Use of steam jet booster as an integration strategy to operate a natural gas combined cycle with post-combustion CO2 capture at part-load
This paper aims to evaluate the integration of the steam jet booster in a natural gas combined cycle with CO2 capture at low part-load operation. The steam ejector takes a high pressure motive steam flows in a supersonic nozzle while dragging a low pressure steam which comes from the crossover. Both...
Saved in:
Published in: | Energy (Oxford) Vol. 165; pp. 126 - 139 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier Ltd
15-12-2018
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | This paper aims to evaluate the integration of the steam jet booster in a natural gas combined cycle with CO2 capture at low part-load operation. The steam ejector takes a high pressure motive steam flows in a supersonic nozzle while dragging a low pressure steam which comes from the crossover. Both flows mix into one at fixed pressure of 3.5 bar and sent to the reboiler. The results are compared with two integration alternatives: uncontrolled and controlled steam extraction control. Uncontrolled steam extraction provides better part-load performance than controlled. However, with sliding pressure, at 42.3% gas turbine load the low pressure steam turbine operates at 27% of its capacity compared with 66% when the energy plant operates without capture, this imposes a potential risk to the integrity of the turbine. When the steam ejector is integrated, there is no significant improvement in the efficiency compared with sliding pressure strategy. However, the used capacity of the low pressure steam turbine increases from 27% to 42.8%. Therefore, the use of the steam ejector represents a solution to avoid severe damage to the low pressure steam turbine, thus bringing more flexibility, and ensure that steam extraction will not impose any constraint to the energy plant with CO2 capture at part-load.
•Use of a steam ejector in a natural gas combined cycle with CO2 capture at part-load operation.•Fixed pressure, sliding pressure and the use of steam jet booster were analysed and compared.•The ejector reduces the amount of steam extracted from the crossover to the capture plant.•Ejector avoids severe damage in the blades of the low pressure steam turbine. |
---|---|
AbstractList | This paper aims to evaluate the integration of the steam jet booster in a natural gas combined cycle with CO2 capture at low part-load operation. The steam ejector takes a high pressure motive steam flows in a supersonic nozzle while dragging a low pressure steam which comes from the crossover. Both flows mix into one at fixed pressure of 3.5 bar and sent to the reboiler. The results are compared with two integration alternatives: uncontrolled and controlled steam extraction control. Uncontrolled steam extraction provides better part-load performance than controlled. However, with sliding pressure, at 42.3% gas turbine load the low pressure steam turbine operates at 27% of its capacity compared with 66% when the energy plant operates without capture, this imposes a potential risk to the integrity of the turbine. When the steam ejector is integrated, there is no significant improvement in the efficiency compared with sliding pressure strategy. However, the used capacity of the low pressure steam turbine increases from 27% to 42.8%. Therefore, the use of the steam ejector represents a solution to avoid severe damage to the low pressure steam turbine, thus bringing more flexibility, and ensure that steam extraction will not impose any constraint to the energy plant with CO2 capture at part-load.
