012_bib30 publication-title: ChemSusChem doi: 10.1002/cssc.201100691 contributor: fullname: Yang – volume: 414 start-page: 338 year: 2001 ident: 10.1016/j.nanoen.2015.04.012_bib2 publication-title: Nature doi: 10.1038/35104607 contributor: fullname: Gratzel – volume: 5 start-page: 1307 year: 2010 ident: 10.1016/j.nanoen.2015.04.012_bib28 publication-title: Chem. Asian J. contributor: fullname: Zhang – volume: 110 start-page: 6446 year: 2010 ident: 10.1016/j.nanoen.2015.04.012_bib1 publication-title: Chem. Rev. doi: 10.1021/cr1002326 contributor: fullname: Walter – volume: 3 start-page: 997 year: 2013 ident: 10.1016/j.nanoen.2015.04.012_bib31 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201300171 contributor: fullname: Guo – volume: 136 start-page: 13486 year: 2014 ident: 10.1016/j.nanoen.2015.04.012_bib21 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja508329c contributor: fullname: Xu – volume: 142–143 start-page: 718 year: 2013 ident: 10.1016/j.nanoen.2015.04.012_bib13 publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2013.05.077 contributor: fullname: Sridharan – volume: 117–118 start-page: 268 year: 2012 ident: 10.1016/j.nanoen.2015.04.012_bib19 publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2012.01.021 contributor: fullname: Ge – volume: 22 start-page: 15006 year: 2012 ident: 10.1016/j.nanoen.2015.04.012_bib11 publication-title: J. Mater. Chem. doi: 10.1039/c2jm32053c contributor: fullname: Hong – volume: 4 start-page: 1723 year: 2013 ident: 10.1016/j.nanoen.2015.04.012_bib5 publication-title: Nat. Commun. doi: 10.1038/ncomms2729 contributor: fullname: Cho – volume: 142–143 start-page: 1 year: 2013 ident: 10.1016/j.nanoen.2015.04.012_bib12 publication-title: Appl. Catal. B Environ. contributor: fullname: Ye – volume: 26 start-page: 3894 year: 2010 ident: 10.1016/j.nanoen.2015.04.012_bib10 publication-title: Langmuir doi: 10.1021/la904023j contributor: fullname: Yan – volume: 4 start-page: 675 year: 2011 ident: 10.1016/j.nanoen.2015.04.012_bib29 publication-title: Energy Environ. Sci. doi: 10.1039/C0EE00418A contributor: fullname: Zhang – volume: 8 start-page: 76 year: 2009 ident: 10.1016/j.nanoen.2015.04.012_bib9 publication-title: Nat. Mater. doi: 10.1038/nmat2317 contributor: fullname: Wang – volume: 5 start-page: 6815 year: 2013 ident: 10.1016/j.nanoen.2015.04.012_bib14 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am401802r contributor: fullname: Cheng – volume: 51 start-page: 3183 year: 2012 ident: 10.1016/j.nanoen.2015.04.012_bib15 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201106656 contributor: fullname: Zhang – volume: 3 start-page: 681 year: 2010 ident: 10.1016/j.nanoen.2015.04.012_bib3 publication-title: ChemSusChem doi: 10.1002/cssc.201000014 contributor: fullname: Leung – volume: 129 start-page: 7726 year: 2007 ident: 10.1016/j.nanoen.2015.04.012_bib8 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja071789h contributor: fullname: Zhang – volume: 142-143 start-page: 828 year: 2013 ident: 10.1016/j.nanoen.2015.04.012_bib18 publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2013.06.026 contributor: fullname: Yang – volume: 22 start-page: 922 year: 2010 ident: 10.1016/j.nanoen.2015.04.012_bib7 publication-title: Chem. Mater. doi: 10.1021/cm901762h contributor: fullname: Lee – volume: 16 start-page: 954 year: 2015 ident: 10.1016/j.nanoen.2015.04.012_bib25 publication-title: ChemPhysChem doi: 10.1002/cphc.201402898 contributor: fullname: Bian – year: 2015 ident: 10.1016/j.nanoen.2015.04.012_bib23 publication-title: Adv. Opt. Mater. contributor: fullname: Xu – year: 2015 ident: 10.1016/j.nanoen.2015.04.012_bib22 publication-title: Adv. Opt. Mater. contributor: fullname: Xu |
SSID | ssj0000651712 |
Score | 2.5641677 |
Snippet | Graphitic carbon nitride (g-CN) is a promising material for photoelectrochemical (PEC) H2 generation due to its appropriate band gap, low cost and nontoxicity.... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 353 |
SubjectTerms | Graphitic carbon nitride Photoanode Thermal vapor condensation |
Title | Thermal vapor condensation of uniform graphitic carbon nitride films with remarkable photocurrent density for photoelectrochemical applications |
URI | https://dx.doi.org/10.1016/j.nanoen.2015.04.012 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELWW7QUOCAqI0hb5wG0VlMRO4hyrdqvSAxJqkXqLHGeitrBJtd3wN_jLHX_EMW2FAIlLFOXLu5mX8fN45pmQD6kC5MGgIp6lEHFZox8Ues4VZMvauGVgQxdnxecLcbTky9lsXAtwOvZfLY3H0Na6cvYvrO0figdwH22OW7Q6bv_U7uhrvy9-SGTWOqkcHcut54VDpyuxVgujU60T37Q0dY3n8MteXzWgdZpWruJtDSu5_mZKq24u-02vnJSTfuCVS_Q0J9xSOsprDwST4iH5RU_eL8AUG06xeemKQzole58dZFIMvgTIPRlcXPvw8v5lp3hZO4TRiyTzma4upDaW1Uw5TOj5UhyVRqmw-r3eTWeBn2VWYdh12czquT_oDWxg4vpjh38PtNhtkhldW5e4_avO9pluVTeKFFm7KezXt1L0XtmcbB18Wl6c-tAdsrakMPPo_oeORZkmc_Bhc4-TnoDInL8gz90IhB5Y6LwkM-i2ybNAl3KbzI8RBa_IT4clarBEQyzRvqUOS9RjiVosUYclarBENZbohCUaYok6LFF8EH0MSzTE0mvy9Xh5fngSuQU8IoUj0U1Uty0kEkoQuShK4Bz3gKUxJEKmseJZHTOVN2Ve57lqSqXw3QKTOW9FHpesZm_IvOs7eEtoXqikBs5iaEsuhUJWXyZNEZdCchyBsB0SjW-4urE6LdWYwHhdWYtU2iJVzCu0yA4pRjNUjmtaDlkheH5757t_vnOXPJ0-gT0y36wH2CdPbpvhvYPYHVBRqyY |
link.rule.ids | 315,782,786,27935,27936 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal+vapor+condensation+of+uniform+graphitic+carbon+nitride+films+with+remarkable+photocurrent+density+for+photoelectrochemical+applications&rft.jtitle=Nano+energy&rft.au=Bian%2C+Juncao&rft.au=Li%2C+Qian&rft.au=Huang%2C+Chao&rft.au=Li%2C+Jianfu&rft.date=2015-07-01&rft.pub=Elsevier+Ltd&rft.issn=2211-2855&rft.volume=15&rft.spage=353&rft.epage=361&rft_id=info:doi/10.1016%2Fj.nanoen.2015.04.012&rft.externalDocID=S2211285515001792 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-2855&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-2855&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-2855&client=summon |