Digital mapping of coffee ripeness using UAV-based multispectral imagery

•UAV imagery provides a feasible method for monitoring the coffee fruit ripeness.•The use of spectral and textural variables improved the fruit ripeness mapping.•The spatiotemporal variability of the fruit ripeness was predicted and measured.•The method promotes non-invasive and spatial-specific mon...

Full description

Saved in:
Bibliographic Details
Published in:Computers and electronics in agriculture Vol. 204; p. 107499
Main Authors: Nogueira Martins, Rodrigo, de Assis de Carvalho Pinto, Francisco, Marçal de Queiroz, Daniel, Sárvio Magalhães Valente, Domingos, Tadeu Fim Rosas, Jorge, Fagundes Portes, Marcelo, Sânzio Aguiar Cerqueira, Elder
Format: Journal Article
Language:English
Published: Elsevier B.V 01-01-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •UAV imagery provides a feasible method for monitoring the coffee fruit ripeness.•The use of spectral and textural variables improved the fruit ripeness mapping.•The spatiotemporal variability of the fruit ripeness was predicted and measured.•The method promotes non-invasive and spatial-specific monitoring of fruit ripeness. Timely and accurate monitoring of coffee ripeness is essential for harvest planning, especially in mountainous areas where the harvest is performed manually due to the limited use of agricultural mechanization. The increasing temporal and spatial resolutions of remote sensing based on low-altitude unmanned aerial vehicles (UAV) provides a feasible way to monitor the fruit ripeness variability. Due to these facts, this study was aimed to: (1) predict the fruit ripeness using spectral and textural variables; and (2) to determine the best variables for developing spatio-temporal variability maps of the fruit ripeness. To do so, an experiment with six arabica coffee fields was set up. During the coffee ripeness stage in the 2018–2019 and 2020–2021 seasons, seven flights were carried out using a quadcopter equipped with a five-band multispectral camera. After that, 12 spectral and 64 textural variables composed of bands and vegetation indices were obtained. For the same period, the percentage of unripe fruits (fruit ripeness) was determined using an irregular grid on each field. Then, the fruit ripeness was predicted with six machine learning (ML) algorithms using as input (1) the spectral variables and (2) the combination of spectral and textural variables. Among the evaluated ML algorithms, the random forest presented the higher accuracy, in which the model using the spectral and textural variables (r2 = 0.71 and RMSE = 11.47%) presented superior performance than the model based solely on spectral variables (r2 = 0.67 and RMSE = 12.09%). Finally, this study demonstrated the feasibility of using spectral and textural variables derived from UAV imagery for mapping and monitoring the spatiotemporal changes in the fruit ripeness at a fine scale.
AbstractList •UAV imagery provides a feasible method for monitoring the coffee fruit ripeness.•The use of spectral and textural variables improved the fruit ripeness mapping.•The spatiotemporal variability of the fruit ripeness was predicted and measured.•The method promotes non-invasive and spatial-specific monitoring of fruit ripeness. Timely and accurate monitoring of coffee ripeness is essential for harvest planning, especially in mountainous areas where the harvest is performed manually due to the limited use of agricultural mechanization. The increasing temporal and spatial resolutions of remote sensing based on low-altitude unmanned aerial vehicles (UAV) provides a feasible way to monitor the fruit ripeness variability. Due to these facts, this study was aimed to: (1) predict the fruit ripeness using spectral and textural variables; and (2) to determine the best variables for developing spatio-temporal variability maps of the fruit ripeness. To do so, an experiment with six arabica coffee fields was set up. During the coffee ripeness stage in the 2018–2019 and 2020–2021 seasons, seven flights were carried out using a quadcopter equipped with a five-band multispectral camera. After that, 12 spectral and 64 textural variables composed of bands and vegetation indices were obtained. For the same period, the percentage of unripe fruits (fruit ripeness) was determined using an irregular grid on each field. Then, the fruit ripeness was predicted with six machine learning (ML) algorithms using as input (1) the spectral variables and (2) the combination of spectral and textural variables. Among the evaluated ML algorithms, the random forest presented the higher accuracy, in which the model using the spectral and textural variables (r2 = 0.71 and RMSE = 11.47%) presented superior performance than the model based solely on spectral variables (r2 = 0.67 and RMSE = 12.09%). Finally, this study demonstrated the feasibility of using spectral and textural variables derived from UAV imagery for mapping and monitoring the spatiotemporal changes in the fruit ripeness at a fine scale.