•Use of a steam ejector in a natural gas combined cycle with CO2 capture at part-load operation.•Fixed pressure, sliding pressure and the use of steam jet booster were analysed and compared.•The ejector reduces the amount of steam extracted from the crossover to the capture plant.•Ejector avoids severe damage in the blades of the low pressure steam turbine. |
Author | Apan-Ortiz, Jorge Igor González-Díaz, Abigail Sanchez-Fernández, Eva |
Author_xml | – sequence: 1 givenname: Jorge Igor surname: Apan-Ortiz fullname: Apan-Ortiz, Jorge Igor organization: Universidad Nacional Autónoma de Mexico (UNAM), Ciudad de Mexico, Mexico – sequence: 2 givenname: Eva surname: Sanchez-Fernández fullname: Sanchez-Fernández, Eva organization: Research Centre for Carbon Solutions, School of Engineering & Physical Sciences, Heriot-Watt University, EH14 4AS, Edinburgh, UK – sequence: 3 givenname: Abigail orcidid: 0000-0003-4661-8124 surname: González-Díaz fullname: González-Díaz, Abigail email: abigail225@hotmail.com, abigail.gonzalez@ineel.mx organization: Instituto Nacional de Electricidad y Energias Limpias, Reforma 113, col. Palmira, Cuernavaca Morelos, C.P. 62490, Mexico |
BookMark | eNp9kE1OwzAQhb0oEm3hBizmAgl2_kg2SKjiT0Lqhq4txx4HR60d2S4oR-DWuJQ1q5mnN9_T6K3IwjqLhNwwmjPKmtsxR4t-mPOCsjanXc6qdkGWtGxoVldVcUlWIYyU0rrtuiX53gUEpyFEFAcYMULvXBIeRABhwdiIgxfROJtu0oLDDNGBm_AkQIAV8ejFHoYESHfojUUFcpZ7hC8TP2BKcdnJOIbflM22ACmmBCU6wiR8zPZOqCtyocU-4PXfXJPd0-P75iV72z6_bh7eMlnSJmai7WtdKaZ03WqlsVG6qpoCy65krKVC9ZUui-QzdtdKZIJp1ZeirlmnVdd05ZpU51zpXQgeNZ-8OQg_c0b5qUI-8nOF_FQhpx1PFSbs_oxh-u3ToOdBGrQSlfEoI1fO_B_wA6rKg5g |
CitedBy_id | crossref_primary_10_1016_j_applthermaleng_2024_123000 crossref_primary_10_1021_acs_energyfuels_9b03036 crossref_primary_10_1016_j_energy_2024_131861 crossref_primary_10_1016_j_ijggc_2019_04_023 crossref_primary_10_1016_j_energy_2022_123836 crossref_primary_10_1021_acs_iecr_1c01461 |
Cites_doi | 10.1016/j.ijggc.2011.10.004 10.1134/S0040601513090097 10.1016/j.applthermaleng.2010.03.023 10.1016/j.energy.2017.05.020 10.1016/S0011-9164(99)00053-3 10.1002/er.1026 10.1016/j.ijggc.2013.10.006 10.1016/j.ijggc.2016.01.027 10.1016/j.fuel.2014.03.042 10.1016/B978-0-444-63456-6.50104-6 10.1243/0957650041200678 10.1016/j.ijggc.2015.06.003 10.1016/j.egypro.2009.01.185 10.1061/(ASCE)EE.1943-7870.0000007 10.1021/ef201921s 10.1016/S0255-2701(01)00176-3 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd |
Copyright_xml | – notice: 2018 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.energy.2018.09.148 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Environmental Sciences |
EndPage | 139 |
ExternalDocumentID | 10_1016_j_energy_2018_09_148 S0360544218319182 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SES SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ AAHBH AAQXK AAXKI AAYXX ABDPE ABFNM ABXDB ADMUD AFJKZ AHHHB AKRWK ASPBG AVWKF AZFZN CITATION FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ |
ID | FETCH-LOGICAL-c306t-a8b5f4d1df58fdfe6df4462e3931180adb4f32d1d1178ce1a1fdb3a5519fd9693 |
ISSN | 0360-5442 |
IngestDate | Fri Nov 22 00:15:18 EST 2024 Fri Feb 23 02:33:58 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Natural combined cycle Steam ejector Part-load CO2 capture Control strategy Steam extraction |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c306t-a8b5f4d1df58fdfe6df4462e3931180adb4f32d1d1178ce1a1fdb3a5519fd9693 |
ORCID | 0000-0003-4661-8124 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1016_j_energy_2018_09_148 elsevier_sciencedirect_doi_10_1016_j_energy_2018_09_148 |
PublicationCentury | 2000 |
