Predicting post-discharge complications in cardiothoracic surgery: A clinical decision support system to optimize remote patient monitoring resources

Cardiac surgery patients are highly prone to severe complications post-discharge. Close follow-up through remote patient monitoring can help detect adverse outcomes earlier or prevent them, closing the gap between hospital and home care. However, equipment is limited due to economic and human resour...

Full description

Saved in:
Bibliographic Details
Published in:International journal of medical informatics (Shannon, Ireland) Vol. 182; p. 105307
Main Authors: Santos, Ricardo, Ribeiro, Bruno, Sousa, Inês, Santos, Jorge, Guede-Fernández, Federico, Dias, Pedro, Carreiro, André V, Gamboa, Hugo, Coelho, Pedro, Fragata, José, Londral, Ana
Format: Journal Article
Language:English
Published: Ireland 01-02-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Cardiac surgery patients are highly prone to severe complications post-discharge. Close follow-up through remote patient monitoring can help detect adverse outcomes earlier or prevent them, closing the gap between hospital and home care. However, equipment is limited due to economic and human resource constraints. This issue raises the need for efficient risk estimation to provide clinicians with insights into the potential benefit of remote monitoring for each patient. Standard models, such as the EuroSCORE, predict the mortality risk before the surgery. While these are used and validated in real settings, the models lack information collected during or following the surgery, determinant to predict adverse outcomes occurring further in the future. This paper proposes a Clinical Decision Support System based on Machine Learning to estimate the risk of severe complications within 90 days following cardiothoracic surgery discharge, an innovative objective underexplored in the literature. Health records from a cardiothoracic surgery department regarding 5 045 patients (60.8% male) collected throughout ten years were used to train predictive models. Clinicians' insights contributed to improving data preparation and extending traditional pipeline optimization techniques, addressing medical Artificial Intelligence requirements. Two separate test sets were used to evaluate the generalizability, one derived from a patient-grouped 70/30 split and another including all surgeries from the last available year. The achieved Area Under the Receiver Operating Characteristic curve on these test sets was 69.5% and 65.3%, respectively. Also, additional testing was implemented to simulate a real-world use case considering the weekly distribution of remote patient monitoring resources post-discharge. Compared to the random resource allocation, the selection of patients with respect to the outputs of the proposed model was proven beneficial, as it led to a higher number of high-risk patients receiving remote monitoring equipment.
AbstractList Cardiac surgery patients are highly prone to severe complications post-discharge. Close follow-up through remote patient monitoring can help detect adverse outcomes earlier or prevent them, closing the gap between hospital and home care. However, equipment is limited due to economic and human resource constraints. This issue raises the need for efficient risk estimation to provide clinicians with insights into the potential benefit of remote monitoring for each patient. Standard models, such as the EuroSCORE, predict the mortality risk before the surgery. While these are used and validated in real settings, the models lack information collected during or following the surgery, determinant to predict adverse outcomes occurring further in the future. This paper proposes a Clinical Decision Support System based on Machine Learning to estimate the risk of severe complications within 90 days following cardiothoracic surgery discharge, an innovative objective underexplored in the literature. Health records from a cardiothoracic surgery department regarding 5 045 patients (60.8% male) collected throughout ten years were used to train predictive models. Clinicians' insights contributed to improving data preparation and extending traditional pipeline optimization techniques, addressing medical Artificial Intelligence requirements. Two separate test sets were used to evaluate the generalizability, one derived from a patient-grouped 70/30 split and another including all surgeries from the last available year. The achieved Area Under the Receiver Operating Characteristic curve on these test sets was 69.5% and 65.3%, respectively. Also, additional testing was implemented to simulate a real-world use case considering the weekly distribution of remote patient monitoring resources post-discharge. Compared to the random resource allocation, the selection of patients with respect to the outputs of the proposed model was proven beneficial, as it led to a higher number of high-risk patients receiving remote monitoring equipment.