ArticleNumber 107499
Author Sânzio Aguiar Cerqueira, Elder
de Assis de Carvalho Pinto, Francisco
Fagundes Portes, Marcelo
Sárvio Magalhães Valente, Domingos
Nogueira Martins, Rodrigo
Tadeu Fim Rosas, Jorge
Marçal de Queiroz, Daniel
Author_xml – sequence: 1
  givenname: Rodrigo
  surname: Nogueira Martins
  fullname: Nogueira Martins, Rodrigo
  email: rodrigo.nogueira@ifnmg.edu.br
  organization: Department of Agricultural Engineering, Universidade Federal de Viçosa (UFV), Viçosa, Brazil
– sequence: 2
  givenname: Francisco
  surname: de Assis de Carvalho Pinto
  fullname: de Assis de Carvalho Pinto, Francisco
  organization: Department of Agricultural Engineering, Universidade Federal de Viçosa (UFV), Viçosa, Brazil
– sequence: 3
  givenname: Daniel
  surname: Marçal de Queiroz
  fullname: Marçal de Queiroz, Daniel
  organization: Department of Agricultural Engineering, Universidade Federal de Viçosa (UFV), Viçosa, Brazil
– sequence: 4
  givenname: Domingos
  surname: Sárvio Magalhães Valente
  fullname: Sárvio Magalhães Valente, Domingos
  organization: Department of Agricultural Engineering, Universidade Federal de Viçosa (UFV), Viçosa, Brazil
– sequence: 5
  givenname: Jorge
  surname: Tadeu Fim Rosas
  fullname: Tadeu Fim Rosas, Jorge
  organization: Department of Soil and Plant Nutrition, Universidade de São Paulo (USP-ESALQ), Piracicaba, Brazil
– sequence: 6
  givenname: Marcelo
  surname: Fagundes Portes
  fullname: Fagundes Portes, Marcelo
  organization: Department of Agricultural Engineering, Universidade Federal de Viçosa (UFV), Viçosa, Brazil
– sequence: 7
  givenname: Elder
  surname: Sânzio Aguiar Cerqueira
  fullname: Sânzio Aguiar Cerqueira, Elder
  organization: Department of Geotechnics and Transportation, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, Brazil
BookMark eNp9kMtqwzAQRUVJoUnaP-jCP2BXUhzJ2hRC-kgh0E3TrRhLI6MQP5CcQv6-Cu66q-HOzB3unAWZdX2HhDwyWjDKxNOxMH07QFNwynlqyVKpGzJnleS5THJG5mmtyplQ6o4sYjzSpFUl52T34hs_wilrYRh812S9y0zvHGIW_IAdxpid43Vw2HznNUS0WXs-jT4OaMaQjL6FBsPlntw6OEV8-KtLcnh7_dru8v3n-8d2s8_NiooxV5JVCoS1wglDJa2hdDU3a8cpWGeFssjWINAI6QRIyqVdGSzRQi0luHK1JOV014Q-xoBODyFFCBfNqL7S0Ec90dBXGnqikWzPkw1Tth-PQUfjsTNofUiPaNv7_w_8AnUybdo
CitedBy_id crossref_primary_10_1016_j_compag_2024_109074
crossref_primary_10_1016_j_postharvbio_2024_112773
crossref_primary_10_3390_agriengineering5030088
crossref_primary_10_1016_j_compag_2024_108813
Cites_doi 10.3390/rs13040581
10.3390/rs12223778
10.1590/S1677-04202007000400014
10.1016/j.rse.2003.12.013
10.3390/rs13081471
10.1016/S0034-4257(96)00072-7
10.1016/S0034-4257(96)00156-3
10.3390/rs13020263
10.1016/j.compag.2019.105026
10.1016/j.compag.2004.02.006
10.1109/TSMC.1973.4309314
10.3390/rs10060824
10.1007/s11119-021-09838-3
10.3390/rs8070540
10.1016/j.sab.2017.06.015
10.3390/rs4092492
10.1590/S0034-737X2013000200020
10.3390/rs12162534
10.1155/2018/6408571
10.1007/s41348-019-00234-8
10.1080/14498596.2020.1860146
10.1007/s11119-018-9600-7
10.1127/0941-2948/2013/0507
10.1117/12.336896
10.1007/978-0-387-21706-2
10.1007/s11119-006-9011-z
10.1016/j.rse.2012.01.003
10.1007/s11119-014-9352-y
10.1034/j.1399-3054.1999.106119.x
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.compag.2022.107499
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-7107
ExternalDocumentID 10_1016_j_compag_2022_107499
S0168169922008079
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JM
9JN
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
AAYFN
ABBOA
ABBQC
ABFNM
ABFRF
ABGRD
ABJNI
ABKYH
ABLVK
ABMAC
ABMZM
ABRWV
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACIWK
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AESVU
AEXOQ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLV
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LCYCR
LG9
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
QYZTP
R2-
RIG
ROL
RPZ
SAB
SBC
SDF
SDG
SES
SEW
SNL
SPC
SPCBC
SSA
SSH
SSV
SSZ
T5K
UHS
UNMZH
WUQ
Y6R
~G-
~KM
AAHBH
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
ID FETCH-LOGICAL-c306t-97189a6dd6f6c070ba4fb2c5f20adfd69de15a6ec67f6a7027d3ce4edab77af43
ISSN 0168-1699
IngestDate Thu Sep 26 16:02:08 EDT 2024
Fri Feb 23 02:39:45 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Fruit ripeness
Random forest
Drone
Remote sensing
Digital agriculture
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-97189a6dd6f6c070ba4fb2c5f20adfd69de15a6ec67f6a7027d3ce4edab77af43
ParticipantIDs crossref_primary_10_1016_j_compag_2022_107499
elsevier_sciencedirect_doi_10_1016_j_compag_2022_107499
PublicationCentury 2000
PublicationDate January 2023
2023-01-00
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: January 2023
PublicationDecade 2020
PublicationTitle Computers and electronics in agriculture
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kuhn (b0085) 2008
Silva, Hubinger, Gomes Neto, Milori, Ferreira, Ferreira (b0165) 2017; 135
Gitelson, Kaufman, Merzlyak (b0055) 1996
Rouse, J.W., Haas, R.H., Schell, J.A., Deeering, D.., 1973. Monitoring vegetation systems in the Great Plains with ERTS (Earth Resources Technology Satellite)., in: Third Earth Resources Technology Satellite-1 Symposium.
Soares, Rennó, Formaggio, Yanasse, Frery (b0170) 1997; 59
Silva, S. de A., de Queiroz, D.M., Pinto, F. de A.C., Santos, N.T., 2014. Coffee quality and its relationship with Brix degree and colorimetric information of coffee cherries. Precis. Agric. https://doi.org/10.1007/s11119-014-9352-y.
Meyer, G.E., Hindman, T., 1998. Machine Vision Detection Parameters for Plant Species Identification, in: SPIE Conference on Precision Agriculture and Biolooical Quality. Boston. Massachusetts, pp. 327–335.
Johnson, Herwitz, Lobitz, Dunagan (b0080) 2004
Fu, Yang, Song, Li, Xu, Feng, Zhao (b0050) 2021; 13
Alvares, C.A., Stape, J.L., Sentelhas, P.C., De Moraes Gonçalves, J.L., Sparovek, G., 2013. Köppen’s climate classification map for Brazil. Meteorol. Zeitschrift. https://doi.org/10.1127/0941-2948/2013/0507.
DaMatta, F.M., Ronchi, C.P., Maestri, M., Barros, R.S., 2007. Ecophysiology of coffee growth and production. Brazilian J. Plant Physiol. https://doi.org/10.1590/S1677-04202007000400014.
Dos Reis, Werner, Silva, Figueiredo, Antunes, Esquerdo, Coutinho, Lamparelli, Rocha, Magalhães (b0035) 2020
Herwitz, Johnson, Dunagan, Higgins, Sullivan, Zheng, Lobitz, Leung, Gallmeyer, Aoyagi, Slye, Brass (b0070) 2004
Martinez, Poltronieri, Farah, Perrone (b0110) 2013; 60
Schumacher, Mislimshoeva, Brenning, Zandler, Brandt, Samimi, Koellner (b0155) 2016; 8
Haralick, Shanmugam, Dinstein (b0065) 1973; SMC-3
Rosas, J.T.F., de Carvalho Pinto, F. de A., de Queiroz, D.M., de Melo Villar, F.M., Magalhães Valente, D.S., Nogueira Martins, R., 2021. Coffee ripeness monitoring using a UAV-mounted low-cost multispectral camera. Precis. Agric. 19. https://doi.org/10.1007/s11119-021-09838-3.
Zheng, Cheng, Li, Zhou, Yao, Tian, Cao, Zhu (b0190) 2018; 10
Rosas, J.T.F., de Carvalho Pinto, F. de A., Queiroz, D.M. de, de Melo Villar, F.M., Martins, R.N., Silva, S. de A., 2020. Low-cost system for radiometric calibration of UAV-based multispectral imagery. J. Spat. Sci. 00, 1–15. https://doi.org/10.1080/14498596.2020.1860146.