PublicationDate | 2018-12-15 |
PublicationDateYYYYMMDD | 2018-12-15 |
PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Energy (Oxford) |
PublicationYear | 2018 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | KEMA report: Plant and component performance test Report 06-7118 (bib13) November 2006 Knudsen (bib34) 2011 Cotton (bib38) 1994 Irons (bib16) 2013 Dixon, Hall (bib23) 2013 Sanchez Fernandez, Goetheer, Manzolini, Macchi, Rezvani, Vlugt (bib32) 2014; 129 Thermoflow (bib40) 2013 Kather, Liebenthal, Ehlers (bib7) 2016 Alcaraz-Calderón, González-Díaz, Méndez, Gonzalez-Santalo, Gonzalez-Díaz (bib4) 2017 Delarue, Martens, D’haeseleer (bib18) 2012; 6 Irons (bib42) 2013 Perspectives for the Energy Transition (bib1) 2017 Chalmers, Lucquiaud, Gibbins, Leach (bib17) 2009; 135 NASA (bib37) 2017 IEAGHG (bib21) 2012 Rovira, Valdés, Duran (bib24) 2010; 30 González Díaz, Alcaraz-Calderon, Gonzalez-Díaz, Mendez-Aranda, Lucquiaud, Gonzalez-Santalo (bib19) 2017; 134 (bib43) 2013; vol. 30 Gibbins, Crane (bib8) 2004; 218 Razi, Svendsen, Bolland (bib33) 2013; 19 Koetzier, van der Veen, Mclnally (bib12) 2006 Sanchez Fernandez, Lucquiaud, Chalmers, Khakharia, Goetheer, Gibbins (bib5) 2016; 42 Valdés, Rovira, Duran (bib25) 2004; 28 Moelling, Jackson, Malloy (bib39) 2015; 159 Lucquiaud, Chalmers, Gibbins (bib9) 2009; 1 Mechleri, Biliyok, Thornhill (bib35) 2014 PRODESEN (bib6) 2018 Rezazadeh, Galea, Hughes, Pourkashania (bib10) 2015; 39 El-Dessouky, Ettouney, Alatiqi, Al-Nuwaibit (bib28) 2002; 41 . DNV (bib14) 2006 BEIS reportAnnual Report and Accounts 2016-17 Steam its generation and use (bib26) 2005 Kehlhofer, Hannemann, Stirninmann, Rukes (bib22) 2009 KEMA Report (bib15) 2004 Karimi, Hillestad, Svendsen (bib11) 2012; 26 Schutte and Koerting. . (n.d.). Performance Data on Jet Compressors. Retrieved April 12, 2018, from Halvorsen (bib27) 2012 Lines J. Understanding ejector systems necessary to troubleshoot vacuum distillation, Graham Corp. Batavia, NY. Aly, Karameldin, Shamloul (bib29) 1999; 123 (bib41) 2013 PRODESEN (bib3) 2017 GEA Wiegand GmbH. (n.d.). ÜberschlägigeBerechnungeinerDampfstrahl-Vakuumpumpe. Retrieved April 16, 2018, from Elmasri (bib44) 2002 Ol’khovskii (bib20) 2013; 60 Kather (10.1016/j.energy.2018.09.148_bib7) 2016 IEAGHG (10.1016/j.energy.2018.09.148_bib21) 2012 Ol’khovskii (10.1016/j.energy.2018.09.148_bib20) 2013; 60 Aly (10.1016/j.energy.2018.09.148_bib29) 1999; 123 (10.1016/j.energy.2018.09.148_bib43) 2013; vol. 30 Rezazadeh (10.1016/j.energy.2018.09.148_bib10) 2015; 39 Kehlhofer (10.1016/j.energy.2018.09.148_bib22) 2009 El-Dessouky (10.1016/j.energy.2018.09.148_bib28) 2002; 41 Gibbins (10.1016/j.energy.2018.09.148_bib8) 2004; 218 Lucquiaud (10.1016/j.energy.2018.09.148_bib9) 2009; 1 Perspectives for the Energy Transition (10.1016/j.energy.2018.09.148_bib1) 2017 González Díaz (10.1016/j.energy.2018.09.148_bib19) 2017; 134 Thermoflow (10.1016/j.energy.2018.09.148_bib40) 2013 Cotton (10.1016/j.energy.2018.09.148_bib38) 1994 PRODESEN (10.1016/j.energy.2018.09.148_bib3) 2017 Rovira (10.1016/j.energy.2018.09.148_bib24) 2010; 30 PRODESEN (10.1016/j.energy.2018.09.148_bib6) 2018 10.1016/j.energy.2018.09.148_bib2 Karimi (10.1016/j.energy.2018.09.148_bib11) 2012; 26 Irons (10.1016/j.energy.2018.09.148_bib16) 2013 Koetzier (10.1016/j.energy.2018.09.148_bib12) 2006 Razi (10.1016/j.energy.2018.09.148_bib33) 2013; 19 Dixon (10.1016/j.energy.2018.09.148_bib23) 2013 Chalmers (10.1016/j.energy.2018.09.148_bib17) 2009; 135 Alcaraz-Calderón (10.1016/j.energy.2018.09.148_bib4) 2017 DNV (10.1016/j.energy.2018.09.148_bib14) 2006 Delarue (10.1016/j.energy.2018.09.148_bib18) 2012; 6 Moelling (10.1016/j.energy.2018.09.148_bib39) 2015; 159 Knudsen (10.1016/j.energy.2018.09.148_bib34) 2011 10.1016/j.energy.2018.09.148_bib30 KEMA Report (10.1016/j.energy.2018.09.148_bib15) 2004 10.1016/j.energy.2018.09.148_bib31 10.1016/j.energy.2018.09.148_bib36 Steam its generation and use (10.1016/j.energy.2018.09.148_bib26) 2005 Elmasri (10.1016/j.energy.2018.09.148_bib44) 2002 (10.1016/j.energy.2018.09.148_bib41) 2013 KEMA report: Plant and component performance test Report 06-7118 (10.1016/j.energy.2018.09.148_bib13) 2006 Valdés (10.1016/j.energy.2018.09.148_bib25) 2004; 28 Halvorsen (10.1016/j.energy.2018.09.148_bib27) 2012 Sanchez Fernandez (10.1016/j.energy.2018.09.148_bib32) 2014; 129 Mechleri (10.1016/j.energy.2018.09.148_bib35) 2014 Irons (10.1016/j.energy.2018.09.148_bib42) 2013 Sanchez Fernandez (10.1016/j.energy.2018.09.148_bib5) 2016; 42 NASA (10.1016/j.energy.2018.09.148_bib37) 2017 |
References_xml | – volume: 1 start-page: 1411 year: 2009 end-page: 1418 ident: bib9 article-title: Capture-ready supercritical coal-fired power plants and flexible post-combustion CO publication-title: Energy Procedia contributor: fullname: Gibbins – year: 2017 ident: bib37 article-title: Turbine thermodynamics contributor: fullname: NASA – year: 2013 ident: bib42 article-title: Aspects of CCS at Maasvlakte 3 (ROAD) contributor: fullname: Irons – year: 2006 ident: bib14 article-title: Benchmark and technical background verification report. Report No. 74108200 15 contributor: fullname: DNV – start-page: 555 year: 2016 end-page: 588 ident: bib7 article-title: 23 - power plant integration methods for liquid absorbent-based post-combustion CO publication-title: Absorption-based post-combustion capture of carbon dioxide contributor: fullname: Ehlers – volume: 129 start-page: 318 year: 2014 end-page: 329 ident: bib32 article-title: Thermodynamic assessment of amine based CO2 capture technologies in power plants based on European Benchmarking Task Force methodology publication-title: Fuel contributor: fullname: Vlugt – volume: 39 start-page: 397 year: 2015 end-page: 406 ident: bib10 article-title: Performance viability of a natural gas fired combined cycle power plant integrated with post-combustion CO publication-title: Int J Greenhouse Gas Control contributor: fullname: Pourkashania – year: 2009 ident: bib22 article-title: Combined-cycle gas and steam turbine power plant contributor: fullname: Rukes – year: 2017 ident: bib3 article-title: Programa de Desarrollodel sistema eléctrico nacional (PRODESEN) 2017–2031 (development program for the national electrical system 2017–2031) contributor: fullname: PRODESEN – volume: 60 start-page: 607 year: 2013 end-page: 612 ident: bib20 article-title: Thermal tests of the 9FB gas turbine unit produced by general electric publication-title: Therm Eng contributor: fullname: Ol’khovskii – year: 2017 ident: bib4 article-title: Natural gas combined cycle with exhaust gas recirculation and CO publication-title: J Energy Inst contributor: fullname: Gonzalez-Díaz – volume: 135 start-page: 449 year: 2009 end-page: 458 ident: bib17 article-title: Flexible operation of coal fired power plants with postcombustion capture of carbon dioxide publication-title: J Environ Eng contributor: fullname: Leach – volume: 134 start-page: 221 year: 2017 end-page: 233 ident: bib19 article-title: Effect of the ambient conditions on gas turbine combined cycle power plants with post-combustion CO publication-title: Energy contributor: fullname: Gonzalez-Santalo – year: 2002 