Digital mapping of coffee ripeness using UAV-based multispectral imagery
•UAV imagery provides a feasible method for monitoring the coffee fruit ripeness.•The use of spectral and textural variables improved the fruit ripeness mapping.•The spatiotemporal variability of the fruit ripeness was predicted and measured.•The method promotes non-invasive and spatial-specific mon...
Saved in:
Published in: | Computers and electronics in agriculture Vol. 204; p. 107499 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier B.V
01-01-2023
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | •UAV imagery provides a feasible method for monitoring the coffee fruit ripeness.•The use of spectral and textural variables improved the fruit ripeness mapping.•The spatiotemporal variability of the fruit ripeness was predicted and measured.•The method promotes non-invasive and spatial-specific monitoring of fruit ripeness.
Timely and accurate monitoring of coffee ripeness is essential for harvest planning, especially in mountainous areas where the harvest is performed manually due to the limited use of agricultural mechanization. The increasing temporal and spatial resolutions of remote sensing based on low-altitude unmanned aerial vehicles (UAV) provides a feasible way to monitor the fruit ripeness variability. Due to these facts, this study was aimed to: (1) predict the fruit ripeness using spectral and textural variables; and (2) to determine the best variables for developing spatio-temporal variability maps of the fruit ripeness. To do so, an experiment with six arabica coffee fields was set up. During the coffee ripeness stage in the 2018–2019 and 2020–2021 seasons, seven flights were carried out using a quadcopter equipped with a five-band multispectral camera. After that, 12 spectral and 64 textural variables composed of bands and vegetation indices were obtained. For the same period, the percentage of unripe fruits (fruit ripeness) was determined using an irregular grid on each field. Then, the fruit ripeness was predicted with six machine learning (ML) algorithms using as input (1) the spectral variables and (2) the combination of spectral and textural variables. Among the evaluated ML algorithms, the random forest presented the higher accuracy, in which the model using the spectral and textural variables (r2 = 0.71 and RMSE = 11.47%) presented superior performance than the model based solely on spectral variables (r2 = 0.67 and RMSE = 12.09%). Finally, this study demonstrated the feasibility of using spectral and textural variables derived from UAV imagery for mapping and monitoring the spatiotemporal changes in the fruit ripeness at a fine scale. |
---|---|
AbstractList | •UAV imagery provides a feasible method for monitoring the coffee fruit ripeness.•The use of spectral and textural variables improved the fruit ripeness mapping.•The spatiotemporal variability of the fruit ripeness was predicted and measured.•The method promotes non-invasive and spatial-specific monitoring of fruit ripeness.
Timely and accurate monitoring of coffee ripeness is essential for harvest planning, especially in mountainous areas where the harvest is performed manually due to the limited use of agricultural mechanization. The increasing temporal and spatial resolutions of remote sensing based on low-altitude unmanned aerial vehicles (UAV) provides a feasible way to monitor the fruit ripeness variability. Due to these facts, this study was aimed to: (1) predict the fruit ripeness using spectral and textural variables; and (2) to determine the best variables for developing spatio-temporal variability maps of the fruit ripeness. To do so, an experiment with six arabica coffee fields was set up. During the coffee ripeness stage in the 2018–2019 and 2020–2021 seasons, seven flights were carried out using a quadcopter equipped with a