Liu, Liu, Li, Guo, Wang, Lu (b0090) 2019; 166
Nogueira Martins, R., de Carvalho Pinto, F. de A., Marçal de Queiroz, D., Magalhães Valente, D.S., Fim Rosas, J.T., 2021. A Novel Vegetation Index for Coffee Ripeness Monitoring Using Aerial Imagery. Remote Sens. https://doi.org/10.3390/rs13020263.
Bernardes, Moreira, Adami, Giarolla, Rudorff (b0010) 2012
Zheng, Cheng, Zhou, Li, Yao, Tian, Cao, Zhu (b0195) 2019; 20
Zvoleff, A., 2020. Glcm: Calculate Textures from Grey-Level Co-Occurrence Matrices (GLCMs).
Marin, D.B., Ferraz, G.A. e S., Guimarães, P.H.S., Schwerz, F., Santana, L.S., Barbosa, B.D.S., Barata, R.A.P., Faria, R. de O., Dias, J.E.L., Conti, L., Rossi, G., 2021. Remotely Piloted Aircraft and Random Forest in the Evaluation of the Spatial Variability of Foliar Nitrogen in Coffee Crop. Remote Sens. 13, 1471. https://doi.org/10.3390/rs13081471.
Wang, Yi, Hu, Xie, Yao, Xu, Zheng (b0180) 2021; 102
Venables, W. N., Ripley, B. D. 2002. Modern Applied Statistics with S. 4
R Core Team (b0135) 2021
Haboudane, Miller, Pattey, Zarco-Tejada, Strachan (b0060) 2004
Merzlyak, Gitelson, Chivkunova, Rakitin (b0115) 1999; 106
Breiman (b0015) 2001
Louzada Pereira, Carvalho Guarçoni, Soares Cardoso, Côrrea Taques, Rizzo Moreira, da Silva, Schwengber ten Caten (b0095) 2018
Meyer, Dimitriadou, Hornik, Weingessel, Leisch, Chang, Lin (b0120) 2019
DadrasJavan, Samadzadegan, Seyed Pourazar, Fazeli (b0025) 2019
Fitzgerald, Rodriguez, Christensen, Belford, Sadras, Clarke (b0040) 2006
Hijmans, R., Etten, J. Van, … J.C.-R., 2015, U., 2012. Package “raster.” h64-50-233-100.mdsnwi.tisp.static.
edition. SpringerVerlag, New York. Available at: <http://www.stats.ox.ac.uk/pub/MASS4.
Cannell (b0020) 1975; 1
Fu, Yang, Li, Song, Li, Xu, Wang, Zhao (b0045) 2020; 12
Wood, Pidgeon, Radeloff, Keuler (b0185) 2012; 121
Cannell (10.1016/j.compag.2022.107499_b0020) 1975; 1
Fu (10.1016/j.compag.2022.107499_b0050) 2021; 13
Wood (10.1016/j.compag.2022.107499_b0185) 2012; 121
Herwitz (10.1016/j.compag.2022.107499_b0070) 2004
Gitelson (10.1016/j.compag.2022.107499_b0055) 1996
Kuhn (10.1016/j.compag.2022.107499_b0085) 2008
Silva (10.1016/j.compag.2022.107499_b0165) 2017; 135
Louzada Pereira (10.1016/j.compag.2022.107499_b0095) 2018
Schumacher (10.1016/j.compag.2022.107499_b0155) 2016; 8
Liu (10.1016/j.compag.2022.107499_b0090) 2019; 166
Breiman (10.1016/j.compag.2022.107499_b0015) 2001
Haboudane (10.1016/j.compag.2022.107499_b0060) 2004
Wang (10.1016/j.compag.2022.107499_b0180) 2021; 102
Zheng (10.1016/j.compag.2022.107499_b0190) 2018; 10
Dos Reis (10.1016/j.compag.2022.107499_b0035) 2020
10.1016/j.compag.2022.107499_b0150
10.1016/j.compag.2022.107499_b0030
Fitzgerald (10.1016/j.compag.2022.107499_b0040) 2006
10.1016/j.compag.2022.107499_b0075
10.1016/j.compag.2022.107499_b0130
Fu (10.1016/j.compag.2022.107499_b0045) 2020; 12
10.1016/j.compag.2022.107499_b0175
Bernardes (10.1016/j.compag.2022.107499_b0010) 2012
Meyer (10.1016/j.compag.2022.107499_b0120) 2019
Martinez (10.1016/j.compag.2022.107499_b0110) 2013; 60
R Core Team (10.1016/j.compag.2022.107499_b0135) 2021
Johnson (10.1016/j.compag.2022.107499_b0080) 2004
Haralick (10.1016/j.compag.2022.107499_b0065) 1973; SMC-3
Soares (10.1016/j.compag.2022.107499_b0170) 1997; 59
10.1016/j.compag.2022.107499_b0125
10.1016/j.compag.2022.107499_b0005
10.1016/j.compag.2022.107499_b0145
10.1016/j.compag.2022.107499_b0200
10.1016/j.compag.2022.107499_b0105
DadrasJavan (10.1016/j.compag.2022.107499_b0025) 2019
10.1016/j.compag.2022.107499_b0140
10.1016/j.compag.2022.107499_b0160
Merzlyak (10.1016/j.compag.2022.107499_b0115) 1999; 106
Zheng (10.1016/j.compag.2022.107499_b0195) 2019; 20
References_xml – volume: 8
  start-page: 1
  year: 2016
  end-page: 19
  ident: b0155
  article-title: Do red edge and texture attributes from high-resolution satellite data improve wood volume estimation in a semi-arid mountainous region?