ident: bib44 article-title: Gas turbine components turbine, Section 9: single pressure HRB/CC Thermodynamics contributor: fullname: Elmasri – year: 2013 ident: bib23 article-title: Fluid mechanics and thermodynamics of turbomachinery contributor: fullname: Hall – volume: 218 start-page: 231 year: 2004 end-page: 239 ident: bib8 article-title: Scope for reductions in the cost of CO publication-title: Proc Inst Mech Eng, part A J Power Energy contributor: fullname: Crane – volume: vol. 30 year: 2013 ident: bib43 article-title: Gas Turbine World 2013 GTW Handbook – year: 2013 ident: bib16 article-title: Aspects of CCS at Maasvlakte 3 (ROAD) contributor: fullname: Irons – volume: 26 start-page: 1805 year: 2012 end-page: 1813 ident: bib11 article-title: Natural gas combined cycle power plant integrated to capture plant publication-title: Energy Fuel contributor: fullname: Svendsen – year: 2011 ident: bib34 article-title: Results from test campaigns at the 1 t/h CO publication-title: PCCC1 Abu Dhabi contributor: fullname: Knudsen – year: 2017 ident: bib1 article-title: Investment needs for a low-carbon energy system contributor: fullname: Perspectives for the Energy Transition – volume: 28 start-page: 1255 year: 2004 end-page: 1267 ident: bib25 article-title: Influence of the heat recovery steam generator design parameters on the thermoeconomic performances of combined cycle gas turbine power plants publication-title: Int J Energy Res contributor: fullname: Duran – year: 2006 ident: bib12 article-title: Setting of technical parameters for LRMC of CCGT. KEMA report contributor: fullname: Mclnally – start-page: 619 year: 2014 end-page: 624 ident: bib35 article-title: Dynamic simulation and control of post-combustion CO publication-title: Computer Aided ChemEng contributor: fullname: Thornhill – volume: 159 start-page: 42 year: 2015 end-page: 45 ident: bib39 article-title: Protecting steam cycle components during low-load operation of combined cycle gas turbine plants publication-title: Power contributor: fullname: Malloy – year: 2004 ident: bib15 article-title: Performance test report 04-2042 contributor: fullname: KEMA Report – year: 2018 ident: bib6 article-title: Programa de Desarrollodel sistema eléctrico nacional (PRODESEN) 2018–2032 (development program for the national electrical system 2018–2032) contributor: fullname: PRODESEN – year: 2012 ident: bib27 article-title: Power plant with CO contributor: fullname: Halvorsen – volume: 41 start-page: 551 year: 2002 end-page: 561 ident: bib28 article-title: Evaluation of steam jet ejectors publication-title: Chem Eng Process: Process Intensification contributor: fullname: Al-Nuwaibit – year: 1994 ident: bib38 article-title: Evaluating and improving steam turbine performance contributor: fullname: Cotton – year: 2012 ident: bib21 article-title: CO contributor: fullname: IEAGHG – year: 2013 ident: bib41 publication-title: Energy Research Centre of The Netherlands – volume: 30 start-page: 1652 year: 2010 end-page: 1658 ident: bib24 article-title: A model to predict the behaviour at part load operation of once-through heat recovery steam generators working with water at supercritical pressure publication-title: Appl Therm Eng contributor: fullname: Duran – volume: 123 start-page: 1 year: 1999 end-page: 8 ident: bib29 article-title: Modelling and simulation of steam jet ejectors publication-title: Desalination contributor: fullname: Shamloul – volume: 42 start-page: 275 year: 2016 end-page: 289 ident: bib5 article-title: Operational flexibility options in power plants with integrated