five-band multispectral camera. After that, 12 spectral and 64 textural variables composed of bands and vegetation indices were obtained. For the same period, the percentage of unripe fruits (fruit ripeness) was determined using an irregular grid on each field. Then, the fruit ripeness was predicted with six machine learning (ML) algorithms using as input (1) the spectral variables and (2) the combination of spectral and textural variables. Among the evaluated ML algorithms, the random forest presented the higher accuracy, in which the model using the spectral and textural variables (r2 = 0.71 and RMSE = 11.47%) presented superior performance than the model based solely on spectral variables (r2 = 0.67 and RMSE = 12.09%). Finally, this study demonstrated the feasibility of using spectral and textural variables derived from UAV imagery for mapping and monitoring the spatiotemporal changes in the fruit ripeness at a fine scale. |
ArticleNumber | 107499 |
Author | Sânzio Aguiar Cerqueira, Elder de Assis de Carvalho Pinto, Francisco Fagundes Portes, Marcelo Sárvio Magalhães Valente, Domingos Nogueira Martins, Rodrigo Tadeu Fim Rosas, Jorge Marçal de Queiroz, Daniel |
Author_xml | – sequence: 1 givenname: Rodrigo surname: Nogueira Martins fullname: Nogueira Martins, Rodrigo email: rodrigo.nogueira@ifnmg.edu.br organization: Department of Agricultural Engineering, Universidade Federal de Viçosa (UFV), Viçosa, Brazil – sequence: 2 givenname: Francisco surname: de Assis de Carvalho Pinto fullname: de Assis de Carvalho Pinto, Francisco organization: Department of Agricultural Engineering, Universidade Federal de Viçosa (UFV), Viçosa, Brazil – sequence: 3 givenname: Daniel surname: Marçal de Queiroz fullname: Marçal de Queiroz, Daniel organization: Department of Agricultural Engineering, Universidade Federal de Viçosa (UFV), Viçosa, Brazil – sequence: 4 givenname: Domingos surname: Sárvio Magalhães Valente fullname: Sárvio Magalhães Valente, Domingos organization: Department of Agricultural Engineering, Universidade Federal de Viçosa (UFV), Viçosa, Brazil – sequence: 5 givenname: Jorge surname: Tadeu Fim Rosas fullname: Tadeu Fim Rosas, Jorge organization: Department of Soil and Plant Nutrition, Universidade de São Paulo (USP-ESALQ), Piracicaba, Brazil – sequence: 6 givenname: Marcelo surname: Fagundes Portes fullname: Fagundes Portes, Marcelo organization: Department of Agricultural Engineering, Universidade Federal de Viçosa (UFV), Viçosa, Brazil – sequence: 7 givenname: Elder surname: Sânzio Aguiar Cerqueira fullname: Sânzio Aguiar Cerqueira, Elder organization: Department of Geotechnics and Transportation, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, Brazil |
BookMark | eNp9kMtqwzAQRUVJoUnaP-jCP2BXUhzJ2hRC-kgh0E3TrRhLI6MQP5CcQv6-Cu66q-HOzB3unAWZdX2HhDwyWjDKxNOxMH07QFNwynlqyVKpGzJnleS5THJG5mmtyplQ6o4sYjzSpFUl52T34hs_wilrYRh812S9y0zvHGIW_IAdxpid43Vw2HznNUS0WXs-jT4OaMaQjL6FBsPlntw6OEV8-KtLcnh7_dru8v3n-8d2s8_NiooxV5JVCoS1wglDJa2hdDU3a8cpWGeFssjWINAI6QRIyqVdGSzRQi0luHK1JOV014Q-xoBODyFFCBfNqL7S0Ec90dBXGnqikWzPkw1Tth-PQUfjsTNofUiPaNv7_w_8AnUybdo |
CitedBy_id | crossref_primary_10_1016_j_compag_2024_109074 crossref_primary_10_1016_j_postharvbio_2024_112773 crossref_primary_10_3390_agriengineering5030088 crossref_primary_10_1016_j_compag_2024_108813 |
Cites_doi | 10.3390/rs13040581 10.3390/rs12223778 10.1590/S1677-04202007000400014 10.1016/j.rse.2003.12.013 10.3390/rs13081471 10.1016/S0034-4257(96)00072-7 10.1016/S0034-4257(96)00156-3 10.3390/rs13020263 10.1016/j.compag.2019.105026 10.1016/j.compag.2004.02.006 10.1109/TSMC.1973.4309314 10.3390/rs10060824 10.1007/s11119-021-09838-3 10.3390/rs8070540 10.1016/j.sab.2017.06.015 10.3390/rs4092492 10.1590/S0034-737X2013000200020 10.3390/rs12162534 10.1155/2018/6408571 10.1007/s41348-019-00234-8 10.1080/14498596.2020.1860146 10.1007/s11119-018-9600-7 10.1127/0941-2948/2013/0507 10.1117/12.336896 10.1007/978-0-387-21706-2 10.1007/s11119-006-9011-z 10.1016/j.rse.2012.01.003 10.1007/s11119-014-9352-y 10.1034/j.1399-3054.1999.106119.x |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. |