ArticleNumber 105307
Author Santos, Jorge
Ribeiro, Bruno
Guede-Fernández, Federico
Coelho, Pedro
Londral, Ana
Gamboa, Hugo
Santos, Ricardo
Dias, Pedro
Fragata, José
Sousa, Inês
Carreiro, André V
Author_xml – sequence: 1
  givenname: Ricardo
  surname: Santos
  fullname: Santos, Ricardo
  email: ricardo.santos@fraunhofer.pt
  organization: Associação Fraunhofer Portugal Research, Rua Alfredo Allen 455/461, 4200-135 Porto, Portugal; Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Physics Department, NOVA School of Science and Technology, 2829-516 Caparica, Portugal. Electronic address: ricardo.santos@fraunhofer.pt
– sequence: 2
  givenname: Bruno
  surname: Ribeiro
  fullname: Ribeiro, Bruno
  organization: Associação Fraunhofer Portugal Research, Rua Alfredo Allen 455/461, 4200-135 Porto, Portugal
– sequence: 3
  givenname: Inês
  surname: Sousa
  fullname: Sousa, Inês
  organization: Associação Fraunhofer Portugal Research, Rua Alfredo Allen 455/461, 4200-135 Porto, Portugal
– sequence: 4
  givenname: Jorge
  surname: Santos
  fullname: Santos, Jorge
  organization: Comprehensive Health Research Center, NOVA Medical School, Campo Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; Hospital de Santa Marta, Centro Hospitalar Universitário Lisboa Central, Rua de Santa Marta, 50, 1169-023 Lisboa, Portugal
– sequence: 5
  givenname: Federico
  surname: Guede-Fernández
  fullname: Guede-Fernández, Federico
  organization: Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Physics Department, NOVA School of Science and Technology, 2829-516 Caparica, Portugal; Value for Health CoLAB, Av. Fontes Pereira de Melo, 15, 2°D, 1050-115 Lisboa, Portugal
– sequence: 6
  givenname: Pedro
  surname: Dias
  fullname: Dias, Pedro
  organization: Comprehensive Health Research Center, NOVA Medical School, Campo Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; Value for Health CoLAB, Av. Fontes Pereira de Melo, 15, 2°D, 1050-115 Lisboa, Portugal
– sequence: 7
  givenname: André V
  surname: Carreiro
  fullname: Carreiro, André V
  organization: Associação Fraunhofer Portugal Research, Rua Alfredo Allen 455/461, 4200-135 Porto, Portugal
– sequence: 8
  givenname: Hugo
  surname: Gamboa
  fullname: Gamboa, Hugo
  organization: Associação Fraunhofer Portugal Research, Rua Alfredo Allen 455/461, 4200-135 Porto, Portugal; Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Physics Department, NOVA School of Science and Technology, 2829-516 Caparica, Portugal
– sequence: 9
  givenname: Pedro
  surname: Coelho
  fullname: Coelho, Pedro
  organization: Comprehensive Health Research Center, NOVA Medical School, Campo Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; Hospital de Santa Marta, Centro Hospitalar Universitário Lisboa Central, Rua de Santa Marta, 50, 1169-023 Lisboa, Portugal
– sequence: 10
  givenname: José
  surname: Fragata
  fullname: Fragata, José
  organization: Comprehensive Health Research Center, NOVA Medical School, Campo Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; Hospital de Santa Marta, Centro Hospitalar Universitário Lisboa Central, Rua de Santa Marta, 50, 1169-023 Lisboa, Portugal
– sequence: 11
  givenname: Ana
  surname: Londral
  fullname: Londral, Ana
  organization: Comprehensive Health Research Center, NOVA Medical School, Campo Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; Value for Health CoLAB, Av. Fontes Pereira de Melo, 15, 2°D, 1050-115 Lisboa, Portugal
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38061187$$D View this record in MEDLINE/PubMed
BookMark eNo9kc9u3CAQh1GUqkm2fYWIYy_eDH-M7d6iqG0iRWoP7RmxME5Y2eAAPmzfo-9bVpvkBGK--Q3wXZHzEAMScs1gy4Cpm_3W72d0PoxbDlzUw1ZAd0YuWd_xpudSnNe96FXTQqsuyFXOewDWQSs_kgvRg2KVvCT_fqWaYosPT3SJuTTOZ_ts0hNSG-dl8tYUH0OmPlBrkvOxPMdkrLc0r5VKh6_0ltrJh0pO1KH1ufK1uCwxFZoPueBMS6RxKX72f5EmnGNButRgDIXOMfgS0_ECCXNck8X8iXwYzZTx8-u6IX--f_t9d988_vzxcHf72FgBqjTtbicVU7CzDLqBOdcrY1prO8k459B32A_CCeTgBjfgKAERrJRyHJ20PRMb8uWUu6T4smIueq7Px2kyAeOaNR-ADx109Yc3RJ1Qm2LOCUe9JD-bdNAM9FGJ3us3JfqoRJ-U1Mbr1xnrrpbf294ciP8X7pDw
Cites_doi 10.1161/CIRCOUTCOMES.113.000329
10.1016/0167-8655(94)90127-9
10.1016/j.athoracsur.2019.09.100
10.1510/icvts.2010.249474
10.1177/1089253208323681
10.1016/j.athoracsur.2009.03.076
10.1016/j.athoracsur.2016.01.105
10.1093/ejcts/ezz346
10.1016/S1010-7940(02)00662-0
10.1093/ejcts/ezs043
10.1016/j.amjcard.2016.08.024
10.1001/jamacardio.2019.4657
10.21037/cdt-21-648
10.1007/BF03007718
10.1089/tmj.2019.0066
10.1371/journal.pone.0226750
10.1016/j.athoracsur.2018.03.002
10.1001/jama.1982.03320430047030
10.1109/JBHI.2017.2675340
10.4258/hir.2011.17.2.93
10.1093/oxfordjournals.pan.a004868
10.1016/j.healthpol.2020.09.005
10.1093/ejcts/ezt303
10.1186/s13019-021-01556-1
10.1186/s12913-022-08073-4
10.1093/ejcts/ezt044
10.1371/journal.pone.0169772
ContentType Journal Article
Copyright Copyright © 2023 The Author(s). Published by Elsevier B.V. All rights reserved.
Copyright_xml – notice: Copyright © 2023 The Author(s). Published by Elsevier B.V. All rights reserved.
DBID NPM
AAYXX
CITATION
7X8
DOI 10.1016/j.ijmedinf.2023.105307
DatabaseName PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1872-8243
EndPage 105307
ExternalDocumentID 10_1016_j_ijmedinf_2023_105307
38061187
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29J
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAWTL
AAXKI
AAXUO
AAYFN
ABBOA
ABBQC
ABDPE
ABFNM
ABJNI
ABMAC
ABMZM
ABXDB
ACDAQ
ACGFS
ACIUM
ACJTP
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AEVXI
AFCTW
AFJKZ
AFKWA
AFRHN
AFTJW
AFXBA
AFXIZ
AGHFR
AGUBO
AGYEJ
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AJRQY
AJUYK
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
N9A
NPM
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCC
SDF
SDG
SDP
SEL
SES
SEW
SNG
SPC
SPCBC
SSH
SSV
SSZ
T5K
UHS
Z5R
~G-
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c306t-5bb46160bc10791dd86aa5cc741222087e893d3e20d9d9ef40ee0c444ffd4c813
ISSN 1386-5056
IngestDate Fri Oct 25 06:16:52 EDT 2024
Thu Nov 21 23:19:48 EST 2024
Sat Nov 02 12:24:40 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Clinical decision support system
Risk estimation
Cardiothoracic surgery
Complications prediction
Remote patient monitoring
Machine learning
Language English
License Copyright © 2023 The Author(s). Published by Elsevier B.V. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-5bb46160bc10791dd86aa5cc741222087e893d3e20d9d9ef40ee0c444ffd4c813
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5185-3335
0000-0003-2762-0333
0000-0002-8002-6790
0000-0002-4022-7424
0000-0002-4234-5336
0000-0002-4478-2476
0000-0002-3324-9609
0000-0003-3952-6184
0000-0002-8875-2228
OpenAccessLink https://doi.org/10.1016/j.ijmedinf.2023.105307
PMID 38061187
PQID 2902970702
PQPubID 23479
PageCount 1
ParticipantIDs proquest_miscellaneous_2902970702
crossref_primary_10_1016_j_ijmedinf_2023_105307
pubmed_primary_38061187
PublicationCentury 2000
PublicationDate 2024-Feb
2024-02-00
20240201
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-Feb
PublicationDecade 2020
PublicationPlace Ireland
PublicationPlace_xml – name: Ireland
PublicationTitle International journal of medical informatics (Shannon, Ireland)
PublicationTitleAlternate Int J Med Inform
PublicationYear 2024
References Pittams (10.1016/j.ijmedinf.2023.105307_br0260) 2021
Harrell (10.1016/j.ijmedinf.2023.105307_br0100) 1982; 247
Pedregosa (10.1016/j.ijmedinf.2023.105307_br0250) 2011; 12
Cabitza (10.1016/j.ijmedinf.2023.105307_br0030) 2021
Fan (10.1016/j.ijmedinf.2023.105307_br0060) 2022; 12
Londral (10.1016/j.ijmedinf.2023.105307_br0170) 2022; 22
O'Brien (10.1016/j.ijmedinf.2023.105307_br0220) 2018; 105
Head (10.1016/j.ijmedinf.2023.105307_br0110) 2013; 44
Ad (10.1016/j.ijmedinf.2023.105307_br0010) 2016; 102
Speir (10.1016/j.ijmedinf.2023.105307_br0310) 2009; 88
Jain (10.1016/j.ijmedinf.2023.105307_br0140) 2014; 7
Jonkers (10.1016/j.ijmedinf.2023.105307_br0150) 2003; 23
Shahian (10.1016/j.ijmedinf.2023.105307_br0290) 2018; 105
Nashef (10.1016/j.ijmedinf.2023.105307_br0200) 2012; 41
Paiement (10.1016/j.ijmedinf.2023.105307_br0230) 1983; 30
King (10.1016/j.ijmedinf.2023.105307_br0160) 2001; 9
Lundberg (10.1016/j.ijmedinf.2023.105307_br0180) 2017
Farias (10.1016/j.ijmedinf.2023.105307_br0070) 2020; 26
Shawon (10.1016/j.ijmedinf.2023.105307_br0300) 2021; 16
Pudil (10.1016/j.ijmedinf.2023.105307_br0270) 1994; 15
Mortazavi (10.1016/j.ijmedinf.2023.105307_br0190) 2017; 21
Head (10.1016/j.ijmedinf.2023.105307_br0120) 2013; 43
Granton (10.1016/j.ijmedinf.2023.105307_br0090) 2008; 12
Allyn (10.1016/j.ijmedinf.2023.105307_br0020) 2017; 12
Park (10.1016/j.ijmedinf.2023.105307_br0240) 2011; 17
Fry (10.1016/j.ijmedinf.2023.105307_br0080) 2016; 4
Hirji (10.1016/j.ijmedinf.2023.105307_br0130) 2020; 5
Nežić (10.1016/j.ijmedinf.2023.105307_br0210) 2020; 57
Seese (10.1016/j.ijmedinf.2023.105307_br0280) 2019; 110
Efthymiou (10.1016/j.ijmedinf.2023.105307_br0050) 2011; 12
Sullivan (10.1016/j.ijmedinf.2023.105307_br0330) 2016; 118
Caruso (10.1016/j.ijmedinf.2023.105307_br0040) 2020; 124
Stevens (10.1016/j.ijmedinf.2023.105307_br0320) 2019; 14
References_xml – volume: 7
  start-page: 151
  year: 2014
  ident: 10.1016/j.ijmedinf.2023.105307_br0140
  article-title: How accurate is the eyeball test? A comparison of physician's subjective assessment versus statistical methods in estimating mortality risk after cardiac surgery
  publication-title: Circ. Cardiovasc. Qual. Outcomes
  doi: 10.1161/CIRCOUTCOMES.113.000329
  contributor:
    fullname: Jain
– volume: 15
  start-page: 1119
  year: 1994
  ident: 10.1016/j.ijmedinf.2023.105307_br0270
  article-title: Floating search methods in feature selection
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/0167-8655(94)90127-9
  contributor:
    fullname: Pudil
– volume: 110
  start-page: 128
  issue: 1
  year: 2019
  ident: 10.1016/j.ijmedinf.2023.105307_br0280
  article-title: The impact of major postoperative complications on long-term survival after cardiac surgery
  publication-title: Ann. Thorac. Surg.
  doi: 10.1016/j.athoracsur.2019.09.100
  contributor:
    fullname: Seese
– year: 2017
  ident: 10.1016/j.ijmedinf.2023.105307_br0180
  article-title: A unified approach to interpreting model predictions
  contributor:
    fullname: Lundberg
– volume: 105
  start-page: 1419
  issue: 5
  year: 2018
  ident: 10.1016/j.ijmedinf.2023.105307_br0220
  article-title: The society of thoracic surgeons 2018 adult cardiac surgery risk models: part 2-statistical methods and results
  publication-title: Ann. Thorac. Surg.
  contributor:
    fullname: O'Brien
– volume: 12
  start-page: 130
  issue: 2
  year: 2011
  ident: 10.1016/j.ijmedinf.2023.105307_br0050
  article-title: Postdischarge complications: what exactly happens when the patient goes home?
  publication-title: Interac. Cardiovasc. Thorac. Surg.
  doi: 10.1510/icvts.2010.249474
  contributor:
    fullname: Efthymiou
– volume: 12
  start-page: 167
  year: 2008
  ident: 10.1016/j.ijmedinf.2023.105307_br0090
  article-title: Risk stratification models for cardiac surgery
  publication-title: Sem. Cardiothorac. Vasc. Anesth.
  doi: 10.1177/1089253208323681
  contributor:
    fullname: Granton
– volume: 88
  start-page: 40
  issue: 1
  year: 2009
  ident: 10.1016/j.ijmedinf.2023.105307_br0310
  article-title: Additive costs of postoperative complications for isolated coronary artery bypass grafting patients in Virginia
  publication-title: Ann. Thorac. Surg.
  doi: 10.1016/j.athoracsur.2009.03.076
  contributor:
    fullname: Speir
– volume: 102
  start-page: 573
  issue: 2
  year: 2016
  ident: 10.1016/j.ijmedinf.2023.105307_br0010
  article-title: Comparison of euroscore ii, original euroscore, and the society of thoracic surgeons risk score in cardiac surgery patients
  publication-title: Ann. Thorac. Surg.
  doi: 10.1016/j.athoracsur.2016.01.105
  contributor:
    fullname: Ad
– volume: 57
  start-page: 1014
  issue: 5
  year: 2020
  ident: 10.1016/j.ijmedinf.2023.105307_br0210
  article-title: Euroscore ii was launched as a risk score model for prediction of in-hospital mortality in cardiac surgery
  publication-title: Eur. J. Cardio-Thorac. Surg.
  doi: 10.1093/ejcts/ezz346
  contributor:
    fullname: Nežić
– volume: 23
  start-page: 97
  year: 2003
  ident: 10.1016/j.ijmedinf.2023.105307_br0150
  article-title: Prevalence of 90-days postoperative wound infections after cardiac surgery
  publication-title: Eur. J. Cardio-Thorac. Surg.
  doi: 10.1016/S1010-7940(02)00662-0
  contributor:
    fullname: Jonkers
– volume: 41
  start-page: 734
  issue: 4
  year: 2012
  ident: 10.1016/j.ijmedinf.2023.105307_br0200
  article-title: Euroscore ii
  publication-title: Eur. J. Cardio-Thorac. Surg.
  doi: 10.1093/ejcts/ezs043
  contributor:
    fullname: Nashef
– year: 2021
  ident: 10.1016/j.ijmedinf.2023.105307_br0260
  article-title: Scoring systems for risk stratification in patients undergoing cardiac surgery
  publication-title: J. Cardioth. Vasc. Anesth.
  contributor:
    fullname: Pittams
– volume: 118
  start-page: 1574
  issue: 10
  year: 2016
  ident: 10.1016/j.ijmedinf.2023.105307_br0330
  article-title: Meta-analysis comparing established risk prediction models (euroscore ii, sts score, and acef score) for perioperative mortality during cardiac surgery
  publication-title: Am. J. Cardiol.
  doi: 10.1016/j.amjcard.2016.08.024
  contributor:
    fullname: Sullivan
– year: 2021
  ident: 10.1016/j.ijmedinf.2023.105307_br0030
  contributor:
    fullname: Cabitza
– volume: 5
  start-page: 156
  year: 2020
  ident: 10.1016/j.ijmedinf.2023.105307_br0130
  article-title: Utility of 90-day mortality vs 30-day mortality as a quality metric for transcatheter and surgical aortic valve replacement outcomes
  publication-title: JAMA Cardiol.
  doi: 10.1001/jamacardio.2019.4657
  contributor:
    fullname: Hirji
– volume: 12
  start-page: 12
  issue: 1
  year: 2022
  ident: 10.1016/j.ijmedinf.2023.105307_br0060
  article-title: Development of machine learning models for mortality risk prediction after cardiac surgery
  publication-title: Cardiovasc. Diagn. Ther.
  doi: 10.21037/cdt-21-648
  contributor:
    fullname: Fan
– volume: 30
  start-page: 61
  year: 1983
  ident: 10.1016/j.ijmedinf.2023.105307_br0230
  article-title: A simple classification of the risk in cardiac surgery
  publication-title: Can. Anaesth. Soc. J.
  doi: 10.1007/BF03007718
  contributor:
    fullname: Paiement
– volume: 26
  start-page: 576
  year: 2020
  ident: 10.1016/j.ijmedinf.2023.105307_br0070
  article-title: Remote patient monitoring: a systematic review
  publication-title: Telemed. E-Health
  doi: 10.1089/tmj.2019.0066
  contributor:
    fullname: Farias
– volume: 14
  year: 2019
  ident: 10.1016/j.ijmedinf.2023.105307_br0320
  article-title: Healthcare utilization and costs of cardiopulmonary complications following cardiac surgery in the United States
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0226750
  contributor:
    fullname: Stevens
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.ijmedinf.2023.105307_br0250
  article-title: Scikit-learn: machine learning in Python
  publication-title: J. Mach. Learn. Res.
  contributor:
    fullname: Pedregosa
– volume: 105
  start-page: 1411
  issue: 5
  year: 2018
  ident: 10.1016/j.ijmedinf.2023.105307_br0290
  article-title: The society of thoracic surgeons 2018 adult cardiac surgery risk models: part 1-background, design considerations, and model development
  publication-title: Ann. Thorac. Surg.
  doi: 10.1016/j.athoracsur.2018.03.002
  contributor:
    fullname: Shahian
– volume: 4
  year: 2016
  ident: 10.1016/j.ijmedinf.2023.105307_br0080
  article-title: Inpatient and 90-day postdischarge outcomes in cardiac surgery
  publication-title: Amer. J. Manag. Care
  contributor:
    fullname: Fry
– volume: 247
  start-page: 2543
  year: 1982
  ident: 10.1016/j.ijmedinf.2023.105307_br0100
  article-title: Evaluating the yield of medical tests
  publication-title: JAMA
  doi: 10.1001/jama.1982.03320430047030
  contributor:
    fullname: Harrell
– volume: 21
  start-page: 1719
  year: 2017
  ident: 10.1016/j.ijmedinf.2023.105307_br0190
  article-title: Prediction of adverse events in patients undergoing major cardiovascular procedures
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2017.2675340
  contributor:
    fullname: Mortazavi
– volume: 17
  start-page: 93
  year: 2011
  ident: 10.1016/j.ijmedinf.2023.105307_br0240
  article-title: Telecare system for cardiac surgery patients: implementation and effectiveness
  publication-title: Healthc. Inform. Res.
  doi: 10.4258/hir.2011.17.2.93
  contributor:
    fullname: Park
– volume: 9
  start-page: 137
  year: 2001
  ident: 10.1016/j.ijmedinf.2023.105307_br0160
  article-title: Logistic regression in rare events data
  publication-title: Polit. Anal.
  doi: 10.1093/oxfordjournals.pan.a004868
  contributor:
    fullname: King
– volume: 124
  start-page: 1345
  issue: 12
  year: 2020
  ident: 10.1016/j.ijmedinf.2023.105307_br0040
  article-title: The trade-off between costs and outcome after cardiac surgery. Evidence from an Italian administrative registry
  publication-title: Health Policy
  doi: 10.1016/j.healthpol.2020.09.005
  contributor:
    fullname: Caruso
– volume: 44
  start-page: e175
  year: 2013
  ident: 10.1016/j.ijmedinf.2023.105307_br0110
  article-title: The European Association for Cardio-Thoracic Surgery (EACTS) database: an introduction
  publication-title: Eur. J. Cardio-Thorac. Surg.
  doi: 10.1093/ejcts/ezt303
  contributor:
    fullname: Head
– volume: 16
  start-page: 1
  year: 2021
  ident: 10.1016/j.ijmedinf.2023.105307_br0300
  article-title: Patient and hospital factors associated with 30-day readmissions after coronary artery bypass graft (cabg) surgery: a systematic review and meta-analysis
  publication-title: J. Cardioth. Surg.
  doi: 10.1186/s13019-021-01556-1
  contributor:
    fullname: Shawon
– volume: 22
  start-page: 1
  year: 2022
  ident: 10.1016/j.ijmedinf.2023.105307_br0170
  article-title: Developing and validating high-value patient digital follow-up services: a pilot study in cardiac surgery
  publication-title: BMC Health Serv. Res.
  doi: 10.1186/s12913-022-08073-4
  contributor:
    fullname: Londral
– volume: 43
  start-page: e121
  issue: 5
  year: 2013
  ident: 10.1016/j.ijmedinf.2023.105307_br0120
  article-title: A systematic review of risk prediction in adult cardiac surgery: considerations for future model development
  publication-title: Eur. J. Cardio-Thorac. Surg.
  doi: 10.1093/ejcts/ezt044
  contributor:
    fullname: Head
– volume: 12
  year: 2017
  ident: 10.1016/j.ijmedinf.2023.105307_br0020
  article-title: A comparison of a machine learning model with euroscore ii in predicting mortality after elective cardiac surgery: a decision curve analysis
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0169772
  contributor:
    fullname: Allyn
SSID ssj0017054
Score 2.4468777
Snippet Cardiac surgery patients are highly prone to severe complications post-discharge. Close follow-up through remote patient monitoring can help detect adverse...
SourceID proquest
crossref
pubmed
SourceType Aggregation Database
Index Database
StartPage 105307
Title Predicting post-discharge complications in cardiothoracic surgery: A clinical decision support system to optimize remote patient monitoring resources
URI https://www.ncbi.nlm.nih.gov/pubmed/38061187
https://search.proquest.com/docview/2902970702
Volume 182
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LitswFBWZKZRuSt9NX6jQ3eCpI8uv7kKbYSjTaWkyMHRjZElmHIgdYmfT_-j_9l5LfpEWpotuQlCIQnwOV0e69x4R8g4ktwyjGDY5WawdHqTCEaEUTpgqlSkVqTjDRuHzZXh5HX1a8MVk0l6-2o_9V6RhDLDGztl_QLubFAbgPWAOr4A6vN4K9287TL00xczbsqodbLtFNyR9WD0um1rU-gZYIHN5UpkOadOr3nVMKnsJD3y8Ra1uvZ9Rs5YQbjb5T7x4BQDXrUfryaaJE01h385mB6qhCB6fQg68KzY2a2TdXBsHaVDAyxtRFLZFDXtv8Cy8O79Y4i3IlfUIgD9UdimkPNW56eJBe4VufFnuK2FCY1MlMK8Op_qMiYLhgQjjbQ01rmcmiEchRHlm7J_6KM8GcRpUpWdu27Wrfj9wsKaY4431ab7Gp1Cg7yvzToczDE28L78mZ1cXF8lqcb06IncYxD8Mvz_8711yKwSZPGhW__PMY530l81PI4JWD8h9u3uhc0O7h2Sii0fk7hdbn_GY_OrZR8fsoyP20bygY_ZRy74PdE5b7tGWe9Ryjxru0bqkLfeo4R613KM992jHvSfk6myx-nju2Is_HAk72Nrx05QHs8BN5cwN4xmEjEAIX0pQvyBn3SjUoLKVp5mrYhXrjLtau5JznmWKy2jmPSXHQEv9nFApWewy5WshIi5igQaNmnkpE9xXwUxMyfv2MSdb4--StIWP66QFJkFgEgPMlLxt0UggFGN-TRQaqJvgL8UhrKFsSp4ZmLo5vQiEMxDzxS2-_ZLc63n9ihzXu71-TY4qtX_TEOk3H0m9fg
link.rule.ids 315,782,786,27933,27934
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+post-discharge+complications+in+cardiothoracic+surgery%3A+A+clinical+decision+support+system+to+optimize+remote+patient+monitoring+resources&rft.jtitle=International+journal+of+medical+informatics+%28Shannon%2C+Ireland%29&rft.au=Santos%2C+Ricardo&rft.au=Ribeiro%2C+Bruno&rft.au=Sousa%2C+In%C3%AAs&rft.au=Santos%2C+Jorge&rft.date=2024-02-01&rft.eissn=1872-8243&rft.volume=182&rft.spage=105307&rft.epage=105307&rft_id=info:doi/10.1016%2Fj.ijmedinf.2023.105307&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-5056&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-5056&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-5056&client=summon