post-combustion capture publication-title: Int. J. Greenh. Gas Control contributor: fullname: Gibbins – volume: 6 start-page: 12 year: 2012 end-page: 20 ident: bib18 article-title: Market opportunities for power plants with post-combustion carbon capture publication-title: Int. J. Greenh. Gas Control contributor: fullname: D’haeseleer – volume: 19 start-page: 478 year: 2013 end-page: 491 ident: bib33 article-title: Validation of mass transfer correlations for CO publication-title: Int J Greenhouse Gas Control contributor: fullname: Bolland – year: 2013 ident: bib40 article-title: I. D. 272, propiedad IIE contributor: fullname: Thermoflow – year: November 2006 ident: bib13 article-title: Appendix B of power and water purchase agreement (March 2005) contributor: fullname: KEMA report: Plant and component performance test Report 06-7118 – year: 2005 ident: bib26 article-title: The babcock & wilcox company, 2005 contributor: fullname: Steam its generation and use – volume: 6 start-page: 12 year: 2012 ident: 10.1016/j.energy.2018.09.148_bib18 article-title: Market opportunities for power plants with post-combustion carbon capture publication-title: Int. J. Greenh. Gas Control doi: 10.1016/j.ijggc.2011.10.004 contributor: fullname: Delarue – year: 2002 ident: 10.1016/j.energy.2018.09.148_bib44 contributor: fullname: Elmasri – volume: 60 start-page: 607 issue: 9 year: 2013 ident: 10.1016/j.energy.2018.09.148_bib20 article-title: Thermal tests of the 9FB gas turbine unit produced by general electric publication-title: Therm Eng doi: 10.1134/S0040601513090097 contributor: fullname: Ol’khovskii – year: 2017 ident: 10.1016/j.energy.2018.09.148_bib3 contributor: fullname: PRODESEN – year: 2012 ident: 10.1016/j.energy.2018.09.148_bib27 contributor: fullname: Halvorsen – year: 1994 ident: 10.1016/j.energy.2018.09.148_bib38 contributor: fullname: Cotton – year: 2017 ident: 10.1016/j.energy.2018.09.148_bib1 contributor: fullname: Perspectives for the Energy Transition – volume: 30 start-page: 1652 issue: 13 year: 2010 ident: 10.1016/j.energy.2018.09.148_bib24 article-title: A model to predict the behaviour at part load operation of once-through heat recovery steam generators working with water at supercritical pressure publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2010.03.023 contributor: fullname: Rovira – ident: 10.1016/j.energy.2018.09.148_bib31 – volume: 134 start-page: 221 issue: 2017 year: 2017 ident: 10.1016/j.energy.2018.09.148_bib19 article-title: Effect of the ambient conditions on gas turbine combined cycle power plants with post-combustion CO2 capture publication-title: Energy doi: 10.1016/j.energy.2017.05.020 contributor: fullname: González Díaz – year: 2013 ident: 10.1016/j.energy.2018.09.148_bib16 contributor: fullname: Irons – volume: 123 start-page: 1 issue: 1 year: 1999 ident: 10.1016/j.energy.2018.09.148_bib29 article-title: Modelling and simulation of steam jet ejectors publication-title: Desalination doi: 10.1016/S0011-9164(99)00053-3 contributor: fullname: Aly – year: 2013 ident: 10.1016/j.energy.2018.09.148_bib42 contributor: fullname: Irons – volume: 28 start-page: 1255 year: 2004 ident: 10.1016/j.energy.2018.09.148_bib25 article-title: Influence of the heat recovery steam generator design parameters on the thermoeconomic performances of combined cycle gas turbine power plants publication-title: Int J Energy Res doi: 10.1002/er.1026 contributor: fullname: Valdés – ident: 10.1016/j.energy.2018.09.148_bib36 – volume: vol. 30 year: 2013 ident: 10.1016/j.energy.2018.09.148_bib43 – volume: 19 start-page: 478 year: 2013 