Copyright_xml | – notice: 2022 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.compag.2022.107499 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-7107 |
ExternalDocumentID | 10_1016_j_compag_2022_107499 S0168169922008079 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JM 9JN AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO AAYFN ABBOA ABBQC ABFNM ABFRF ABGRD ABJNI ABKYH ABLVK ABMAC ABMZM ABRWV ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACIWK ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADQTV AEBSH AEFWE AEKER AENEX AEQOU AESVU AEXOQ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOUOD ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLV HLZ HVGLF HZ~ IHE J1W KOM LCYCR LG9 LW9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 QYZTP R2- RIG ROL RPZ SAB SBC SDF SDG SES SEW SNL SPC SPCBC SSA SSH SSV SSZ T5K UHS UNMZH WUQ Y6R ~G- ~KM AAHBH AAXKI AAYXX AFJKZ AKRWK CITATION |
ID | FETCH-LOGICAL-c306t-97189a6dd6f6c070ba4fb2c5f20adfd69de15a6ec67f6a7027d3ce4edab77af43 |
ISSN | 0168-1699 |
IngestDate | Thu Sep 26 16:02:08 EDT 2024 Fri Feb 23 02:39:45 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Fruit ripeness Random forest Drone Remote sensing Digital agriculture |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c306t-97189a6dd6f6c070ba4fb2c5f20adfd69de15a6ec67f6a7027d3ce4edab77af43 |
ParticipantIDs | crossref_primary_10_1016_j_compag_2022_107499 elsevier_sciencedirect_doi_10_1016_j_compag_2022_107499 |
PublicationCentury | 2000 |
PublicationDate | January 2023 2023-01-00 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: January 2023 |
PublicationDecade | 2020 |
PublicationTitle | Computers and electronics in agriculture |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Kuhn (b0085) 2008 Silva, Hubinger, Gomes Neto, Milori, Ferreira, Ferreira (b0165) 2017; 135 Gitelson, Kaufman, Merzlyak (b0055) 1996 Rouse, J.W., Haas, R.H., Schell, J.A., Deeering, D.., 1973. Monitoring vegetation systems in the Great Plains with ERTS (Earth Resources Technology Satellite)., in: Third Earth Resources Technology Satellite-1 Symposium. Soares, Rennó, Formaggio, Yanasse, Frery (b0170) 1997; 59 Silva, S. de A., de Queiroz, D.M., Pinto, F. de A.C., Santos, N.T., 2014. Coffee quality and its relationship with Brix degree and colorimetric information of coffee cherries. Precis. Agric. https://doi.org/10.1007/s11119-014-9352-y. Meyer, G.E., Hindman, T., 1998. Machine Vision Detection Parameters for Plant Species Identification, in: SPIE Conference on Precision Agriculture and Biolooical Quality. Boston. Massachusetts, pp. 327–335. Johnson, Herwitz, Lobitz, Dunagan (b0080) 2004 Fu, Yang, Song, Li, Xu, Feng, Zhao (b0050) 2021; 13 Alvares, C.A., Stape, J.L., Sentelhas, P.C., De Moraes Gonçalves, J.L., Sparovek, G., 2013. Köppen’s climate classification map for Brazil. Meteorol. Zeitschrift. https://doi.org/10.1127/0941-2948/2013/0507. DaMatta, F.M., Ronchi, C.P., Maestri, M., Barros, R.S., 2007. Ecophysiology of coffee growth and production. Brazilian J. Plant Physiol. https://doi.org/10.1590/S1677-04202007000400014. Dos Reis, Werner, Silva, Figueiredo, Antunes, Esquerdo, Coutinho, Lamparelli, Rocha, Magalhães (b0035) 2020 Herwitz, Johnson, Dunagan, Higgins, Sullivan, Zheng, Lobitz, Leung, Gallmeyer, Aoyagi, Slye, Brass (b0070) 2004 Martinez, Poltronieri, Farah, Perrone (b0110) 2013; 60 Schumacher, Mislimshoeva, Brenning, Zandler, Brandt, Samimi, Koellner (b0155) 2016; 8 Haralick, Shanmugam, Dinstein (b0065) 1973; SMC-3 Rosas, J.T.F., de Carvalho Pinto, F. de A., de Queiroz, D.M., de Melo Villar, F.M., Magalhães Valente, D.S., Nogueira Martins, R., 2021. Coffee ripeness monitoring using a UAV-mounted low-cost multispectral camera. Precis. Agric. 19. https://doi.org/10.1007/s11119-021-09838-3. Zheng, Cheng, Li, Zhou, Yao, Tian, Cao, Zhu (b0190) 2018; 10 Rosas, J.T.F., de Carvalho Pinto, F. de A., Queiroz, D.M. de, de Melo Villar, F.M., Martins, R.N., Silva, S. de A., 2020. Low-cost system for radiometric calibration of UAV-based multispectral imagery. J. Spat. Sci. 00, 1–15. https://doi.org/10.1080/14498596.2020.1860146. Liu, Liu, Li, Guo, Wang, Lu (b0090) 2019; 166 Nogueira Martins, R., de Carvalho Pinto, F. de A., Marçal de Queiroz, D., Magalhães Valente, D.S., Fim Rosas, J.T., 2021. A Novel Vegetation Index for Coffee Ripeness Monitoring Using Aerial Imagery. Remote Sens. https://doi.org/10.3390/rs13020263. Bernardes, Moreira, Adami, Giarolla, Rudorff (b0010) 2012 Zheng, Cheng, Zhou, Li, Yao, Tian, Cao, Zhu (b0195) 2019; 20 Zvoleff, A., 2020. Glcm: Calculate Textures from Grey-Level Co-Occurrence Matrices (GLCMs). Marin, D.B., Ferraz, G.A. e S., Guimarães, P.H.S., Schwerz, F., Santana, L.S., Barbosa, B.D.S., Barata, R.A.P., Faria, R. de O., Dias, J.E.L., Conti, L., Rossi, G., 2021. Remotely Piloted Aircraft and Random Forest in the Evaluation of the Spatial Variability of Foliar Nitrogen in Coffee Crop. Remote Sens. 13, 1471. https://doi.org/10.3390/rs13081471. Wang, Yi, Hu, Xie, Yao, Xu, Zheng (b0180) 2021; 102 Venables, W. N., Ripley, B. D. 2002. Modern Applied Statistics with S. 4 R Core Team (b0135) 2021 Haboudane, Miller, Pattey, Zarco-Tejada, Strachan (b0060) 2004 Merzlyak, Gitelson, Chivkunova, Rakitin (b0115) 1999; 106 Breiman (b0015) 2001 Louzada Pereira, Carvalho Guarçoni, Soares Cardoso, Côrrea Taques, Rizzo Moreira, da Silva, Schwengber ten Caten (b0095) 2018 Meyer, Dimitriadou, Hornik, Weingessel, Leisch, Chang, Lin (b0120) 2019 DadrasJavan, Samadzadegan, Seyed Pourazar, Fazeli (b0025) 2019 Fitzgerald, Rodriguez, Christensen, Belford, Sadras, Clarke (b0040) 2006 Hijmans, R., Etten, J. Van, … J.C.-R., 2015, U., 2012. Package “raster.” h64-50-233-100.mdsnwi.tisp.static. edition. SpringerVerlag, New York. Available at: <http://www.stats.ox.ac.uk/pub/MASS4. Cannell (b0020) 1975; 1 Fu, Yang, Li, Song, Li, Xu, Wang, Zhao (b0045) 2020; 12 Wood, Pidgeon, Radeloff, Keuler (b0185) 2012; 121 Cannell (10.1016/j.compag.2022.107499_b0020) 1975; 1 Fu (10.1016/j.compag.2022.107499_b0050) 2021; 13 Wood (10.1016/j.compag.2022.107499_b0185) 2012; 121 Herwitz (10.1016/j.compag.2022.107499_b0070) 2004 Gitelson (10.1016/j.compag.2022.107499_b0055) 1996 Kuhn (10.1016/j.compag.2022.107499_b0085) 2008 Silva (10.1016/j.compag.2022.107499_b0165) 2017; 135 Louzada Pereira (10.1016/j.compag.2022.107499_b0095) 2018 Schumacher (10.1016/j.compag.2022.107499_b0155) 2016; 8 Liu (10.1016/j.compag.2022.107499_b0090) 2019; 166 Breiman (10.1016/j.compag.2022.107499_b0015) 2001 Haboudane (10.1016/j.compag.2022.107499_b0060) 2004 Wang (10.1016/j.compag.2022.107499_b0180) 2021; 102 Zheng (10.1016/j.compag.2022.107499_b0190) 2018; 10 Dos Reis (10.1016/j.compag.2022.107499_b0035) 2020 10.1016/j.compag.2022.107499_b0150 10.1016/j.compag.2022.107499_b0030 Fitzgerald (10.1016/j.compag.2022.107499_b0040) 2006 10.1016/j.compag.2022.107499_b0075 10.1016/j.compag.2022.107499_b0130 Fu (10.1016/j.compag.2022.107499_b0045) 2020; 12 10.1016/j.compag.2022.107499_b0175 Bernardes (10.1016/j.compag.2022.107499_b0010) 2012 Meyer (10.1016/j.compag.2022.107499_b0120) 2019 Martinez (10.1016/j.compag.2022.107499_b0110) 2013; 60 R Core Team (10.1016/j.compag.2022.107499_b0135) 2021 Johnson (10.1016/j.compag.2022.107499_b0080) 2004 Haralick (10.1016/j.compag.2022.107499_b0065) 1973; SMC-3 Soares (10.1016/j.compag.2022.107499_b0170) 1997; 59 10.1016/j.compag.2022.107499_b0125 10.1016/j.compag.2022.107499_b0005 10.1016/j.compag.2022.107499_b0145 10.1016/j.compag.2022.107499_b0200 10.1016/j.compag.2022.107499_b0105 DadrasJavan (10.1016/j.compag.2022.107499_b0025) 2019 10.1016/j.compag.2022.107499_b0140 10.1016/j.compag.2022.107499_b0160 Merzlyak (10.1016/j.compag.2022.107499_b0115) 1999; 106 Zheng (10.1016/j.compag.2022.107499_b0195) 2019; 20 |
