Hybrid no-propagation learning for multilayer neural networks

A hybrid learning algorithm suitable for hardware implementation of multi-layer neural networks is proposed. Though backpropagation is a powerful learning method for multilayer neural networks, its hardware implementation is difficult due to complexities of the neural synapses and the operations inv...

Full description

Saved in:
Bibliographic Details
Published in:Neurocomputing (Amsterdam) Vol. 321; pp. 28 - 35
Main Authors: Adhikari, Shyam Prasad, Yang, Changju, Slot, Krzysztof, Strzelecki, Michal, Kim, Hyongsuk
Format: Journal Article
Language:English
Published: Elsevier B.V 10-12-2018
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A hybrid learning algorithm suitable for hardware implementation of multi-layer neural networks is proposed. Though backpropagation is a powerful learning method for multilayer neural networks, its hardware implementation is difficult due to complexities of the neural synapses and the operations involved in error backpropagation. We propose a learning algorithm with performance comparable to but easier than backpropagation to be implemented in hardware for on-chip learning of multi-layer neural networks. In the proposed learning algorithm, a multilayer neural network is trained with a hybrid of gradient-based delta rule and a stochastic algorithm, called Random Weight Change. The parameters of the output layer are learned using the delta rule, whereas the inner layer parameters are learned using Random Weight Change, thereby the overall multilayer neural network is trained without the need for error backpropagation. Experimental results showing better performance of the proposed hybrid learning rule than either of its constituent learning algorithms, and comparable to that of backpropagation on the benchmark MNIST dataset are presented. Hardware architecture illustrating the ease of implementation of the proposed learning rule in analog hardware vis-a-vis the backpropagation algorithm is also presented.
AbstractList A hybrid learning algorithm suitable for hardware implementation of multi-layer neural networks is proposed. Though backpropagation is a powerful learning method for multilayer neural networks, its hardware implementation is difficult due to complexities of the neural synapses and the operations involved in error backpropagation. We propose a learning algorithm with performance comparable to but easier than backpropagation to be implemented in hardware for on-chip learning of multi-layer neural networks. In the proposed learning algorithm, a multilayer neural network is trained with a hybrid of gradient-based delta rule and a stochastic algorithm, called Random Weight Change. The parameters of the output layer are learned using the delta rule, whereas the inner layer parameters are learned using Random Weight Change, thereby the overall multilayer neural network is trained without the need for error backpropagation. Experimental results showing better performance of the proposed hybrid learning rule than either of its constituent learning algorithms, and comparable to that of backpropagation on the benchmark MNIST dataset are presented. Hardware architecture illustrating the ease of implementation of the proposed learning rule in analog hardware vis-a-vis the backpropagation algorithm is also presented.
Author Adhikari, Shyam Prasad
Yang, Changju
Kim, Hyongsuk
Slot, Krzysztof
Strzelecki, Michal
Author_xml – sequence: 1
  givenname: Shyam Prasad
  orcidid: 0000-0002-8531-4599
  surname: Adhikari
  fullname: Adhikari, Shyam Prasad
  email: all.shyam@gmail.com
  organization: Division of Electronics Engineering, Chonbuk National University, Jeonju, 561-756, Republic of Korea
– sequence: 2
  givenname: Changju
  surname: Yang
  fullname: Yang, Changju
  email: ychangju@jbnu.ac.kr
  organization: Division of Electronics Engineering, Chonbuk National University, Jeonju, 561-756, Republic of Korea
– sequence: 3
  givenname: Krzysztof
  surname: Slot
  fullname: Slot, Krzysztof
  email: krzysztof.slot@p.lodz.pl
  organization: Institute of Applied Computer Science, Lodz University of Technology, Stefanowskiego 18/22, 90-924 Lodz, Poland
– sequence: 4
  givenname: Michal
  surname: Strzelecki
  fullname: Strzelecki, Michal
  email: michal.strzelecki@p.lodz.pl
  organization: Institute of Electronics, Technical University of Lodz, Wolczanska 211/215, 90-924 Lodz, Poland
– sequence: 5
  givenname: Hyongsuk
  surname: Kim
  fullname: Kim, Hyongsuk
  email: hskim@jbnu.ac.kr
  organization: Division of Electronics Engineering, Chonbuk National University, Jeonju, 561-756, Republic of Korea
BookMark eNp9kM1KAzEUhYMo2FbfwMW8wIz5mWQyCwUpaoWCG12HTHJTUqdJSaZK396UuhYOnM0951y-OboMMQBCdwQ3BBNxv20CHEzcNRQT2eAi1l6gGZEdrSWV4hLNcE95TRmh12ie8xZj0hHaz9DD6jgkb6sQ632Ke73Rk4-hGkGn4MOmcjFVu8M4-VEfIVVlJ-mx2PQT01e-QVdOjxlu_3yBPl-eP5arev3--rZ8WteGYTHVnHetZYQM2jDJDbWCil46sAYL5gbigPVOD5xz0Q3OQrkXFgjhRtKWs4EtUHvuNSnmnMCpffI7nY6KYHVCoLbqjECdEChcxNoSezzHoPz27SGpbDwEA9YnMJOy0f9f8As-0Gm8
CitedBy_id crossref_primary_10_1016_j_neucom_2020_05_072
crossref_primary_10_1016_j_neucom_2019_10_029
crossref_primary_10_1016_j_neucom_2019_03_105
crossref_primary_10_1016_j_neucom_2019_06_068
crossref_primary_10_1016_j_neucom_2019_08_055
crossref_primary_10_1016_j_neucom_2019_11_083
crossref_primary_10_1515_ijeeps_2023_0135
crossref_primary_10_1016_j_neucom_2019_12_119
crossref_primary_10_1007_s00521_022_07673_9
crossref_primary_10_1016_j_neucom_2019_03_103
crossref_primary_10_32604_csse_2021_014894
crossref_primary_10_1049_trit_2019_0036
crossref_primary_10_1016_j_neucom_2019_09_087
crossref_primary_10_1016_j_neucom_2019_12_082
crossref_primary_10_1016_j_neucom_2019_12_120
crossref_primary_10_1155_2021_3250062
crossref_primary_10_1016_j_sysarc_2022_102730
crossref_primary_10_1016_j_neucom_2020_05_027
crossref_primary_10_1109_TCSI_2019_2934560
crossref_primary_10_1016_j_neucom_2019_12_108
crossref_primary_10_1016_j_neucom_2019_11_011
crossref_primary_10_1016_j_neucom_2019_11_052
crossref_primary_10_1016_j_neucom_2020_02_076
crossref_primary_10_1016_j_neucom_2019_07_051
crossref_primary_10_1049_ipr2_12713
crossref_primary_10_3390_healthcare8030234
crossref_primary_10_1016_j_neucom_2019_09_049
crossref_primary_10_1016_j_neucom_2020_07_070
Cites_doi 10.1016/j.neunet.2012.09.020
10.1109/72.105429
10.1109/TCSI.2014.2359717
10.1109/TNNLS.2012.2204770
10.1109/TNNLS.2014.2383395
10.25080/Majora-92bf1922-003
10.1038/nature14539
10.1038/nature14441
10.1016/0893-6080(94)00084-Y
ContentType Journal Article
Copyright 2018
Copyright_xml – notice: 2018
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2018.08.034
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 35
ExternalDocumentID 10_1016_j_neucom_2018_08_034
S0925231218309846
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
AAQXK
AAXKI
AAYXX
ABXDB
ACNNM
ADJOM
ADMUD
AFJKZ
AKRWK
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
ID FETCH-LOGICAL-c306t-5574d311bac385c2d62698fedc063fb1fe39fab55567bfde5576de115c82453b3
ISSN 0925-2312
IngestDate Thu Sep 26 16:07:25 EDT 2024
Fri Feb 23 02:30:26 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Backpropagation
Multilayer neural network
Random weight change
On-chip learning
No-propagation
Delta rule
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-5574d311bac385c2d62698fedc063fb1fe39fab55567bfde5576de115c82453b3
ORCID 0000-0002-8531-4599
PageCount 8
ParticipantIDs crossref_primary_10_1016_j_neucom_2018_08_034
elsevier_sciencedirect_doi_10_1016_j_neucom_2018_08_034
PublicationCentury 2000
PublicationDate 2018-12-10
PublicationDateYYYYMMDD 2018-12-10
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-10
  day: 10
PublicationDecade 2010
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Flower, Jabri (bib0011) 1993; 5