ident: 10.1016/j.energy.2018.09.148_bib33 article-title: Validation of mass transfer correlations for CO2 absorption with MEA using pilot data publication-title: Int J Greenhouse Gas Control doi: 10.1016/j.ijggc.2013.10.006 contributor: fullname: Razi – start-page: 555 year: 2016 ident: 10.1016/j.energy.2018.09.148_bib7 article-title: 23 - power plant integration methods for liquid absorbent-based post-combustion CO2 capture contributor: fullname: Kather – volume: 42 start-page: 275 issue: part 2 year: 2016 ident: 10.1016/j.energy.2018.09.148_bib5 article-title: Operational flexibility options in power plants with integrated post-combustion capture publication-title: Int. J. Greenh. Gas Control doi: 10.1016/j.ijggc.2016.01.027 contributor: fullname: Sanchez Fernandez – year: 2006 ident: 10.1016/j.energy.2018.09.148_bib12 contributor: fullname: Koetzier – volume: 129 start-page: 318 year: 2014 ident: 10.1016/j.energy.2018.09.148_bib32 article-title: Thermodynamic assessment of amine based CO2 capture technologies in power plants based on European Benchmarking Task Force methodology publication-title: Fuel doi: 10.1016/j.fuel.2014.03.042 contributor: fullname: Sanchez Fernandez – start-page: 619 year: 2014 ident: 10.1016/j.energy.2018.09.148_bib35 article-title: Dynamic simulation and control of post-combustion CO2 capture with MEA in a gas fired power plant publication-title: Computer Aided ChemEng doi: 10.1016/B978-0-444-63456-6.50104-6 contributor: fullname: Mechleri – year: 2006 ident: 10.1016/j.energy.2018.09.148_bib13 contributor: fullname: KEMA report: Plant and component performance test Report 06-7118 – year: 2006 ident: 10.1016/j.energy.2018.09.148_bib14 contributor: fullname: DNV – year: 2009 ident: 10.1016/j.energy.2018.09.148_bib22 contributor: fullname: Kehlhofer – ident: 10.1016/j.energy.2018.09.148_bib30 – year: 2013 ident: 10.1016/j.energy.2018.09.148_bib23 contributor: fullname: Dixon – year: 2011 ident: 10.1016/j.energy.2018.09.148_bib34 article-title: Results from test campaigns at the 1 t/h CO2 post-combustion capture pilot-plant in esbjerg under the EU FP7 CESAR Project contributor: fullname: Knudsen – volume: 218 start-page: 231 year: 2004 ident: 10.1016/j.energy.2018.09.148_bib8 article-title: Scope for reductions in the cost of CO2 capture using flue gas scrubbing with amine solvents publication-title: Proc Inst Mech Eng, part A J Power Energy doi: 10.1243/0957650041200678 contributor: fullname: Gibbins – volume: 39 start-page: 397 issue: 2015 year: 2015 ident: 10.1016/j.energy.2018.09.148_bib10 article-title: Performance viability of a natural gas fired combined cycle power plant integrated with post-combustion CO2 capture at part-load and temporary non-capture operations publication-title: Int J Greenhouse Gas Control doi: 10.1016/j.ijggc.2015.06.003 contributor: fullname: Rezazadeh – year: 2018 ident: 10.1016/j.energy.2018.09.148_bib6 contributor: fullname: PRODESEN – year: 2013 ident: 10.1016/j.energy.2018.09.148_bib41 – issue: 2017 year: 2017 ident: 10.1016/j.energy.2018.09.148_bib4 article-title: Natural gas combined cycle with exhaust gas recirculation and CO2 capture at part-load operation publication-title: J Energy Inst contributor: fullname: Alcaraz-Calderón – year: 2005 ident: 10.1016/j.energy.2018.09.148_bib26 contributor: fullname: Steam its generation and use – ident: 10.1016/j.energy.2018.09.148_bib2 – volume: 159 start-page: 42 issue: 3 year: 2015 ident: 10.1016/j.energy.2018.09.148_bib39 article-title: Protecting steam cycle components during low-load operation of combined cycle gas