  publication-title: Remote Sens.
  contributor:
    fullname: Koellner
– volume: 102
  year: 2021
  ident: b0180
  article-title: Combining spectral and textural information in UAV hyperspectral images to estimate rice grain yield
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  contributor:
    fullname: Zheng
– year: 2019
  ident: b0025
  article-title: UAV-based multispectral imagery for fast Citrus Greening detection
  publication-title: J. Plant Dis. Prot.
  contributor:
    fullname: Fazeli
– volume: 12
  start-page: 1
  year: 2020
  end-page: 27
  ident: b0045
  article-title: Winter wheat nitrogen status estimation using uav-based rgb imagery and gaussian processes regression
  publication-title: Remote Sens.
  contributor:
    fullname: Zhao
– volume: 121
  start-page: 516
  year: 2012
  end-page: 526
  ident: b0185
  article-title: Image texture as a remotely sensed measure of vegetation structure
  publication-title: Remote Sens. Environ.
  contributor:
    fullname: Keuler
– volume: 20
  start-page: 611
  year: 2019
  end-page: 629
  ident: b0195
  article-title: Improved estimation of rice aboveground biomass combining textural and spectral analysis of UAV imagery
  publication-title: Precis. Agric.
  contributor:
    fullname: Zhu
– year: 2004
  ident: b0080
  article-title: Feasibility of monitoring coffee field ripeness with airborne multispectral imagery
  publication-title: Appl. Eng. Agric.
  contributor:
    fullname: Dunagan
– year: 2004
  ident: b0060
  article-title: Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture
  publication-title: Remote Sens. Environ.
  contributor:
    fullname: Strachan
– year: 2008
  ident: b0085
  article-title: caret Package
  publication-title: J. Stat. Softw.
  contributor:
    fullname: Kuhn
– volume: 1
  year: 1975
  ident: b0020
  article-title: Crop physiological aspects of coffee bean yield: a review
  publication-title: J. Coffee Res.
  contributor:
    fullname: Cannell
– year: 2021
  ident: b0135
  article-title: R: A Language and Environment for Statistical Computing
  contributor:
    fullname: R Core Team
– volume: 135
  start-page: 29
  year: 2017
  end-page: 33
  ident: b0165
  article-title: Potential of Laser Induced Breakdown Spectroscopy for analyzing the quality of unroasted and ground coffee. Spectrochim
  publication-title: Acta - Part B At. Spectrosc.
  contributor:
    fullname: Ferreira
– volume: 10
  year: 2018
  ident: b0190
  article-title: Evaluation of RGB, color-infrared and multispectral images acquired from unmanned aerial systems for the estimation of nitrogen accumulation in rice
  publication-title: Remote Sens.
  contributor:
    fullname: Zhu
– year: 2020
  ident: b0035
  article-title: Monitoring Pasture Aboveground Biomass and Canopy Height in an Integrated Crop-Livestock System Using Textural Information from PlanetScope Imagery
  publication-title: Remote Sens.
  contributor:
    fullname: Magalhães
– volume: 13
  start-page: 1
  year: 2021
  end-page: 22
  ident: b0050
  article-title: Improved estimation of winter wheat aboveground biomass using multiscale textures extracted from UAV-based digital images and hyperspectral feature analysis
  publication-title: Remote Sens.
  contributor:
    fullname: Zhao
– volume: SMC-3
  start-page: 610
  year: 1973
  end-page: 621
  ident: b0065
  article-title: Textural Features for Image Classification
  publication-title: IEEE Trans. Syst. Man. Cybern.
  contributor:
    fullname: Dinstein
– volume: 106
  start-page: 135
  year: 1999
  end-page: 141
  ident: b0115
  article-title: Non-destructive optical detection of leaf senescence and fruit ripening
  publication-title: Physiol. Plant.
  contributor:
    fullname: Rakitin
– volume: 59
  start-page: 234
  year: 1997
  end-page: 247
  ident: b0170
  article-title: An investigation of the selection of texture features for crop discrimination using SAR imagery
  publication-title: Remote Sens. Environ.
  contributor:
    fullname: Frery
– volume: 60
  start-page: 293
  year: 2013
  end-page: 299
  ident: b0110
  article-title: Zinc supplementation, production and quality of coffee beans
  publication-title: Rev. Ceres
  contributor:
    fullname: Perrone
– volume: 166
  year: 2019
  ident: b0090
  article-title: Estimating biomass of winter oilseed rape using vegetation indices and texture metrics derived from UAV multispectral images
  publication-title: Comput. Electron. Agric.
  contributor:
    fullname: Lu
– year: 1996
  ident: b0055
  article-title: Use of a green channel in remote sensing of global vegetation from EOS- MODIS
  publication-title: Remote Sens. Environ.
  contributor:
    fullname: Merzlyak
– year: 2006
  ident: b0040
  article-title: Spectral and thermal sensing for nitrogen and water status in rainfed and irrigated wheat environments
  publication-title: Precis. Agric.
  contributor:
    fullname: Clarke
– year: 2012
  ident: b0010
  article-title: Monitoring biennial bearing effect on coffee yield using MODIS remote sensing imagery
  publication-title: Remote Sens.
  contributor:
    fullname: Rudorff
– year: 2019
  ident: b0120
  article-title: Package “e1071”
  publication-title: R News.
  contributor:
    fullname: Lin
– year: 2001
  ident: b0015
  article-title: Random forests
  publication-title: Mach. Learn.
  contributor:
    fullname: Breiman
– year: 2004
  ident: b0070
  article-title: Imaging from an unmanned aerial vehicle: Agricultural surveillance and decision support
  publication-title: Comput. Electron. Agric.
  contributor:
    fullname: Brass
– year: 2018
  ident: b0095
  article-title: Influence of Solar Radiation and Wet Processing on the Final Quality of Arabica Coffee
  publication-title: J. Food Qual.
  contributor:
    fullname: Schwengber ten Caten
– volume: 13
  start-page: 1
  year: 2021
  ident: 10.1016/j.compag.2022.107499_b0050
  article-title: Improved estimation of winter wheat aboveground biomass using multiscale textures extracted from UAV-based digital images and hyperspectral feature analysis
  publication-title: Remote Sens.
  doi: 10.3390/rs13040581
  contributor:
    fullname: Fu
– volume: 12
  start-page: 1
  year: 2020
  ident: 10.1016/j.compag.2022.107499_b0045
  article-title: Winter wheat nitrogen status estimation using uav-based rgb imagery and gaussian processes regression
  publication-title: Remote Sens.
  doi: 10.3390/rs12223778
  contributor:
    fullname: Fu
– year: 2004
  ident: 10.1016/j.compag.2022.107499_b0080
  article-title: Feasibility of monitoring coffee field ripeness with airborne multispectral imagery
  publication-title: Appl. Eng. Agric.
  contributor:
    fullname: Johnson
– ident: 10.1016/j.compag.2022.107499_b0030
  doi: 10.1590/S1677-04202007000400014
– year: 2004
  ident: 10.1016/j.compag.2022.107499_b0060
  article-title: Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2003.12.013
  contributor:
    fullname: Haboudane
– ident: 10.1016/j.compag.2022.107499_b0105
  doi: 10.3390/rs13081471
– year: 1996
  ident: 10.1016/j.compag.2022.107499_b0055
  article-title: Use of a green channel in remote sensing of global vegetation from EOS- MODIS
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(96)00072-7
  contributor:
    fullname: Gitelson
– year: 2019
  ident: 10.1016/j.compag.2022.107499_b0120
  article-title: Package “e1071”
  publication-title: R News.
  contributor:
    fullname: Meyer
– volume: 59
  start-page: 234
  year: 1997
  ident: 10.1016/j.compag.2022.107499_b0170
  article-title: An investigation of the selection of texture features for crop discrimination using SAR imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(96)00156-3
  contributor:
    fullname: Soares
– ident: 10.1016/j.compag.2022.107499_b0075
– ident: 10.1016/j.compag.2022.107499_b0130
  doi: 10.3390/rs13020263
– volume: 166
  year: 2019
  ident: 10.1016/j.compag.2022.107499_b0090
  article-title: Estimating biomass of winter oilseed rape using vegetation indices and texture metrics derived from UAV multispectral images
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.105026
  contributor:
    fullname: Liu
– year: 2004
  ident: 10.1016/j.compag.2022.107499_b0070
  article-title: Imaging from an unmanned aerial vehicle: Agricultural surveillance and decision support
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2004.02.006
  contributor:
    fullname: Herwitz
– year: 2021
  ident: 10.1016/j.compag.2022.107499_b0135
  contributor:
    fullname: R Core Team
– volume: SMC-3
  start-page: 610
  year: 1973
  ident: 10.1016/j.compag.2022.107499_b0065
  article-title: Textural Features for Image Classification
  publication-title: IEEE Trans. Syst. Man. Cybern.
  doi: 10.1109/TSMC.1973.4309314
  contributor:
    fullname: Haralick
– year: 2001
  ident: 10.1016/j.compag.2022.107499_b0015
  article-title: Random forests
  publication-title: Mach. Learn.
  contributor:
    fullname: Breiman
– volume: 10
  year: 2018
  ident: 10.1016/j.compag.2022.107499_b0190
  article-title: Evaluation of RGB, color-infrared and multispectral images acquired from unmanned aerial systems for the estimation of nitrogen accumulation in rice
  publication-title: Remote Sens.
  doi: 10.3390/rs10060824
  contributor:
    fullname: Zheng
– ident: 10.1016/j.compag.2022.107499_b0140
  doi: 10.1007/s11119-021-09838-3
– volume: 8
  start-page: 1
  year: 2016
  ident: 10.1016/j.compag.2022.107499_b0155
  article-title: Do red edge and texture attributes from high-resolution satellite data improve wood volume estimation in a semi-arid mountainous region?
  publication-title: Remote Sens.
  doi: 10.3390/rs8070540
  contributor:
    fullname: Schumacher
– ident: 10.1016/j.compag.2022.107499_b0200
– volume: 135
  start-page: 29
  year: 2017
  ident: 10.1016/j.compag.2022.107499_b0165
  article-title: Potential of Laser Induced Breakdown Spectroscopy for analyzing the quality of unroasted and ground coffee. Spectrochim
  publication-title: Acta - Part B At. Spectrosc.
  doi: 10.1016/j.sab.2017.06.015
  contributor:
    fullname: Silva
– year: 2012
  ident: 10.1016/j.compag.2022.107499_b0010
  article-title: Monitoring biennial bearing effect on coffee yield using MODIS remote sensing imagery
  publication-title: Remote Sens.
  doi: 10.3390/rs4092492
  contributor:
    fullname: Bernardes
– volume: 60
  start-page: 293
  year: 2013
  ident: 10.1016/j.compag.2022.107499_b0110
  article-title: Zinc supplementation, production and quality of coffee beans
  publication-title: Rev. Ceres
  doi: 10.1590/S0034-737X2013000200020
  contributor:
    fullname: Martinez
– year: 2020
  ident: 10.1016/j.compag.2022.107499_b0035
  article-title: Monitoring Pasture Aboveground Biomass and Canopy Height in an Integrated Crop-Livestock System Using Textural Information from PlanetScope Imagery
  publication-title: Remote Sens.
  doi: 10.3390/rs12162534
  contributor:
    fullname: Dos Reis
– year: 2008
  ident: 10.1016/j.compag.2022.107499_b0085
  article-title: caret Package
  publication-title: J. Stat. Softw.
  contributor:
    fullname: Kuhn
– year: 2018
  ident: 10.1016/j.compag.2022.107499_b0095
  article-title: Influence of Solar Radiation and Wet Processing on the Final Quality of Arabica Coffee
  publication-title: J. Food Qual.
  doi: 10.1155/2018/6408571
  contributor:
    fullname: Louzada Pereira
– volume: 102
  year: 2021
  ident: 10.1016/j.compag.2022.107499_b0180
  article-title: Combining spectral and textural information in UAV hyperspectral images to estimate rice grain yield
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  contributor:
    fullname: Wang
– year: 2019
  ident: 10.1016/j.compag.2022.107499_b0025
  article-title: UAV-based multispectral imagery for fast Citrus Greening detection
  publication-title: J. Plant Dis. Prot.
  doi: 10.1007/s41348-019-00234-8
  contributor:
    fullname: DadrasJavan
– ident: 10.1016/j.compag.2022.107499_b0145
  doi: 10.1080/14498596.2020.1860146
– volume: 20
  start-page: 611
  year: 2019
  ident: 10.1016/j.compag.2022.107499_b0195
  article-title: Improved estimation of rice aboveground biomass combining textural and spectral analysis of UAV imagery
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-018-9600-7
  contributor:
    fullname: Zheng
– ident: 10.1016/j.compag.2022.107499_b0005
  doi: 10.1127/0941-2948/2013/0507
– ident: 10.1016/j.compag.2022.107499_b0125
  doi: 10.1117/12.336896
– ident: 10.1016/j.compag.2022.107499_b0175
  doi: 10.1007/978-0-387-21706-2
– year: 2006
  ident: 10.1016/j.compag.2022.107499_b0040
  article-title: Spectral and thermal sensing for nitrogen and water status in rainfed and irrigated wheat environments
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-006-9011-z
  contributor:
    fullname: Fitzgerald
– volume: 121
  start-page: 516
  year: 2012
  ident: 10.1016/j.compag.2022.107499_b0185
  article-title: Image texture as a remotely sensed measure of vegetation structure
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.01.003
  contributor:
    fullname: Wood
– ident: 10.1016/j.compag.2022.107499_b0160
  doi: 10.1007/s11119-014-9352-y
– volume: 106
  start-page: 135
  year: 1999
  ident: 10.1016/j.compag.2022.107499_b0115
  article-title: Non-destructive optical detection of leaf senescence and fruit ripening
  publication-title: Physiol. Plant.
  doi: 10.1034/j.1399-3054.1999.106119.x
  contributor:
    fullname: Merzlyak
– volume: 1
  year: 1975
  ident: 10.1016/j.compag.2022.107499_b0020
  article-title: Crop physiological aspects of coffee bean yield: a review
  publication-title: J. Coffee Res.
  contributor:
    fullname: Cannell
– ident: 10.1016/j.compag.2022.107499_b0150
SSID ssj0016987
Score 2.4354227
Snippet •UAV imagery provides a feasible method for monitoring the coffee fruit ripeness.•The use of spectral and textural variables improved the fruit ripeness...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 107499
SubjectTerms Digital agriculture
Drone
Fruit ripeness
Random forest
Remote sensing
Title Digital mapping of coffee ripeness using UAV-based multispectral imagery
URI https://dx.doi.org/10.1016/j.compag.2022.107499
Volume 204
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07b9swECacZGmHok80SVtw6CbIsCmFtEYjcZF2CFrkgWwCxYejILYMO17663PHhxTHRdEW6CIIBEUad5-P5PHuPkI-Z2qoBeAkRW2nyG2bFlKP0ryyRlYaVjDrqBPOxdn16GSST3q9yIrZtf1XTUMb6BozZ_9C2-2g0ADvoHN4gtbh-Ud6P6mnyAOSzORiESKaVWOtMQmYB2_Y1s4_cDm-SnEN0z6o0KVcuhIcM_k0UTpSP_h6zh1zjoulldNlqN_RYuQM_UH1Uia-SIF35jR6WU-b2EUbREa9SuDlGPmJ7m6a5Hs9d6xOke5Dtd1hIHelL_BOySQ_cPjmZ5cj3zqKXK8h2L8mwdrZdzeuITOr5EriAmv8qWEGEmg2XB4se-Ly2M7F8a5RDudh7umW-sab85FgGG0qHtt75vmOt9YO78a47bvg_2kfJmZ9DFeNI25U5T7H6XA2hgEkA1HskD0Gtg5M7d746-T6W3uVxYuRz9kPPy_mb7ogw-25fr0_erTnuXhJXoTDCh17lL0iPTN_TZ6PO4W_IacBbzTgjTaWerzRiDfq8EZbvNENvNGAt7fk8svk4vg0DewcqYJj5n1awK6mkFxrbrmChaOSua2Ygv_2QGqreaHN8Ehyo7iwXIoBEzpTJjdaVkJIm2fvyO68mZv3hEpuDVc2U0dmkCtWFZi4VAmWFzlj1VDtkzTKpFz4IixljE68Lb0MS5Rh6WW4T0QUXBk2kn6DWIKuf_vlwT9_eUiedVD9QHbvl2vzkeys9PpTQMQDj--Z5A
link.rule.ids 315,782,786,27933,27934
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Digital+mapping+of+coffee+ripeness+using+UAV-based+multispectral+imagery&rft.jtitle=Computers+and+electronics+in+agriculture&rft.au=Nogueira+Martins%2C+Rodrigo&rft.au=de+Assis+de+Carvalho+Pinto%2C+Francisco&rft.au=Mar%C3%A7al+de+Queiroz%2C+Daniel&rft.au=S%C3%A1rvio+Magalh%C3%A3es+Valente%2C+Domingos&rft.date=2023-01-01&rft.pub=Elsevier+B.V&rft.issn=0168-1699&rft.eissn=1872-7107&rft.volume=204&rft_id=info:doi/10.1016%2Fj.compag.2022.107499&rft.externalDocID=S0168169922008079
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1699&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1699&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1699&client=summon