Adhikari, Yang, Kim, Chua (bib0008) 2012; 23
Kataeva (bib0006) 2015
Maeda, Hirano, Kanata (bib0013) 1995; 8
Widrow, Greenblatt, Kim, Park (bib0017) 2013; 37
Krizhevsky, Sutskever, Hinton (bib0002) 2012; 25
Prezioso (bib0007) 2015; 521
Glorot, Bengio (bib0024) 2010; 9
Adhikari (bib0015) 2015; 62
Hirotsu, Brooke (bib0014) 1993
Nair, Hinton (bib0022) 2010
Cauwenberghs (bib0012) 1993; 5
Jarrett, Kavukcuoglu, Ranzato, LeCun (bib0019) 2009
Hu (bib0005) 2016; 53
Schmidt, Kraaijveld, Duin (bib0016) 1992
Saxe (bib0018) 2011
Wan (bib0023) 2013
Bergstra (bib0020) 2010
Soudry, Di Castro, Gal, Kolodny, Kvatinsky (bib0025) 2015; 26
Szegedy (bib0003) 2015
Widrow, Hoff (bib0009) 1960; 4
LeCun, Bengio, Hinton (bib0001) 2015; 521
Jabri, Flower (bib0010) 1992; 3
He, Zhang, Ren, Sun (bib0004) 2016
Y. LeCun, C. Corinna, and J.C.B. Christopher, “The MNIST database of handwritten digits,” 1998.
Widrow (10.1016/j.neucom.2018.08.034_bib0017) 2013; 37
Cauwenberghs (10.1016/j.neucom.2018.08.034_bib0012) 1993; 5
Kataeva (10.1016/j.neucom.2018.08.034_bib0006) 2015
Krizhevsky (10.1016/j.neucom.2018.08.034_bib0002) 2012; 25
Hu (10.1016/j.neucom.2018.08.034_bib0005) 2016; 53
Flower (10.1016/j.neucom.2018.08.034_bib0011) 1993; 5
LeCun (10.1016/j.neucom.2018.08.034_bib0001) 2015; 521
Saxe (10.1016/j.neucom.2018.08.034_bib0018) 2011
10.1016/j.neucom.2018.08.034_bib0021
Szegedy (10.1016/j.neucom.2018.08.034_bib0003) 2015
He (10.1016/j.neucom.2018.08.034_bib0004) 2016
Bergstra (10.1016/j.neucom.2018.08.034_bib0020) 2010
Jabri (10.1016/j.neucom.2018.08.034_bib0010) 1992; 3
Widrow (10.1016/j.neucom.2018.08.034_bib0009) 1960; 4
Maeda (10.1016/j.neucom.2018.08.034_bib0013) 1995; 8
Hirotsu (10.1016/j.neucom.2018.08.034_bib0014) 1993
Prezioso (10.1016/j.neucom.2018.08.034_bib0007) 2015; 521
Soudry (10.1016/j.neucom.2018.08.034_bib0025) 2015; 26
Wan (10.1016/j.neucom.2018.08.034_bib0023) 2013
Schmidt (10.1016/j.neucom.2018.08.034_bib0016) 1992
Adhikari (10.1016/j.neucom.2018.08.034_bib0015) 2015; 62
Glorot (10.1016/j.neucom.2018.08.034_bib0024) 2010; 9
Adhikari (10.1016/j.neucom.2018.08.034_bib0008) 2012; 23
Nair (10.1016/j.neucom.2018.08.034_bib0022) 2010
Jarrett (10.1016/j.neucom.2018.08.034_bib0019) 2009
References_xml – volume: 4
  start-page: 96
  year: 1960
  end-page: 104
  ident: bib0009
  article-title: Adaptive switching circuits
  publication-title: IRE WESCON Convention Record
  contributor:
    fullname: Hoff
– year: 2015
  ident: bib0006
  article-title: Efficient training algorithms for neural networks based on memristive crossbar circuits
  publication-title: Proceedings of the International Joint Conference on Neural Networks (IJCNN)
  contributor:
    fullname: Kataeva
– volume: 5
  year: 1993
  ident: bib0012
  article-title: A fast stochastic error-descent algorithm for supervised learning and optimization
  publication-title: Advances in Neural Information Processing Systems
  contributor:
    fullname: Cauwenberghs
– start-page: 1
  year: 1992
  end-page: 4
  ident: bib0016
  article-title: Feedforward neural networks with random weights
  publication-title: Proceedings of the 11th IAPR International Conference on Pattern Recognition Methodology and Systems
  contributor:
    fullname: Duin
– volume: 5
  year: 1993
  ident: bib0011
  article-title: Summed weight neuron perturbation: an O(n) improvement over weight perturbation
  publication-title: Advances in Neural Information Processing Systems
  contributor:
    fullname: Jabri
– volume: 23
  start-page: 1426
  year: 2012
  end-page: 1435
  ident: bib0008
  article-title: Memristor bridge synapse-based neural network and its learning
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  contributor:
    fullname: Chua
– start-page: 1058
  year: 2013
  end-page: 1066
  ident: bib0023
  article-title: Regularization of neural networks using dropconnect
  publication-title: Proceedings of the 30th International Conference on Machine Learning (ICML-13)
  contributor:
    fullname: Wan
– start-page: 1
  year: 2015
  end-page: 9
  ident: bib0003
  article-title: Going deeper with convolutions
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
  contributor:
    fullname: Szegedy
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: bib0001
  article-title: Deep learning
  publication-title: Nature
  contributor:
    fullname: Hinton
– volume: 8
  start-page: 251
  year: 1995
  end-page: 259
  ident: bib0013
  article-title: A Learning rule of neural networks via simultaneous perturbation and its hardware implementation
  publication-title: Neural Netw.