turbine plants publication-title: Power contributor: fullname: Moelling – year: 2013 ident: 10.1016/j.energy.2018.09.148_bib40 contributor: fullname: Thermoflow – volume: 1 start-page: 1411 year: 2009 ident: 10.1016/j.energy.2018.09.148_bib9 article-title: Capture-ready supercritical coal-fired power plants and flexible post-combustion CO2 capture publication-title: Energy Procedia doi: 10.1016/j.egypro.2009.01.185 contributor: fullname: Lucquiaud – year: 2004 ident: 10.1016/j.energy.2018.09.148_bib15 contributor: fullname: KEMA Report – year: 2012 ident: 10.1016/j.energy.2018.09.148_bib21 contributor: fullname: IEAGHG – volume: 135 start-page: 449 year: 2009 ident: 10.1016/j.energy.2018.09.148_bib17 article-title: Flexible operation of coal fired power plants with postcombustion capture of carbon dioxide publication-title: J Environ Eng doi: 10.1061/(ASCE)EE.1943-7870.0000007 contributor: fullname: Chalmers – volume: 26 start-page: 1805 year: 2012 ident: 10.1016/j.energy.2018.09.148_bib11 article-title: Natural gas combined cycle power plant integrated to capture plant publication-title: Energy Fuel doi: 10.1021/ef201921s contributor: fullname: Karimi – volume: 41 start-page: 551 issue: 6 year: 2002 ident: 10.1016/j.energy.2018.09.148_bib28 article-title: Evaluation of steam jet ejectors publication-title: Chem Eng Process: Process Intensification doi: 10.1016/S0255-2701(01)00176-3 contributor: fullname: El-Dessouky – year: 2017 ident: 10.1016/j.energy.2018.09.148_bib37 contributor: fullname: NASA |
SSID | ssj0005899 |
Score | 2.358146 |
Snippet | This paper aims to evaluate the integration of the steam jet booster in a natural gas combined cycle with CO2 capture at low part-load operation. The steam... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 126 |
SubjectTerms | CO2 capture Control strategy Natural combined cycle Part-load Steam ejector Steam extraction |
Title | Use of steam jet booster as an integration strategy to operate a natural gas combined cycle with post-combustion CO2 capture at part-load |
URI | https://dx.doi.org/10.1016/j.energy.2018.09.148 |
Volume | 165 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaW9gAXBIWK8tIcuEVG68TJJsdVN4hyoIdtpd4iO7EXViWJuqlU9h_wrxnbcbJtEQIkLlEUPzfz7XhmMg9C3kUpz7jOQhqVTFMeTQWVQqDiOtNClvGUS2FNF8vZ54t0kfN8MvHFdMZn_5XS-AxpbSJn_4Law6T4AO-R5nhFquP1j-h-7ozzhnjfgrXqAhSjTTIEU1BG1EN6CEP1jctMa-XPpjXZlVUgApvqEwm3wgG4QdScUSYtv-Myzmjb4nTUNJg6YDjL8WkYlKJ1XyK6oMU90ctG3CoAmrsIQ5Pa9MZ504_2B2RH9BR_x9YZ869WKjhZNYPP8BJh-UVtqTF426_6zFu9UQkYvIeaeusaL7Hrwt4uhO01l19X3o-kt26w1HiKuPhOZ3LzYTejj5ML9ZrSmPPbbDyJdxgxC5OdM525hEn3jgtnuVi_V_YtGEe_1GS9ZS75551E3EuzrFkVuSBquSke_Pshsjfkrvvzk_zi0-halNq6pcM2fcim9Su8v9avRaIdMefsCXnc6ycwd8B6SiaqPiAPffj65oAc5mNoJHbsz4bNM_IDkQeNBos8QORBjzwQGxA17CAPPPKga6BHHgjokQeIPPDIA4s8MMiDO8gDRB70yAPRwYC85-T8Q352_JH2hT5oiRprR0UqY80rVuk41ZVWSaU5T0IVZZHJUCgqyXUUYjtjs7RUTDBdyUigsJ_pKkuy6JDs1U2tXhBgTIRMVokNEJdxIlNklbOkkmoqcIXoiFD_rovW5XMpvKPjunC0KQxtimmGanF6RGaeIEUvkzpZs0AM_Xbky38e-Yo8Gv8Kr8led3Wt3pAHm-r6bY-0n5TktEM |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Use+of+steam+jet+booster+as+an+integration+strategy+to+operate+a+natural+gas+combined+cycle+with+post-combustion+CO2+capture+at+part-load&rft.jtitle=Energy+%28Oxford%29&rft.au=Apan-Ortiz%2C+Jorge+Igor&rft.au=Sanchez-Fern%C3%A1ndez%2C+Eva&rft.au=Gonz%C3%A1lez-D%C3%ADaz%2C+Abigail&rft.date=2018-12-15&rft.pub=Elsevier+Ltd&rft.issn=0360-5442&rft.volume=165&rft.spage=126&rft.epage=139&rft_id=info:doi/10.1016%2Fj.energy.2018.09.148&rft.externalDocID=S0360544218319182 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |