Singularity detection and processing with wavelets

The mathematical characterization of singularities with Lipschitz exponents is reviewed. Theorems that estimate local Lipschitz exponents of functions from the evolution across scales of their wavelet transform are reviewed. It is then proven that the local maxima of the wavelet transform modulus de...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on information theory Vol. 38; no. 2; pp. 617 - 643
Main Authors: Mallat, S., Hwang, W.L.
Format: Journal Article
Language:English
Published: New York, NY IEEE 01-03-1992
Institute of Electrical and Electronics Engineers
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The mathematical characterization of singularities with Lipschitz exponents is reviewed. Theorems that estimate local Lipschitz exponents of functions from the evolution across scales of their wavelet transform are reviewed. It is then proven that the local maxima of the wavelet transform modulus detect the locations of irregular structures and provide numerical procedures to compute their Lipschitz exponents. The wavelet transform of singularities with fast oscillations has a particular behavior that is studied separately. The local frequency of such oscillations is measured from the wavelet transform modulus maxima. It has been shown numerically that one- and two-dimensional signals can be reconstructed, with a good approximation, from the local maxima of their wavelet transform modulus. As an application, an algorithm is developed that removes white noises from signals by analyzing the evolution of the wavelet transform maxima across scales. In two dimensions, the wavelet transform maxima indicate the location of edges in images.< >
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0018-9448
1557-9654
DOI:10.1109/18.119727