  contributor:
    fullname: Kanata
– start-page: 807
  year: 2010
  end-page: 814
  ident: bib0022
  article-title: Rectified linear units improve restricted boltzmann machines
  publication-title: Proceedings of the 27th International Conference on Machine Learning (ICML-10)
  contributor:
    fullname: Hinton
– start-page: 770
  year: 2016
  end-page: 778
  ident: bib0004
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
  contributor:
    fullname: Sun
– volume: 3
  start-page: 154
  year: 1992
  end-page: 157
  ident: bib0010
  article-title: Weight perturbation: an optimal architecture and learning technique for analog VLSI feedforward and recurrent multilayer networks
  publication-title: IEEE Trans. Neural Netw.
  contributor:
    fullname: Flower
– start-page: 3031
  year: 1993
  end-page: 3034
  ident: bib0014
  article-title: An analog neural network chip with random weight change learning algorithm
  publication-title: Proceedings of the 1993 International Joint Conference on Neural Networks
  contributor:
    fullname: Brooke
– volume: 62
  start-page: 215
  year: 2015
  end-page: 223
  ident: bib0015
  article-title: A circuit-based learning architecture for multilayer neural networks with memristor bridge synapses
  publication-title: IEEE Trans. Circuits Syst. I
  contributor:
    fullname: Adhikari
– volume: 9
  year: 2010
  ident: bib0024
  article-title: Understanding the difficulty of training deep feedforward neural networks
  publication-title: Aistats
  contributor:
    fullname: Bengio
– volume: 521
  start-page: 61
  year: 2015
  end-page: 64
  ident: bib0007
  article-title: Training and operation of an integrated neuromorphic network based on metal-oxide memristors
  publication-title: Nature
  contributor:
    fullname: Prezioso
– volume: 37
  start-page: 182
  year: 2013
  end-page: 188
  ident: bib0017
  article-title: The no-prop algorithm: a new learning algorithm for multilayer neural networks
  publication-title: Neural Netw.
  contributor:
    fullname: Park
– volume: 53
  year: 2016
  ident: bib0005
  article-title: Dot-product engine for neuromorphic computing: programming 1T1M crossbar to accelerate matrix-vector multiplication
  publication-title: Proceedings of the DAC
  contributor:
    fullname: Hu
– start-page: 2146
  year: 2009
  end-page: 2153
  ident: bib0019
  article-title: What is the best multi-stage architecture for object recognition?
  publication-title: Proceedings of the IEEE International Conference Computer Vision
  contributor:
    fullname: LeCun
– volume: 26
  start-page: 2408
  year: 2015
  end-page: 2421
  ident: bib0025
  article-title: Memristor-based multilayer neural networks with online gradient descent training
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  contributor:
    fullname: Kvatinsky
– year: 2010
  ident: bib0020
  article-title: Theano: a CPU and GPU math expression compiler
  publication-title: Proceedings of the Python for Scientific Computing Conference (SciPy)
  contributor:
    fullname: Bergstra
– volume: 25
  start-page: 1097
  year: 2012
  end-page: 1105
  ident: bib0002
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
  contributor:
    fullname: Hinton
– start-page: 1089
  year: 2011
  end-page: 1096
  ident: bib0018
  article-title: On random weights and unsupervised feature learning
  publication-title: Proceedings of the 28th international conference on machine learning (ICML-11)
  contributor:
    fullname: Saxe
– volume: 25
  start-page: 1097
  year: 2012
  ident: 10.1016/j.neucom.2018.08.034_bib0002
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
  contributor:
    fullname: Krizhevsky
– start-page: 1058
  year: 2013
  ident: 10.1016/j.neucom.2018.08.034_bib0023
  article-title: Regularization of neural networks using dropconnect
  contributor:
    fullname: Wan
– year: 2015
  ident: 10.1016/j.neucom.2018.08.034_bib0006
  article-title: Efficient training algorithms for neural networks based on memristive crossbar circuits
  contributor:
    fullname: Kataeva
– start-page: 3031
  year: 1993
  ident: 10.1016/j.neucom.2018.08.034_bib0014
  article-title: An analog neural network chip with random weight change learning algorithm
  contributor:
    fullname: Hirotsu
– volume: 9
  year: 2010
  ident: 10.1016/j.neucom.2018.08.034_bib0024
  article-title: Understanding the difficulty of training deep feedforward neural networks
  publication-title: Aistats
  contributor:
    fullname: Glorot
– start-page: 770
  year: 2016
  ident: 10.1016/j.neucom.2018.08.034_bib0004
  article-title: Deep residual learning for image recognition
  contributor:
    fullname: He
– volume: 37
  start-page: 182
  year: 2013
  ident: 10.1016/j.neucom.2018.08.034_bib0017
  article-title: The no-prop algorithm: a new learning algorithm for multilayer neural networks
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2012.09.020
  contributor:
    fullname: Widrow
– volume: 3
  start-page: 154
  issue: 1
  year: 1992
  ident: 10.1016/j.neucom.2018.08.034_bib0010
  article-title: Weight perturbation: an optimal architecture and learning technique for analog VLSI feedforward and recurrent multilayer networks
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.105429
  contributor:
    fullname: Jabri
– volume: 62
  start-page: 215
  issue: 1
  year: 2015
  ident: 10.1016/j.neucom.2018.08.034_bib0015
  article-title: A circuit-based learning architecture for multilayer neural networks with memristor bridge synapses
  publication-title: IEEE Trans. Circuits Syst. I
  doi: 10.1109/TCSI.2014.2359717
  contributor:
    fullname: Adhikari
– volume: 5
  year: 1993
  ident: 10.1016/j.neucom.2018.08.034_bib0011
  article-title: Summed weight neuron perturbation: an O(n) improvement over weight perturbation
  contributor:
    fullname: Flower
– volume: 23
  start-page: 1426
  issue: 9
  year: 2012
  ident: 10.1016/j.neucom.2018.08.034_bib0008
  article-title: Memristor bridge synapse-based neural network and its learning
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2012.2204770
  contributor:
    fullname: Adhikari
– volume: 4
  start-page: 96
  issue: 1
  year: 1960
  ident: 10.1016/j.neucom.2018.08.034_bib0009
  article-title: Adaptive switching circuits
  publication-title: IRE WESCON Convention Record
  contributor:
    fullname: Widrow
– volume: 26
  start-page: 2408
  issue: 10
  year: 2015
  ident: 10.1016/j.neucom.2018.08.034_bib0025
  article-title: Memristor-based multilayer neural networks with online gradient descent training
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2014.2383395
  contributor:
    fullname: Soudry
– start-page: 1
  year: 2015
  ident: 10.1016/j.neucom.2018.08.034_bib0003
  article-title: Going deeper with convolutions
  contributor:
    fullname: Szegedy
– ident: 10.1016/j.neucom.2018.08.034_bib0021
– volume: 53
  year: 2016
  ident: 10.1016/j.neucom.2018.08.034_bib0005
  article-title: Dot-product engine for neuromorphic computing: programming 1T1M crossbar to accelerate matrix-vector multiplication
  contributor:
    fullname: Hu
– volume: 5
  year: 1993
  ident: 10.1016/j.neucom.2018.08.034_bib0012
  article-title: A fast stochastic error-descent algorithm for supervised learning and optimization
  contributor:
    fullname: Cauwenberghs
– start-page: 807
  year: 2010
  ident: 10.1016/j.neucom.2018.08.034_bib0022
  article-title: Rectified linear units improve restricted boltzmann machines
  contributor:
    fullname: Nair
– start-page: 1089
  year: 2011
  ident: 10.1016/j.neucom.2018.08.034_bib0018
  article-title: On random weights and unsupervised feature learning
  contributor:
    fullname: Saxe
– year: 2010
  ident: 10.1016/j.neucom.2018.08.034_bib0020
  article-title: Theano: a CPU and GPU math expression compiler
  doi: 10.25080/Majora-92bf1922-003
  contributor:
    fullname: Bergstra
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/j.neucom.2018.08.034_bib0001
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
  contributor:
    fullname: LeCun
– start-page: 2146
  year: 2009
  ident: 10.1016/j.neucom.2018.08.034_bib0019
  article-title: What is the best multi-stage architecture for object recognition?
  contributor:
    fullname: Jarrett
– volume: 521
  start-page: 61
  year: 2015
  ident: 10.1016/j.neucom.2018.08.034_bib0007
  article-title: Training and operation of an integrated neuromorphic network based on metal-oxide memristors
  publication-title: Nature
  doi: 10.1038/nature14441
  contributor:
    fullname: Prezioso
– start-page: 1
  year: 1992
  ident: 10.1016/j.neucom.2018.08.034_bib0016
  article-title: Feedforward neural networks with random weights
  contributor:
    fullname: Schmidt
– volume: 8
  start-page: 251
  issue: 2
  year: 1995
  ident: 10.1016/j.neucom.2018.08.034_bib0013
  article-title: A Learning rule of neural networks via simultaneous perturbation and its hardware implementation
  publication-title: Neural Netw.
  doi: 10.1016/0893-6080(94)00084-Y
  contributor:
    fullname: Maeda
SSID ssj0017129
Score 2.4275565
Snippet A hybrid learning algorithm suitable for hardware implementation of multi-layer neural networks is proposed. Though backpropagation is a powerful learning...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 28
SubjectTerms Backpropagation
Delta rule
Multilayer neural network
No-propagation
On-chip learning
Random weight change
Title Hybrid no-propagation learning for multilayer neural networks
URI https://dx.doi.org/10.1016/j.neucom.2018.08.034
Volume 321
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV27btswFCWcZMnSNI-i6QscsgUMJFE0qdFoXbgdujgBsgmiSCJ1HbmI5cH--ly-LAUOirZAFkGgTZngOTi6vL4PhC6kqahKJSUmMZTklTBEyIQSLim8PHOqjbLJyZMp_3Ervozz8WAQke7GXhRpGAOsbebsP6C9fSgMwD1gDldAHa5_hftkbXOwLpsFAW0EtfAAz6MHxEYVuiDCeQXG9qUtZwkgNT4YfNk3VV3Zjto1fQjuhNG9raqgLIU694G6-_mr8unq07t1dW8rIC0rtVWT4I92WQyzVeeSXbReYzbr5aZdmO0H7cPGtubx3bRdUP-875lIhY3yCDGqzl22kzLj_Y4ZI2BUegnWXnUFz1w-e1-Wqc-cjsIqeq9oX-BkR_y9H2J2BVtnI4Hsklx51uAtfVpWe2oXYtcBmpYUYIXtoYMMxAq08mD0bXz7fftfFE8zX7ExLDwmYLoowd3fet7A6Rkt16_Rq3DawCNPk2M00M0JOoqdPHAQ9lMUWIOfsgZH1mBgDe5Ygz1rcGTNGbr5Or7-PCGhsQap4YTYEsZ4rmiayqqmgtWZglNtIYxWNRisRqZG08JUkjE25NIoDd8fKg1nh1pkOaOSvkH7zaLRbxGG-bIoTMYZB3tomBQUpsuhkrzQMk_qc0TibpS_ff2UMgYWzkq_e6XdvdJ2Q6X5OeJxy8pgA3rbrgSU_zjz3X_PfI8OO_p-QPvtw0p_RHtLtfoUuPAIfZOCTQ
link.rule.ids 315,782,786,27933,27934
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+no-propagation+learning+for+multilayer+neural+networks&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Adhikari%2C+Shyam+Prasad&rft.au=Yang%2C+Changju&rft.au=Slot%2C+Krzysztof&rft.au=Strzelecki%2C+Michal&rft.date=2018-12-10&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=321&rft.spage=28&rft.epage=35&rft_id=info:doi/10.1016%2Fj.neucom.2018.08.034&rft.externalDocID=S0925231218309846
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon