Predicting post-discharge complications in cardiothoracic surgery: A clinical decision support system to optimize remote patient monitoring resources
Cardiac surgery patients are highly prone to severe complications post-discharge. Close follow-up through remote patient monitoring can help detect adverse outcomes earlier or prevent them, closing the gap between hospital and home care. However, equipment is limited due to economic and human resour...
Saved in:
Published in: | International journal of medical informatics (Shannon, Ireland) Vol. 182; p. 105307 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Ireland
01-02-2024
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Cardiac surgery patients are highly prone to severe complications post-discharge. Close follow-up through remote patient monitoring can help detect adverse outcomes earlier or prevent them, closing the gap between hospital and home care. However, equipment is limited due to economic and human resource constraints. This issue raises the need for efficient risk estimation to provide clinicians with insights into the potential benefit of remote monitoring for each patient. Standard models, such as the EuroSCORE, predict the mortality risk before the surgery. While these are used and validated in real settings, the models lack information collected during or following the surgery, determinant to predict adverse outcomes occurring further in the future. This paper proposes a Clinical Decision Support System based on Machine Learning to estimate the risk of severe complications within 90 days following cardiothoracic surgery discharge, an innovative objective underexplored in the literature. Health records from a cardiothoracic surgery department regarding 5 045 patients (60.8% male) collected throughout ten years were used to train predictive models. Clinicians' insights contributed to improving data preparation and extending traditional pipeline optimization techniques, addressing medical Artificial Intelligence requirements. Two separate test sets were used to evaluate the generalizability, one derived from a patient-grouped 70/30 split and another including all surgeries from the last available year. The achieved Area Under the Receiver Operating Characteristic curve on these test sets was 69.5% and 65.3%, respectively. Also, additional testing was implemented to simulate a real-world use case considering the weekly distribution of remote patient monitoring resources post-discharge. Compared to the random resource allocation, the selection of patients with respect to the outputs of the proposed model was proven beneficial, as it led to a higher number of high-risk patients receiving remote monitoring equipment. |
---|---|
AbstractList | Cardiac surgery patients are highly prone to severe complications post-discharge. Close follow-up through remote patient monitoring can help detect adverse outcomes earlier or prevent them, closing the gap between hospital and home care. However, equipment is limited due to economic and human resource constraints. This issue raises the need for efficient risk estimation to provide clinicians with insights into the potential benefit of remote monitoring for each patient. Standard models, such as the EuroSCORE, predict the mortality risk before the surgery. While these are used and validated in real settings, the models lack information collected during or following the surgery, determinant to predict adverse outcomes occurring further in the future. This paper proposes a Clinical Decision Support System based on Machine Learning to estimate the risk of severe complications within 90 days following cardiothoracic surgery discharge, an innovative objective underexplored in the literature. Health records from a cardiothoracic surgery department regarding 5 045 patients (60.8% male) collected throughout ten years were used to train predictive models. Clinicians' insights contributed to improving data preparation and extending traditional pipeline optimization techniques, addressing medical Artificial Intelligence requirements. Two separate test sets were used to evaluate the generalizability, one derived from a patient-grouped 70/30 split and another including all surgeries from the last available year. The achieved Area Under the Receiver Operating Characteristic curve on these test sets was 69.5% and 65.3%, respectively. Also, additional testing was implemented to simulate a real-world use case considering the weekly distribution of remote patient monitoring resources post-discharge. Compared to the random resource allocation, the selection of patients with respect to the outputs of the proposed model was proven beneficial, as it led to a higher number of high-risk patients receiving remote monitoring equipment. |
ArticleNumber | 105307 |
Author | Santos, Jorge Ribeiro, Bruno Guede-Fernández, Federico Coelho, Pedro Londral, Ana Gamboa, Hugo Santos, Ricardo Dias, Pedro Fragata, José Sousa, Inês Carreiro, André V |
Author_xml | – sequence: 1 givenname: Ricardo surname: Santos fullname: Santos, Ricardo email: ricardo.santos@fraunhofer.pt organization: Associação Fraunhofer Portugal Research, Rua Alfredo Allen 455/461, 4200-135 Porto, Portugal; Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Physics Department, NOVA School of Science and Technology, 2829-516 Caparica, Portugal. Electronic address: ricardo.santos@fraunhofer.pt – sequence: 2 givenname: Bruno surname: Ribeiro fullname: Ribeiro, Bruno organization: Associação Fraunhofer Portugal Research, Rua Alfredo Allen 455/461, 4200-135 Porto, Portugal – sequence: 3 givenname: Inês surname: Sousa fullname: Sousa, Inês organization: Associação Fraunhofer Portugal Research, Rua Alfredo Allen 455/461, 4200-135 Porto, Portugal – sequence: 4 givenname: Jorge surname: Santos fullname: Santos, Jorge organization: Comprehensive Health Research Center, NOVA Medical School, Campo Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; Hospital de Santa Marta, Centro Hospitalar Universitário Lisboa Central, Rua de Santa Marta, 50, 1169-023 Lisboa, Portugal – sequence: 5 givenname: Federico surname: Guede-Fernández fullname: Guede-Fernández, Federico organization: Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Physics Department, NOVA School of Science and Technology, 2829-516 Caparica, Portugal; Value for Health CoLAB, Av. Fontes Pereira de Melo, 15, 2°D, 1050-115 Lisboa, Portugal – sequence: 6 givenname: Pedro surname: Dias fullname: Dias, Pedro organization: Comprehensive Health Research Center, NOVA Medical School, Campo Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; Value for Health CoLAB, Av. Fontes Pereira de Melo, 15, 2°D, 1050-115 Lisboa, Portugal – sequence: 7 givenname: André V surname: Carreiro fullname: Carreiro, André V organization: Associação Fraunhofer Portugal Research, Rua Alfredo Allen 455/461, 4200-135 Porto, Portugal – sequence: 8 givenname: Hugo surname: Gamboa fullname: Gamboa, Hugo organization: Associação Fraunhofer Portugal Research, Rua Alfredo Allen 455/461, 4200-135 Porto, Portugal; Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Physics Department, NOVA School of Science and Technology, 2829-516 Caparica, Portugal – sequence: 9 givenname: Pedro surname: Coelho fullname: Coelho, Pedro organization: Comprehensive Health Research Center, NOVA Medical School, Campo Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; Hospital de Santa Marta, Centro Hospitalar Universitário Lisboa Central, Rua de Santa Marta, 50, 1169-023 Lisboa, Portugal – sequence: 10 givenname: José surname: Fragata fullname: Fragata, José organization: Comprehensive Health Research Center, NOVA Medical School, Campo Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; Hospital de Santa Marta, Centro Hospitalar Universitário Lisboa Central, Rua de Santa Marta, 50, 1169-023 Lisboa, Portugal – sequence: 11 givenname: Ana surname: Londral fullname: Londral, Ana organization: Comprehensive Health Research Center, NOVA Medical School, Campo Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; Value for Health CoLAB, Av. Fontes Pereira de Melo, 15, 2°D, 1050-115 Lisboa, Portugal |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38061187$$D View this record in MEDLINE/PubMed |
BookMark | eNo9kc9u3CAQh1GUqkm2fYWIYy_eDH-M7d6iqG0iRWoP7RmxME5Y2eAAPmzfo-9bVpvkBGK--Q3wXZHzEAMScs1gy4Cpm_3W72d0PoxbDlzUw1ZAd0YuWd_xpudSnNe96FXTQqsuyFXOewDWQSs_kgvRg2KVvCT_fqWaYosPT3SJuTTOZ_ts0hNSG-dl8tYUH0OmPlBrkvOxPMdkrLc0r5VKh6_0ltrJh0pO1KH1ufK1uCwxFZoPueBMS6RxKX72f5EmnGNButRgDIXOMfgS0_ECCXNck8X8iXwYzZTx8-u6IX--f_t9d988_vzxcHf72FgBqjTtbicVU7CzDLqBOdcrY1prO8k459B32A_CCeTgBjfgKAERrJRyHJ20PRMb8uWUu6T4smIueq7Px2kyAeOaNR-ADx109Yc3RJ1Qm2LOCUe9JD-bdNAM9FGJ3us3JfqoRJ-U1Mbr1xnrrpbf294ciP8X7pDw |
Cites_doi | 10.1161/CIRCOUTCOMES.113.000329 10.1016/0167-8655(94)90127-9 10.1016/j.athoracsur.2019.09.100 10.1510/icvts.2010.249474 10.1177/1089253208323681 10.1016/j.athoracsur.2009.03.076 10.1016/j.athoracsur.2016.01.105 10.1093/ejcts/ezz346 10.1016/S1010-7940(02)00662-0 10.1093/ejcts/ezs043 10.1016/j.amjcard.2016.08.024 10.1001/jamacardio.2019.4657 10.21037/cdt-21-648 10.1007/BF03007718 10.1089/tmj.2019.0066 10.1371/journal.pone.0226750 10.1016/j.athoracsur.2018.03.002 10.1001/jama.1982.03320430047030 10.1109/JBHI.2017.2675340 10.4258/hir.2011.17.2.93 10.1093/oxfordjournals.pan.a004868 10.1016/j.healthpol.2020.09.005 10.1093/ejcts/ezt303 10.1186/s13019-021-01556-1 10.1186/s12913-022-08073-4 10.1093/ejcts/ezt044 10.1371/journal.pone.0169772 |
ContentType | Journal Article |
Copyright | Copyright © 2023 The Author(s). Published by Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: Copyright © 2023 The Author(s). Published by Elsevier B.V. All rights reserved. |
DBID | NPM AAYXX CITATION 7X8 |
DOI | 10.1016/j.ijmedinf.2023.105307 |
DatabaseName | PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1872-8243 |
EndPage | 105307 |
ExternalDocumentID | 10_1016_j_ijmedinf_2023_105307 38061187 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29J 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAWTL AAXKI AAXUO AAYFN ABBOA ABBQC ABDPE ABFNM ABJNI ABMAC ABMZM ABXDB ACDAQ ACGFS ACIUM ACJTP ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AENEX AEVXI AFCTW AFJKZ AFKWA AFRHN AFTJW AFXBA AFXIZ AGHFR AGUBO AGYEJ AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AJRQY AJUYK AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOUOD ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W KOM M41 MO0 N9A NPM O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCC SDF SDG SDP SEL SES SEW SNG SPC SPCBC SSH SSV SSZ T5K UHS Z5R ~G- AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-c306t-5bb46160bc10791dd86aa5cc741222087e893d3e20d9d9ef40ee0c444ffd4c813 |
ISSN | 1386-5056 |
IngestDate | Fri Oct 25 06:16:52 EDT 2024 Thu Nov 21 23:19:48 EST 2024 Sat Nov 02 12:24:40 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Clinical decision support system Risk estimation Cardiothoracic surgery Complications prediction Remote patient monitoring Machine learning |
Language | English |
License | Copyright © 2023 The Author(s). Published by Elsevier B.V. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c306t-5bb46160bc10791dd86aa5cc741222087e893d3e20d9d9ef40ee0c444ffd4c813 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5185-3335 0000-0003-2762-0333 0000-0002-8002-6790 0000-0002-4022-7424 0000-0002-4234-5336 0000-0002-4478-2476 0000-0002-3324-9609 0000-0003-3952-6184 0000-0002-8875-2228 |
OpenAccessLink | https://doi.org/10.1016/j.ijmedinf.2023.105307 |
PMID | 38061187 |
PQID | 2902970702 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | proquest_miscellaneous_2902970702 crossref_primary_10_1016_j_ijmedinf_2023_105307 pubmed_primary_38061187 |
PublicationCentury | 2000 |
PublicationDate | 2024-Feb 2024-02-00 20240201 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-Feb |
PublicationDecade | 2020 |
PublicationPlace | Ireland |
PublicationPlace_xml | – name: Ireland |
PublicationTitle | International journal of medical informatics (Shannon, Ireland) |
PublicationTitleAlternate | Int J Med Inform |
PublicationYear | 2024 |
References | Pittams (10.1016/j.ijmedinf.2023.105307_br0260) 2021 Harrell (10.1016/j.ijmedinf.2023.105307_br0100) 1982; 247 Pedregosa (10.1016/j.ijmedinf.2023.105307_br0250) 2011; 12 Cabitza (10.1016/j.ijmedinf.2023.105307_br0030) 2021 Fan (10.1016/j.ijmedinf.2023.105307_br0060) 2022; 12 Londral (10.1016/j.ijmedinf.2023.105307_br0170) 2022; 22 O'Brien (10.1016/j.ijmedinf.2023.105307_br0220) 2018; 105 Head (10.1016/j.ijmedinf.2023.105307_br0110) 2013; 44 Ad (10.1016/j.ijmedinf.2023.105307_br0010) 2016; 102 Speir (10.1016/j.ijmedinf.2023.105307_br0310) 2009; 88 Jain (10.1016/j.ijmedinf.2023.105307_br0140) 2014; 7 Jonkers (10.1016/j.ijmedinf.2023.105307_br0150) 2003; 23 Shahian (10.1016/j.ijmedinf.2023.105307_br0290) 2018; 105 Nashef (10.1016/j.ijmedinf.2023.105307_br0200) 2012; 41 Paiement (10.1016/j.ijmedinf.2023.105307_br0230) 1983; 30 King (10.1016/j.ijmedinf.2023.105307_br0160) 2001; 9 Lundberg (10.1016/j.ijmedinf.2023.105307_br0180) 2017 Farias (10.1016/j.ijmedinf.2023.105307_br0070) 2020; 26 Shawon (10.1016/j.ijmedinf.2023.105307_br0300) 2021; 16 Pudil (10.1016/j.ijmedinf.2023.105307_br0270) 1994; 15 Mortazavi (10.1016/j.ijmedinf.2023.105307_br0190) 2017; 21 Head (10.1016/j.ijmedinf.2023.105307_br0120) 2013; 43 Granton (10.1016/j.ijmedinf.2023.105307_br0090) 2008; 12 Allyn (10.1016/j.ijmedinf.2023.105307_br0020) 2017; 12 Park (10.1016/j.ijmedinf.2023.105307_br0240) 2011; 17 Fry (10.1016/j.ijmedinf.2023.105307_br0080) 2016; 4 Hirji (10.1016/j.ijmedinf.2023.105307_br0130) 2020; 5 Nežić (10.1016/j.ijmedinf.2023.105307_br0210) 2020; 57 Seese (10.1016/j.ijmedinf.2023.105307_br0280) 2019; 110 Efthymiou (10.1016/j.ijmedinf.2023.105307_br0050) 2011; 12 Sullivan (10.1016/j.ijmedinf.2023.105307_br0330) 2016; 118 Caruso (10.1016/j.ijmedinf.2023.105307_br0040) 2020; 124 Stevens (10.1016/j.ijmedinf.2023.105307_br0320) 2019; 14 |
References_xml | – volume: 7 start-page: 151 year: 2014 ident: 10.1016/j.ijmedinf.2023.105307_br0140 article-title: How accurate is the eyeball test? A comparison of physician's subjective assessment versus statistical methods in estimating mortality risk after cardiac surgery publication-title: Circ. Cardiovasc. Qual. Outcomes doi: 10.1161/CIRCOUTCOMES.113.000329 contributor: fullname: Jain – volume: 15 start-page: 1119 year: 1994 ident: 10.1016/j.ijmedinf.2023.105307_br0270 article-title: Floating search methods in feature selection publication-title: Pattern Recognit. Lett. doi: 10.1016/0167-8655(94)90127-9 contributor: fullname: Pudil – volume: 110 start-page: 128 issue: 1 year: 2019 ident: 10.1016/j.ijmedinf.2023.105307_br0280 article-title: The impact of major postoperative complications on long-term survival after cardiac surgery publication-title: Ann. Thorac. Surg. doi: 10.1016/j.athoracsur.2019.09.100 contributor: fullname: Seese – year: 2017 ident: 10.1016/j.ijmedinf.2023.105307_br0180 article-title: A unified approach to interpreting model predictions contributor: fullname: Lundberg – volume: 105 start-page: 1419 issue: 5 year: 2018 ident: 10.1016/j.ijmedinf.2023.105307_br0220 article-title: The society of thoracic surgeons 2018 adult cardiac surgery risk models: part 2-statistical methods and results publication-title: Ann. Thorac. Surg. contributor: fullname: O'Brien – volume: 12 start-page: 130 issue: 2 year: 2011 ident: 10.1016/j.ijmedinf.2023.105307_br0050 article-title: Postdischarge complications: what exactly happens when the patient goes home? publication-title: Interac. Cardiovasc. Thorac. Surg. doi: 10.1510/icvts.2010.249474 contributor: fullname: Efthymiou – volume: 12 start-page: 167 year: 2008 ident: 10.1016/j.ijmedinf.2023.105307_br0090 article-title: Risk stratification models for cardiac surgery publication-title: Sem. Cardiothorac. Vasc. Anesth. doi: 10.1177/1089253208323681 contributor: fullname: Granton – volume: 88 start-page: 40 issue: 1 year: 2009 ident: 10.1016/j.ijmedinf.2023.105307_br0310 article-title: Additive costs of postoperative complications for isolated coronary artery bypass grafting patients in Virginia publication-title: Ann. Thorac. Surg. doi: 10.1016/j.athoracsur.2009.03.076 contributor: fullname: Speir – volume: 102 start-page: 573 issue: 2 year: 2016 ident: 10.1016/j.ijmedinf.2023.105307_br0010 article-title: Comparison of euroscore ii, original euroscore, and the society of thoracic surgeons risk score in cardiac surgery patients publication-title: Ann. Thorac. Surg. doi: 10.1016/j.athoracsur.2016.01.105 contributor: fullname: Ad – volume: 57 start-page: 1014 issue: 5 year: 2020 ident: 10.1016/j.ijmedinf.2023.105307_br0210 article-title: Euroscore ii was launched as a risk score model for prediction of in-hospital mortality in cardiac surgery publication-title: Eur. J. Cardio-Thorac. Surg. doi: 10.1093/ejcts/ezz346 contributor: fullname: Nežić – volume: 23 start-page: 97 year: 2003 ident: 10.1016/j.ijmedinf.2023.105307_br0150 article-title: Prevalence of 90-days postoperative wound infections after cardiac surgery publication-title: Eur. J. Cardio-Thorac. Surg. doi: 10.1016/S1010-7940(02)00662-0 contributor: fullname: Jonkers – volume: 41 start-page: 734 issue: 4 year: 2012 ident: 10.1016/j.ijmedinf.2023.105307_br0200 article-title: Euroscore ii publication-title: Eur. J. Cardio-Thorac. Surg. doi: 10.1093/ejcts/ezs043 contributor: fullname: Nashef – year: 2021 ident: 10.1016/j.ijmedinf.2023.105307_br0260 article-title: Scoring systems for risk stratification in patients undergoing cardiac surgery publication-title: J. Cardioth. Vasc. Anesth. contributor: fullname: Pittams – volume: 118 start-page: 1574 issue: 10 year: 2016 ident: 10.1016/j.ijmedinf.2023.105307_br0330 article-title: Meta-analysis comparing established risk prediction models (euroscore ii, sts score, and acef score) for perioperative mortality during cardiac surgery publication-title: Am. J. Cardiol. doi: 10.1016/j.amjcard.2016.08.024 contributor: fullname: Sullivan – year: 2021 ident: 10.1016/j.ijmedinf.2023.105307_br0030 contributor: fullname: Cabitza – volume: 5 start-page: 156 year: 2020 ident: 10.1016/j.ijmedinf.2023.105307_br0130 article-title: Utility of 90-day mortality vs 30-day mortality as a quality metric for transcatheter and surgical aortic valve replacement outcomes publication-title: JAMA Cardiol. doi: 10.1001/jamacardio.2019.4657 contributor: fullname: Hirji – volume: 12 start-page: 12 issue: 1 year: 2022 ident: 10.1016/j.ijmedinf.2023.105307_br0060 article-title: Development of machine learning models for mortality risk prediction after cardiac surgery publication-title: Cardiovasc. Diagn. Ther. doi: 10.21037/cdt-21-648 contributor: fullname: Fan – volume: 30 start-page: 61 year: 1983 ident: 10.1016/j.ijmedinf.2023.105307_br0230 article-title: A simple classification of the risk in cardiac surgery publication-title: Can. Anaesth. Soc. J. doi: 10.1007/BF03007718 contributor: fullname: Paiement – volume: 26 start-page: 576 year: 2020 ident: 10.1016/j.ijmedinf.2023.105307_br0070 article-title: Remote patient monitoring: a systematic review publication-title: Telemed. E-Health doi: 10.1089/tmj.2019.0066 contributor: fullname: Farias – volume: 14 year: 2019 ident: 10.1016/j.ijmedinf.2023.105307_br0320 article-title: Healthcare utilization and costs of cardiopulmonary complications following cardiac surgery in the United States publication-title: PLoS ONE doi: 10.1371/journal.pone.0226750 contributor: fullname: Stevens – volume: 12 start-page: 2825 year: 2011 ident: 10.1016/j.ijmedinf.2023.105307_br0250 article-title: Scikit-learn: machine learning in Python publication-title: J. Mach. Learn. Res. contributor: fullname: Pedregosa – volume: 105 start-page: 1411 issue: 5 year: 2018 ident: 10.1016/j.ijmedinf.2023.105307_br0290 article-title: The society of thoracic surgeons 2018 adult cardiac surgery risk models: part 1-background, design considerations, and model development publication-title: Ann. Thorac. Surg. doi: 10.1016/j.athoracsur.2018.03.002 contributor: fullname: Shahian – volume: 4 year: 2016 ident: 10.1016/j.ijmedinf.2023.105307_br0080 article-title: Inpatient and 90-day postdischarge outcomes in cardiac surgery publication-title: Amer. J. Manag. Care contributor: fullname: Fry – volume: 247 start-page: 2543 year: 1982 ident: 10.1016/j.ijmedinf.2023.105307_br0100 article-title: Evaluating the yield of medical tests publication-title: JAMA doi: 10.1001/jama.1982.03320430047030 contributor: fullname: Harrell – volume: 21 start-page: 1719 year: 2017 ident: 10.1016/j.ijmedinf.2023.105307_br0190 article-title: Prediction of adverse events in patients undergoing major cardiovascular procedures publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2017.2675340 contributor: fullname: Mortazavi – volume: 17 start-page: 93 year: 2011 ident: 10.1016/j.ijmedinf.2023.105307_br0240 article-title: Telecare system for cardiac surgery patients: implementation and effectiveness publication-title: Healthc. Inform. Res. doi: 10.4258/hir.2011.17.2.93 contributor: fullname: Park – volume: 9 start-page: 137 year: 2001 ident: 10.1016/j.ijmedinf.2023.105307_br0160 article-title: Logistic regression in rare events data publication-title: Polit. Anal. doi: 10.1093/oxfordjournals.pan.a004868 contributor: fullname: King – volume: 124 start-page: 1345 issue: 12 year: 2020 ident: 10.1016/j.ijmedinf.2023.105307_br0040 article-title: The trade-off between costs and outcome after cardiac surgery. Evidence from an Italian administrative registry publication-title: Health Policy doi: 10.1016/j.healthpol.2020.09.005 contributor: fullname: Caruso – volume: 44 start-page: e175 year: 2013 ident: 10.1016/j.ijmedinf.2023.105307_br0110 article-title: The European Association for Cardio-Thoracic Surgery (EACTS) database: an introduction publication-title: Eur. J. Cardio-Thorac. Surg. doi: 10.1093/ejcts/ezt303 contributor: fullname: Head – volume: 16 start-page: 1 year: 2021 ident: 10.1016/j.ijmedinf.2023.105307_br0300 article-title: Patient and hospital factors associated with 30-day readmissions after coronary artery bypass graft (cabg) surgery: a systematic review and meta-analysis publication-title: J. Cardioth. Surg. doi: 10.1186/s13019-021-01556-1 contributor: fullname: Shawon – volume: 22 start-page: 1 year: 2022 ident: 10.1016/j.ijmedinf.2023.105307_br0170 article-title: Developing and validating high-value patient digital follow-up services: a pilot study in cardiac surgery publication-title: BMC Health Serv. Res. doi: 10.1186/s12913-022-08073-4 contributor: fullname: Londral – volume: 43 start-page: e121 issue: 5 year: 2013 ident: 10.1016/j.ijmedinf.2023.105307_br0120 article-title: A systematic review of risk prediction in adult cardiac surgery: considerations for future model development publication-title: Eur. J. Cardio-Thorac. Surg. doi: 10.1093/ejcts/ezt044 contributor: fullname: Head – volume: 12 year: 2017 ident: 10.1016/j.ijmedinf.2023.105307_br0020 article-title: A comparison of a machine learning model with euroscore ii in predicting mortality after elective cardiac surgery: a decision curve analysis publication-title: PLoS ONE doi: 10.1371/journal.pone.0169772 contributor: fullname: Allyn |
SSID | ssj0017054 |
Score | 2.4468777 |
Snippet | Cardiac surgery patients are highly prone to severe complications post-discharge. Close follow-up through remote patient monitoring can help detect adverse... |
SourceID | proquest crossref pubmed |
SourceType | Aggregation Database Index Database |
StartPage | 105307 |
Title | Predicting post-discharge complications in cardiothoracic surgery: A clinical decision support system to optimize remote patient monitoring resources |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38061187 https://search.proquest.com/docview/2902970702 |
Volume | 182 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LitswFBWZKZRuSt9NX6jQ3eCpI8uv7kKbYSjTaWkyMHRjZElmHIgdYmfT_-j_9l5LfpEWpotuQlCIQnwOV0e69x4R8g4ktwyjGDY5WawdHqTCEaEUTpgqlSkVqTjDRuHzZXh5HX1a8MVk0l6-2o_9V6RhDLDGztl_QLubFAbgPWAOr4A6vN4K9287TL00xczbsqodbLtFNyR9WD0um1rU-gZYIHN5UpkOadOr3nVMKnsJD3y8Ra1uvZ9Rs5YQbjb5T7x4BQDXrUfryaaJE01h385mB6qhCB6fQg68KzY2a2TdXBsHaVDAyxtRFLZFDXtv8Cy8O79Y4i3IlfUIgD9UdimkPNW56eJBe4VufFnuK2FCY1MlMK8Op_qMiYLhgQjjbQ01rmcmiEchRHlm7J_6KM8GcRpUpWdu27Wrfj9wsKaY4431ab7Gp1Cg7yvzToczDE28L78mZ1cXF8lqcb06IncYxD8Mvz_8711yKwSZPGhW__PMY530l81PI4JWD8h9u3uhc0O7h2Sii0fk7hdbn_GY_OrZR8fsoyP20bygY_ZRy74PdE5b7tGWe9Ryjxru0bqkLfeo4R613KM992jHvSfk6myx-nju2Is_HAk72Nrx05QHs8BN5cwN4xmEjEAIX0pQvyBn3SjUoLKVp5mrYhXrjLtau5JznmWKy2jmPSXHQEv9nFApWewy5WshIi5igQaNmnkpE9xXwUxMyfv2MSdb4--StIWP66QFJkFgEgPMlLxt0UggFGN-TRQaqJvgL8UhrKFsSp4ZmLo5vQiEMxDzxS2-_ZLc63n9ihzXu71-TY4qtX_TEOk3H0m9fg |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+post-discharge+complications+in+cardiothoracic+surgery%3A+A+clinical+decision+support+system+to+optimize+remote+patient+monitoring+resources&rft.jtitle=International+journal+of+medical+informatics+%28Shannon%2C+Ireland%29&rft.au=Santos%2C+Ricardo&rft.au=Ribeiro%2C+Bruno&rft.au=Sousa%2C+In%C3%AAs&rft.au=Santos%2C+Jorge&rft.date=2024-02-01&rft.eissn=1872-8243&rft.volume=182&rft.spage=105307&rft.epage=105307&rft_id=info:doi/10.1016%2Fj.ijmedinf.2023.105307&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-5056&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-5056&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-5056&client=summon |