References_xml | – volume: 8 start-page: 1 year: 2016 end-page: 19 ident: b0155 article-title: Do red edge and texture attributes from high-resolution satellite data improve wood volume estimation in a semi-arid mountainous region? publication-title: Remote Sens. contributor: fullname: Koellner – volume: 102 year: 2021 ident: b0180 article-title: Combining spectral and textural information in UAV hyperspectral images to estimate rice grain yield publication-title: Int. J. Appl. Earth Obs. Geoinf. contributor: fullname: Zheng – year: 2019 ident: b0025 article-title: UAV-based multispectral imagery for fast Citrus Greening detection publication-title: J. Plant Dis. Prot. contributor: fullname: Fazeli – volume: 12 start-page: 1 year: 2020 end-page: 27 ident: b0045 article-title: Winter wheat nitrogen status estimation using uav-based rgb imagery and gaussian processes regression publication-title: Remote Sens. contributor: fullname: Zhao – volume: 121 start-page: 516 year: 2012 end-page: 526 ident: b0185 article-title: Image texture as a remotely sensed measure of vegetation structure publication-title: Remote Sens. Environ. contributor: fullname: Keuler – volume: 20 start-page: 611 year: 2019 end-page: 629 ident: b0195 article-title: Improved estimation of rice aboveground biomass combining textural and spectral analysis of UAV imagery publication-title: Precis. Agric. contributor: fullname: Zhu – year: 2004 ident: b0080 article-title: Feasibility of monitoring coffee field ripeness with airborne multispectral imagery publication-title: Appl. Eng. Agric. contributor: fullname: Dunagan – year: 2004 ident: b0060 article-title: Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture publication-title: Remote Sens. Environ. contributor: fullname: Strachan – year: 2008 ident: b0085 article-title: caret Package publication-title: J. Stat. Softw. contributor: fullname: Kuhn – volume: 1 year: 1975 ident: b0020 article-title: Crop physiological aspects of coffee bean yield: a review publication-title: J. Coffee Res. contributor: fullname: Cannell – year: 2021 ident: b0135 article-title: R: A Language and Environment for Statistical Computing contributor: fullname: R Core Team – volume: 135 start-page: 29 year: 2017 end-page: 33 ident: b0165 article-title: Potential of Laser Induced Breakdown Spectroscopy for analyzing the quality of unroasted and ground coffee. Spectrochim publication-title: Acta - Part B At. Spectrosc. contributor: fullname: Ferreira – volume: 10 year: 2018 ident: b0190 article-title: Evaluation of RGB, color-infrared and multispectral images acquired from unmanned aerial systems for the estimation of nitrogen accumulation in rice publication-title: Remote Sens. contributor: fullname: Zhu – year: 2020 ident: b0035 article-title: Monitoring Pasture Aboveground Biomass and Canopy Height in an Integrated Crop-Livestock System Using Textural Information from PlanetScope Imagery publication-title: Remote Sens. contributor: fullname: Magalhães – volume: 13 start-page: 1 year: 2021 end-page: 22 ident: b0050 article-title: Improved estimation of winter wheat aboveground biomass using multiscale textures extracted from UAV-based digital images and hyperspectral feature analysis publication-title: Remote Sens. contributor: fullname: Zhao – volume: SMC-3 start-page: 610 year: 1973 end-page: 621 ident: b0065 article-title: Textural Features for Image Classification publication-title: IEEE Trans. Syst. Man. Cybern. contributor: fullname: Dinstein – volume: 106 start-page: 135 year: 1999 end-page: 141 ident: b0115 article-title: Non-destructive optical detection of leaf senescence and fruit ripening publication-title: Physiol. Plant. contributor: fullname: Rakitin – volume: 59 start-page: 234 year: 1997 end-page: 247 ident: b0170 article-title: An investigation of the selection of texture features for crop discrimination using SAR imagery publication-title: Remote Sens. Environ. contributor: fullname: Frery – volume: 60 start-page: 293 year: 2013 end-page: 299 ident: b0110 article-title: Zinc supplementation, production and quality of coffee beans publication-title: Rev. Ceres contributor: fullname: Perrone – volume: 166 year: 2019 ident: b0090 article-title: Estimating biomass of winter oilseed rape using vegetation indices and texture metrics derived from UAV multispectral images publication-title: Comput. Electron. Agric. contributor: fullname: Lu – year: 1996 ident: b0055 article-title: Use of a green channel in remote sensing of global vegetation from EOS- MODIS publication-title: Remote Sens. Environ. contributor: fullname: Merzlyak – year: 2006 ident: b0040 article-title: Spectral and thermal sensing for nitrogen and water status in rainfed and irrigated wheat environments publication-title: Precis. Agric. contributor: fullname: Clarke – year: 2012 ident: b0010 article-title: Monitoring biennial bearing effect on coffee yield using MODIS remote sensing imagery publication-title: Remote Sens. contributor: fullname: Rudorff – year: 2019 ident: b0120 article-title: Package “e1071” publication-title: R News. contributor: fullname: Lin – year: 2001 ident: b0015 article-title: Random forests publication-title: Mach. Learn. contributor: fullname: Breiman – year: 2004 ident: b0070 article-title: Imaging from an unmanned aerial vehicle: Agricultural surveillance and decision support publication-title: Comput. Electron. Agric. contributor: fullname: Brass – year: 2018 ident: b0095 article-title: Influence of Solar Radiation and Wet Processing on the Final Quality of Arabica Coffee publication-title: J. Food Qual. contributor: fullname: Schwengber ten Caten – volume: 13 start-page: 1 year: 2021 ident: 10.1016/j.compag.2022.107499_b0050 article-title: Improved estimation of winter wheat aboveground biomass using multiscale textures extracted from UAV-based digital images and hyperspectral feature analysis publication-title: Remote Sens. doi: 10.3390/rs13040581 contributor: fullname: Fu – volume: 12 start-page: 1 year: 2020 ident: 10.1016/j.compag.2022.107499_b0045 article-title: Winter wheat nitrogen status estimation using uav-based rgb imagery and gaussian processes regression publication-title: Remote Sens. doi: 10.3390/rs12223778 contributor: fullname: Fu – year: 2004 ident: 10.1016/j.compag.2022.107499_b0080 article-title: Feasibility of monitoring coffee field ripeness with airborne multispectral imagery publication-title: Appl. Eng. Agric. contributor: fullname: Johnson – ident: 10.1016/j.compag.2022.107499_b0030 doi: 10.1590/S1677-04202007000400014 – year: 2004 ident: 10.1016/j.compag.2022.107499_b0060 article-title: Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2003.12.013 contributor: fullname: Haboudane – ident: 10.1016/j.compag.2022.107499_b0105 doi: 10.3390/rs13081471 – year: 1996 ident: 10.1016/j.compag.2022.107499_b0055 article-title: Use of a green channel in remote sensing of global vegetation from EOS- MODIS publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(96)00072-7 contributor: fullname: Gitelson – year: 2019 ident: 10.1016/j.compag.2022.107499_b0120 article-title: Package “e1071” publication-title: R News. contributor: fullname: Meyer – volume: 59 start-page: 234 year: 1997 ident: 10.1016/j.compag.2022.107499_b0170 article-title: An investigation of the selection of texture features for crop discrimination using SAR imagery publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(96)00156-3 contributor: fullname: Soares – ident: 10.1016/j.compag.2022.107499_b0075 – ident: 10.1016/j.compag.2022.107499_b0130 doi: 10.3390/rs13020263 – volume: 166 year: 2019 ident: 10.1016/j.compag.2022.107499_b0090 article-title: Estimating biomass of winter oilseed rape using vegetation indices and texture metrics derived from UAV multispectral images publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2019.105026 contributor: fullname: Liu – year: 2004 ident: 10.1016/j.compag.2022.107499_b0070 article-title: Imaging from an unmanned aerial vehicle: Agricultural surveillance and decision support publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2004.02.006 contributor: fullname: Herwitz – year: 2021 ident: 10.1016/j.compag.2022.107499_b0135 contributor: fullname: R Core Team – volume: SMC-3 start-page: 610 year: 1973 ident: 10.1016/j.compag.2022.107499_b0065 article-title: Textural Features for Image Classification publication-title: IEEE Trans. Syst. Man. Cybern. doi: 10.1109/TSMC.1973.4309314 contributor: fullname: Haralick – year: 2001 ident: 10.1016/j.compag.2022.107499_b0015 article-title: Random forests publication-title: Mach. Learn. contributor: fullname: Breiman – volume: 10 year: 2018 ident: 10.1016/j.compag.2022.107499_b0190 article-title: Evaluation of RGB, color-infrared and multispectral images acquired from unmanned aerial systems for the estimation of nitrogen accumulation in rice publication-title: Remote Sens. doi: 10.3390/rs10060824 contributor: fullname: Zheng – ident: 10.1016/j.compag.2022.107499_b0140 doi: 10.1007/s11119-021-09838-3 – volume: 8 start-page: 1 year: 2016 ident: 10.1016/j.compag.2022.107499_b0155 article-title: Do red edge and texture attributes from high-resolution satellite data improve wood volume estimation in a semi-arid mountainous region? publication-title: Remote Sens. doi: 10.3390/rs8070540 contributor: fullname: Schumacher – ident: 10.1016/j.compag.2022.107499_b0200 – volume: 135 start-page: 29 year: 2017 ident: 10.1016/j.compag.2022.107499_b0165 article-title: Potential of Laser Induced Breakdown Spectroscopy for analyzing the quality of unroasted and ground coffee. Spectrochim publication-title: Acta - Part B At. Spectrosc. doi: 10.1016/j.sab.2017.06.015 contributor: fullname: Silva – year: 2012 ident: 10.1016/j.compag.2022.107499_b0010 article-title: Monitoring biennial bearing effect on coffee yield using MODIS remote sensing imagery publication-title: Remote Sens. doi: 10.3390/rs4092492 contributor: fullname: Bernardes – volume: 60 start-page: 293 year: 2013 ident: 10.1016/j.compag.2022.107499_b0110 article-title: Zinc supplementation, production and quality of coffee beans publication-title: Rev. Ceres doi: 10.1590/S0034-737X2013000200020 contributor: fullname: Martinez – year: 2020 ident: 10.1016/j.compag.2022.107499_b0035 article-title: Monitoring Pasture Aboveground Biomass and Canopy Height in an Integrated Crop-Livestock System Using Textural Information from PlanetScope Imagery publication-title: Remote Sens. doi: 10.3390/rs12162534 contributor: fullname: Dos Reis – year: 2008 ident: 10.1016/j.compag.2022.107499_b0085 article-title: caret Package publication-title: J. Stat. Softw. contributor: fullname: Kuhn – year: 2018 ident: 10.1016/j.compag.2022.107499_b0095 article-title: Influence of Solar Radiation and Wet Processing on the Final Quality of Arabica Coffee publication-title: J. Food Qual. doi: 10.1155/2018/6408571 contributor: fullname: Louzada Pereira – volume: 102 year: 2021 ident: 10.1016/j.compag.2022.107499_b0180 article-title: Combining spectral and textural information in UAV hyperspectral images to estimate rice grain yield publication-title: Int. J. Appl. Earth Obs. Geoinf. contributor: fullname: Wang – year: 2019 ident: 10.1016/j.compag.2022.107499_b0025 article-title: UAV-based multispectral imagery for fast Citrus Greening detection publication-title: J. Plant Dis. Prot. doi: 10.1007/s41348-019-00234-8 contributor: fullname: DadrasJavan – ident: 10.1016/j.compag.2022.107499_b0145 doi: 10.1080/14498596.2020.1860146 – volume: 20 start-page: 611 year: 2019 ident: 10.1016/j.compag.2022.107499_b0195 article-title: Improved estimation of rice aboveground biomass combining textural and spectral analysis of UAV imagery publication-title: Precis. Agric. doi: 10.1007/s11119-018-9600-7 contributor: fullname: Zheng – ident: 10.1016/j.compag.2022.107499_b0005 doi: 10.1127/0941-2948/2013/0507 – ident: 10.1016/j.compag.2022.107499_b0125 doi: 10.1117/12.336896 – ident: 10.1016/j.compag.2022.107499_b0175 doi: 10.1007/978-0-387-21706-2 – year: 2006 ident: 10.1016/j.compag.2022.107499_b0040 article-title: Spectral and thermal sensing for nitrogen and water status in rainfed and irrigated wheat environments publication-title: Precis. Agric. doi: 10.1007/s11119-006-9011-z contributor: fullname: Fitzgerald – volume: 121 start-page: 516 year: 2012 ident: 10.1016/j.compag.2022.107499_b0185 article-title: Image texture as a remotely sensed measure of vegetation structure publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.01.003 contributor: fullname: Wood – ident: 10.1016/j.compag.2022.107499_b0160 doi: 10.1007/s11119-014-9352-y – volume: 106 start-page: 135 year: 1999 ident: 10.1016/j.compag.2022.107499_b0115 article-title: Non-destructive optical detection of leaf senescence and fruit ripening publication-title: Physiol. Plant. doi: 10.1034/j.1399-3054.1999.106119.x contributor: fullname: Merzlyak – volume: 1 year: 1975 ident: 10.1016/j.compag.2022.107499_b0020 article-title: Crop physiological aspects of coffee bean yield: a review publication-title: J. Coffee Res. contributor: fullname: Cannell – ident: 10.1016/j.compag.2022.107499_b0150 |
SSID | ssj0016987 |
Score | 2.4354227 |
Snippet | •UAV imagery provides a feasible method for monitoring the coffee fruit ripeness.•The use of spectral and textural variables improved the fruit ripeness... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 107499 |
SubjectTerms | Digital agriculture Drone Fruit ripeness Random forest Remote sensing |
Title | Digital mapping of coffee ripeness using UAV-based multispectral imagery |
URI | https://dx.doi.org/10.1016/j.compag.2022.107499 |
Volume | 204 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07b9swECacZGmHok80SVtw6CbIsCmFtEYjcZF2CFrkgWwCxYejILYMO17663PHhxTHRdEW6CIIBEUad5-P5PHuPkI-Z2qoBeAkRW2nyG2bFlKP0ryyRlYaVjDrqBPOxdn16GSST3q9yIrZtf1XTUMb6BozZ_9C2-2g0ADvoHN4gtbh-Ud6P6mnyAOSzORiESKaVWOtMQmYB2_Y1s4_cDm-SnEN0z6o0KVcuhIcM_k0UTpSP_h6zh1zjoulldNlqN_RYuQM_UH1Uia-SIF35jR6WU-b2EUbREa9SuDlGPmJ7m6a5Hs9d6xOke5Dtd1hIHelL_BOySQ_cPjmZ5cj3zqKXK8h2L8mwdrZdzeuITOr5EriAmv8qWEGEmg2XB4se-Ly2M7F8a5RDudh7umW-sab85FgGG0qHtt75vmOt9YO78a47bvg_2kfJmZ9DFeNI25U5T7H6XA2hgEkA1HskD0Gtg5M7d746-T6W3uVxYuRz9kPPy_mb7ogw-25fr0_erTnuXhJXoTDCh17lL0iPTN_TZ6PO4W_IacBbzTgjTaWerzRiDfq8EZbvNENvNGAt7fk8svk4vg0DewcqYJj5n1awK6mkFxrbrmChaOSua2Ygv_2QGqreaHN8Ehyo7iwXIoBEzpTJjdaVkJIm2fvyO68mZv3hEpuDVc2U0dmkCtWFZi4VAmWFzlj1VDtkzTKpFz4IixljE68Lb0MS5Rh6WW4T0QUXBk2kn6DWIKuf_vlwT9_eUiedVD9QHbvl2vzkeys9PpTQMQDj--Z5A |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Digital+mapping+of+coffee+ripeness+using+UAV-based+multispectral+imagery&rft.jtitle=Computers+and+electronics+in+agriculture&rft.au=Nogueira+Martins%2C+Rodrigo&rft.au=de+Assis+de+Carvalho+Pinto%2C+Francisco&rft.au=Mar%C3%A7al+de+Queiroz%2C+Daniel&rft.au=S%C3%A1rvio+Magalh%C3%A3es+Valente%2C+Domingos&rft.date=2023-01-01&rft.pub=Elsevier+B.V&rft.issn=0168-1699&rft.eissn=1872-7107&rft.volume=204&rft_id=info:doi/10.1016%2Fj.compag.2022.107499&rft.externalDocID=S0168169922008079 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1699&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1699&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1699&client=summon |