Research on the effect of incident polarization phase on transverse spin splitting of reflected beam

In this work, the theoretical relationship model between the incident polarization phase and transverse spin splitting (TSS) shifts of photonic spin Hall effect (PSHE) is established. Based on the established model, the effect of the incident polarization phase on the TSS is systematically studied,...

Full description

Saved in:
Bibliographic Details
Published in:Optics communications Vol. 519; p. 128409
Main Authors: Jiang, Liying, Zhang, Zixuan, Bai, Zihao, Heng, Shengyan, Ren, Linjiao, Zhang, Pei, Qi, Rubin, Qin, Zirui
Format: Journal Article
Language:English
Published: Elsevier B.V 15-09-2022
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this work, the theoretical relationship model between the incident polarization phase and transverse spin splitting (TSS) shifts of photonic spin Hall effect (PSHE) is established. Based on the established model, the effect of the incident polarization phase on the TSS is systematically studied, and several characteristic laws are summarized. These findings can help people better understand PSHE. In addition, it is found that, no matter what the incident angle and polarization angle are, the TSS shift at polarization phase equal to ±90° is larger than that at other polarization phases. It can even reach several microns under certain incident angle and polarization angle, and is almost an order of magnitude larger than the usual TSS shift, which is generally tens to hundreds of nanometers. This provides a new way for enhancing PSHE. Furthermore, when the polarization phase is 90° or −90°, under a certain polarization angle, slightly adjust the polarization angle, the TSS shift will change sharply and its direction will be reversed. This interesting finding has great application value in the field of photon manipulation. •The model of transverse spin splitting (TSS) shift is established.•It is found that the TSS shift at the polarization phase equal to ±90°is larger than that at other polarization phases, and even reaches several microns.•When the polarization phase is 90°or −90°, the TSS shift will change sharply and its direction will be reversed under certain conditions.•Several interesting characteristics of TSS are discovered.
AbstractList In this work, the theoretical relationship model between the incident polarization phase and transverse spin splitting (TSS) shifts of photonic spin Hall effect (PSHE) is established. Based on the established model, the effect of the incident polarization phase on the TSS is systematically studied, and several characteristic laws are summarized. These findings can help people better understand PSHE. In addition, it is found that, no matter what the incident angle and polarization angle are, the TSS shift at polarization phase equal to ±90° is larger than that at other polarization phases. It can even reach several microns under certain incident angle and polarization angle, and is almost an order of magnitude larger than the usual TSS shift, which is generally tens to hundreds of nanometers. This provides a new way for enhancing PSHE. Furthermore, when the polarization phase is 90° or −90°, under a certain polarization angle, slightly adjust the polarization angle, the TSS shift will change sharply and its direction will be reversed. This interesting finding has great application value in the field of photon manipulation. •The model of transverse spin splitting (TSS) shift is established.•It is found that the TSS shift at the polarization phase equal to ±90°is larger than that at other polarization phases, and even reaches several microns.•When the polarization phase is 90°or −90°, the TSS shift will change sharply and its direction will be reversed under certain conditions.•Several interesting characteristics of TSS are discovered.
ArticleNumber 128409
Author Zhang, Zixuan
Ren, Linjiao
Qi, Rubin
Jiang, Liying
Bai, Zihao
Zhang, Pei
Heng, Shengyan
Qin, Zirui
Author_xml – sequence: 1
  givenname: Liying
  surname: Jiang
  fullname: Jiang, Liying
– sequence: 2
  givenname: Zixuan
  surname: Zhang
  fullname: Zhang, Zixuan
– sequence: 3
  givenname: Zihao
  surname: Bai
  fullname: Bai, Zihao
– sequence: 4
  givenname: Shengyan
  surname: Heng
  fullname: Heng, Shengyan
– sequence: 5
  givenname: Linjiao
  surname: Ren
  fullname: Ren, Linjiao
– sequence: 6
  givenname: Pei
  surname: Zhang
  fullname: Zhang, Pei
– sequence: 7
  givenname: Rubin
  surname: Qi
  fullname: Qi, Rubin
– sequence: 8
  givenname: Zirui
  orcidid: 0000-0002-0351-8855
  surname: Qin
  fullname: Qin, Zirui
  email: qinzr@zzuli.edu.cn, qinzr@tju.edu.cn
BookMark eNp9kN1KxDAQhYOs4Lr6Bl70BVonSdukN4Is_sGCIHod0mTiZtlNSxIW9OntWq-9mWHgnMOZ75IswhCQkBsKFQXa3u6qYcxmOFQMGKsokzV0Z2RJpeAlcAoLsgTgUNZA5QW5TGkHALTmcknsGybU0WyLIRR5iwU6hyYXgyt8MN5iyMU47HX03zr7STNudcJfcdQhHTFOVxp9mMbe5-zD58kb0e2nGLRFj_pwRc6d3ie8_tsr8vH48L5-LjevTy_r-01pOLS5ZEI0Ag2XXdfWKCR3DROmYdIIppnsudS1FND0jtVN56yTDoTluutbC73lfEXqOdfEIaWpgxqjP-j4pSioEym1UzMpdSKlZlKT7W624dTt6DGqZDwGg9bH6QllB_9_wA_8RHbh
CitedBy_id crossref_primary_10_1016_j_optcom_2023_130186
Cites_doi 10.1063/1.5131183
10.1103/PhysRevA.88.043842
10.1126/science.1152697
10.1364/OE.420907
10.1063/5.0042422
10.1364/OL.34.002551
10.1103/PhysRevA.103.033515
10.1016/j.optcom.2021.127275
10.1364/OL.40.001018
10.1002/lpor.202000492
10.1364/OL.409946
10.1364/OE.420432
10.1364/OE.435775
10.1016/j.cplett.2021.138613
10.1364/OE.399071
10.1103/PhysRevLett.93.083901
10.1103/PhysRevLett.96.073903
10.1364/OL.424277
10.1103/PhysRevLett.103.100401
10.1016/j.spmi.2021.106886
10.7567/1882-0786/ab1e62
10.1016/j.jmmm.2019.04.003
10.1126/science.1105514
10.1364/JOSAB.443687
10.1021/acs.nanolett.8b04219
10.1364/OE.403831
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.optcom.2022.128409
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1873-0310
ExternalDocumentID 10_1016_j_optcom_2022_128409
S0030401822002905
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LY7
M38
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSM
SSQ
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29N
6TJ
AAQXK
AAXKI
AAYXX
ABDPE
ABTAH
ABXDB
ACNNM
ADIYS
ADMUD
AFFNX
AFJKZ
AKRWK
ASPBG
AVWKF
AZFZN
BBWZM
CITATION
EJD
F0J
FEDTE
FGOYB
G-2
HMV
HVGLF
HZ~
MVM
NDZJH
R2-
RIG
SET
SEW
SPG
WUQ
XJT
ZY4
ID FETCH-LOGICAL-c306t-27757ec389964e783f527c528c72a28b38a48705bf2459fdf8f07d3a9b6d0bd33
ISSN 0030-4018
IngestDate Thu Nov 21 21:07:41 EST 2024
Fri Feb 23 02:41:17 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Gaussian beam
Transverse spin splitting
Polarization phase
Photonic spin Hall effect
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-27757ec389964e783f527c528c72a28b38a48705bf2459fdf8f07d3a9b6d0bd33
ORCID 0000-0002-0351-8855
ParticipantIDs crossref_primary_10_1016_j_optcom_2022_128409
elsevier_sciencedirect_doi_10_1016_j_optcom_2022_128409
PublicationCentury 2000
PublicationDate 2022-09-15
PublicationDateYYYYMMDD 2022-09-15
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-15
  day: 15
PublicationDecade 2020
PublicationTitle Optics communications
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ling, Guan, Cai (b29) 2021; 15
Qiu, Zhang, Xie (b19) 2015; 40
Zhu, Xu, Pan (b7) 2020; 28
Kato, Myers, Gossard, Awschalom (b4) 2004; 306
Aiello, Lindlein, Marquardt (b16) 2009; 103
Wang, Zhou, Zeng (b13) 2020; 5
Li, Tang, Li (b9) 2019; 484
Song, Da (b27) 2021; 499
Cheng, Fu, Chen (b23) 2022; 39
Xia, Chen, Xiang (b24) 2021; 29
Chen, Ling, Shu (b15) 2020; 13
Srivastava, Sharma, Prajapati (b8) 2021; 774
Cai, Zhang, Zhu (b17) 2020; 45
Prajapati (b6) 2021; 155
Kim, Lee, Rho (b20) 2021; 15
Hosten, Kwiat (b3) 2008; 319
Li, Wang, Taallah (b14) 2020; 28
Liang, Wang, Deng (b5) 2021; 29
Chen, Zhou, Ling (b11) 2021; 118
Li, Chen, Xie (b12) 2021; 29
Qin, Li, He (b18) 2009; 34
Wang, Li, Pan (b22) 2013; 88
Xia, Chen, Xiang (b25) 2021; 29
Bliokh, Bliokh (b2) 2006; 96
Ling, Xiao, Chen (b28) 2021; 103
Neugebauer, Nechayev, Vorndran (b10) 2018; 19
Onoda, Murakami, Nagaosa (b1) 2004; 93
Qin, Liu, Yue (b21) 2019; 12
Liu, Li, Tao (b26) 2021; 46
Kim (10.1016/j.optcom.2022.128409_b20) 2021; 15
Srivastava (10.1016/j.optcom.2022.128409_b8) 2021; 774
Ling (10.1016/j.optcom.2022.128409_b28) 2021; 103
Wang (10.1016/j.optcom.2022.128409_b13) 2020; 5
Qin (10.1016/j.optcom.2022.128409_b18) 2009; 34
Chen (10.1016/j.optcom.2022.128409_b11) 2021; 118
Zhu (10.1016/j.optcom.2022.128409_b7) 2020; 28
Chen (10.1016/j.optcom.2022.128409_b15) 2020; 13
Qiu (10.1016/j.optcom.2022.128409_b19) 2015; 40
Cheng (10.1016/j.optcom.2022.128409_b23) 2022; 39
Song (10.1016/j.optcom.2022.128409_b27) 2021; 499
Qin (10.1016/j.optcom.2022.128409_b21) 2019; 12
Prajapati (10.1016/j.optcom.2022.128409_b6) 2021; 155
Hosten (10.1016/j.optcom.2022.128409_b3) 2008; 319
Bliokh (10.1016/j.optcom.2022.128409_b2) 2006; 96
Xia (10.1016/j.optcom.2022.128409_b25) 2021; 29
Liu (10.1016/j.optcom.2022.128409_b26) 2021; 46
Ling (10.1016/j.optcom.2022.128409_b29) 2021; 15
Aiello (10.1016/j.optcom.2022.128409_b16) 2009; 103
Wang (10.1016/j.optcom.2022.128409_b22) 2013; 88
Neugebauer (10.1016/j.optcom.2022.128409_b10) 2018; 19
Kato (10.1016/j.optcom.2022.128409_b4) 2004; 306
Cai (10.1016/j.optcom.2022.128409_b17) 2020; 45
Liang (10.1016/j.optcom.2022.128409_b5) 2021; 29
Li (10.1016/j.optcom.2022.128409_b9) 2019; 484
Onoda (10.1016/j.optcom.2022.128409_b1) 2004; 93
Li (10.1016/j.optcom.2022.128409_b12) 2021; 29
Li (10.1016/j.optcom.2022.128409_b14) 2020; 28
Xia (10.1016/j.optcom.2022.128409_b24) 2021; 29
References_xml – volume: 28
  start-page: 25869
  year: 2020
  end-page: 25878
  ident: b7
  article-title: Black phosphorus terahertz sensing based on photonic spin Hall effect
  publication-title: Opt. Express
  contributor:
    fullname: Pan
– volume: 88
  year: 2013
  ident: b22
  article-title: Spin displacements of a Gaussian beam at an air–multilayer-film interface
  publication-title: Phys. Rev. A
  contributor:
    fullname: Pan
– volume: 5
  year: 2020
  ident: b13
  article-title: Ultrasensitive and real-time detection of chemical reaction rate based on the photonic spin Hall effect
  publication-title: Apl. Photon.
  contributor:
    fullname: Zeng
– volume: 103
  year: 2009
  ident: b16
  article-title: Transverse angular momentum and geometric spin hall effect of light
  publication-title: Phys. Rev. Lett.
  contributor:
    fullname: Marquardt
– volume: 29
  start-page: 12160
  year: 2021
  end-page: 12168
  ident: b24
  article-title: Enhanced spin Hall effect due to the redshift gaps of photonic hypercrystals
  publication-title: Opt. Express
  contributor:
    fullname: Xiang
– volume: 29
  start-page: 8777
  year: 2021
  end-page: 8785
  ident: b12
  article-title: Weak measurements of the waist of an arbitrarily polarized beam via in-plane spin splitting
  publication-title: Opt. Express
  contributor:
    fullname: Xie
– volume: 15
  year: 2021
  ident: b20
  article-title: Spin Hall effect under arbitrarily polarized or unpolarized light
  publication-title: Laser Photon. Rev.
  contributor:
    fullname: Rho
– volume: 12
  year: 2019
  ident: b21
  article-title: Modified model of photonic spin hall effect of Gaussian beam reflected from a dielectric interface
  publication-title: Appl. Phys. Express
  contributor:
    fullname: Yue
– volume: 96
  year: 2006
  ident: b2
  article-title: Conservation of angular momentum, transverse shift, and spin hall effect in reflection and refraction of an electromagnetic wave packet
  publication-title: Phys. Rev. Lett.
  contributor:
    fullname: Bliokh
– volume: 499
  year: 2021
  ident: b27
  article-title: Tunable and enhanced photonic spin hall effect of a superconductor film
  publication-title: Opt. Commun.
  contributor:
    fullname: Da
– volume: 93
  year: 2004
  ident: b1
  article-title: Hall effect of light
  publication-title: Phys. Rev. Lett.
  contributor:
    fullname: Nagaosa
– volume: 40
  start-page: 1018
  year: 2015
  end-page: 1021
  ident: b19
  article-title: Incident-polarization-sensitive and large in-plane-photonic-spin-splitting at the Brewster angle
  publication-title: Opt. Lett.
  contributor:
    fullname: Xie
– volume: 39
  start-page: 316
  year: 2022
  end-page: 323
  ident: b23
  article-title: Enhanced and tunable photonic spin Hall effect in metasurface bilayers
  publication-title: J. Opt. Soc. Am. B
  contributor:
    fullname: Chen
– volume: 29
  start-page: 12160
  year: 2021
  end-page: 12168
  ident: b25
  article-title: Enhanced spin Hall effect due to the redshift gaps of photonic hypercrystals
  publication-title: Opt. Express
  contributor:
    fullname: Xiang
– volume: 15
  year: 2021
  ident: b29
  article-title: Topology-induced phase transitions in spin-orbit photonics
  publication-title: Laser Photonics. Rev.
  contributor:
    fullname: Cai
– volume: 484
  start-page: 445
  year: 2019
  end-page: 450
  ident: b9
  article-title: Highly sensitive biosensor with graphene-MoS2 heterostructure based on photonic spin Hall effect
  publication-title: J. Magn. Magn. Mater.
  contributor:
    fullname: Li
– volume: 155
  year: 2021
  ident: b6
  article-title: Photonic spin hall effect detection using weak measurement in the SPR structure using antimonene: a sensing application
  publication-title: Superlattice Microstruct.
  contributor:
    fullname: Prajapati
– volume: 103
  year: 2021
  ident: b28
  article-title: Revisiting the anomalous spin-Hall effect of light near the Brewster angle
  publication-title: Phys. Rev. A
  contributor:
    fullname: Chen
– volume: 319
  start-page: 787
  year: 2008
  end-page: 790
  ident: b3
  article-title: Observation of the spin hall effect of light via weak measurements
  publication-title: Science
  contributor:
    fullname: Kwiat
– volume: 45
  start-page: 6740
  year: 2020
  end-page: 6743
  ident: b17
  article-title: Photonic spin Hall effect by anisotropy induced polarization gradient in momentum space
  publication-title: Opt. Lett.
  contributor:
    fullname: Zhu
– volume: 774
  year: 2021
  ident: b8
  article-title: On the sensitivity-enhancement in plasmonic biosensor with photonic spin hall effect at visible wavelength
  publication-title: Chem. Phys. Lett.
  contributor:
    fullname: Prajapati
– volume: 13
  year: 2020
  ident: b15
  article-title: Precision measurement of the optical conductivity of atomically thin crystals via the photonic spin Hall effect
  publication-title: Phys. Rev. A
  contributor:
    fullname: Shu
– volume: 28
  start-page: 29086
  year: 2020
  end-page: 29097
  ident: b14
  article-title: Measurement of the magnetic properties of thin films based on the spin Hall effect of light
  publication-title: Opt. Express
  contributor:
    fullname: Taallah
– volume: 19
  start-page: 422
  year: 2018
  end-page: 425
  ident: b10
  article-title: Weak measurement enhanced spin hall effect of light for particle displacement sensing
  publication-title: Nano. Lett.
  contributor:
    fullname: Vorndran
– volume: 29
  start-page: 29481
  year: 2021
  end-page: 29491
  ident: b5
  article-title: Controllable refractive index sensing and multi-functional detecting based on the spin Hall effect of light
  publication-title: Opt. Express
  contributor:
    fullname: Deng
– volume: 34
  start-page: 2551
  year: 2009
  end-page: 2553
  ident: b18
  article-title: Measurement of spin Hall effect of reflected light
  publication-title: Opt. Lett.
  contributor:
    fullname: He
– volume: 306
  start-page: 1910
  year: 2004
  end-page: 1913
  ident: b4
  article-title: Observation of the spin Hall effect in semiconductors
  publication-title: Science
  contributor:
    fullname: Awschalom
– volume: 46
  start-page: 2537
  year: 2021
  end-page: 2540
  ident: b26
  article-title: Enhanced and unidirectional photonic spin Hall effect in a plasmonic metasurface with S 4 symmetry
  publication-title: Opt. Lett.
  contributor:
    fullname: Tao
– volume: 118
  year: 2021
  ident: b11
  article-title: Measurement of the optical constants of monolayer MoS2 via the photonic spin Hall effect
  publication-title: Appl. Phys. Lett.
  contributor:
    fullname: Ling
– volume: 5
  issue: 1
  year: 2020
  ident: 10.1016/j.optcom.2022.128409_b13
  article-title: Ultrasensitive and real-time detection of chemical reaction rate based on the photonic spin Hall effect
  publication-title: Apl. Photon.
  doi: 10.1063/1.5131183
  contributor:
    fullname: Wang
– volume: 88
  issue: 4
  year: 2013
  ident: 10.1016/j.optcom.2022.128409_b22
  article-title: Spin displacements of a Gaussian beam at an air–multilayer-film interface
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.88.043842
  contributor:
    fullname: Wang
– volume: 319
  start-page: 787
  issue: 5864
  year: 2008
  ident: 10.1016/j.optcom.2022.128409_b3
  article-title: Observation of the spin hall effect of light via weak measurements
  publication-title: Science
  doi: 10.1126/science.1152697
  contributor:
    fullname: Hosten
– volume: 13
  issue: 1
  year: 2020
  ident: 10.1016/j.optcom.2022.128409_b15
  article-title: Precision measurement of the optical conductivity of atomically thin crystals via the photonic spin Hall effect
  publication-title: Phys. Rev. A
  contributor:
    fullname: Chen
– volume: 29
  start-page: 12160
  issue: 8
  year: 2021
  ident: 10.1016/j.optcom.2022.128409_b25
  article-title: Enhanced spin Hall effect due to the redshift gaps of photonic hypercrystals
  publication-title: Opt. Express
  doi: 10.1364/OE.420907
  contributor:
    fullname: Xia
– volume: 118
  issue: 11
  year: 2021
  ident: 10.1016/j.optcom.2022.128409_b11
  article-title: Measurement of the optical constants of monolayer MoS2 via the photonic spin Hall effect
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0042422
  contributor:
    fullname: Chen
– volume: 34
  start-page: 2551
  issue: 17
  year: 2009
  ident: 10.1016/j.optcom.2022.128409_b18
  article-title: Measurement of spin Hall effect of reflected light
  publication-title: Opt. Lett.
  doi: 10.1364/OL.34.002551
  contributor:
    fullname: Qin
– volume: 103
  issue: 3
  year: 2021
  ident: 10.1016/j.optcom.2022.128409_b28
  article-title: Revisiting the anomalous spin-Hall effect of light near the Brewster angle
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.103.033515
  contributor:
    fullname: Ling
– volume: 499
  year: 2021
  ident: 10.1016/j.optcom.2022.128409_b27
  article-title: Tunable and enhanced photonic spin hall effect of a superconductor film
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2021.127275
  contributor:
    fullname: Song
– volume: 40
  start-page: 1018
  issue: 6
  year: 2015
  ident: 10.1016/j.optcom.2022.128409_b19
  article-title: Incident-polarization-sensitive and large in-plane-photonic-spin-splitting at the Brewster angle
  publication-title: Opt. Lett.
  doi: 10.1364/OL.40.001018
  contributor:
    fullname: Qiu
– volume: 15
  issue: 6
  year: 2021
  ident: 10.1016/j.optcom.2022.128409_b29
  article-title: Topology-induced phase transitions in spin-orbit photonics
  publication-title: Laser Photonics. Rev.
  doi: 10.1002/lpor.202000492
  contributor:
    fullname: Ling
– volume: 45
  start-page: 6740
  issue: 24
  year: 2020
  ident: 10.1016/j.optcom.2022.128409_b17
  article-title: Photonic spin Hall effect by anisotropy induced polarization gradient in momentum space
  publication-title: Opt. Lett.
  doi: 10.1364/OL.409946
  contributor:
    fullname: Cai
– volume: 29
  start-page: 12160
  issue: 8
  year: 2021
  ident: 10.1016/j.optcom.2022.128409_b24
  article-title: Enhanced spin Hall effect due to the redshift gaps of photonic hypercrystals
  publication-title: Opt. Express
  doi: 10.1364/OE.420907
  contributor:
    fullname: Xia
– volume: 29
  start-page: 8777
  issue: 6
  year: 2021
  ident: 10.1016/j.optcom.2022.128409_b12
  article-title: Weak measurements of the waist of an arbitrarily polarized beam via in-plane spin splitting
  publication-title: Opt. Express
  doi: 10.1364/OE.420432
  contributor:
    fullname: Li
– volume: 29
  start-page: 29481
  issue: 18
  year: 2021
  ident: 10.1016/j.optcom.2022.128409_b5
  article-title: Controllable refractive index sensing and multi-functional detecting based on the spin Hall effect of light
  publication-title: Opt. Express
  doi: 10.1364/OE.435775
  contributor:
    fullname: Liang
– volume: 774
  year: 2021
  ident: 10.1016/j.optcom.2022.128409_b8
  article-title: On the sensitivity-enhancement in plasmonic biosensor with photonic spin hall effect at visible wavelength
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2021.138613
  contributor:
    fullname: Srivastava
– volume: 28
  start-page: 25869
  issue: 18
  year: 2020
  ident: 10.1016/j.optcom.2022.128409_b7
  article-title: Black phosphorus terahertz sensing based on photonic spin Hall effect
  publication-title: Opt. Express
  doi: 10.1364/OE.399071
  contributor:
    fullname: Zhu
– volume: 93
  issue: 8
  year: 2004
  ident: 10.1016/j.optcom.2022.128409_b1
  article-title: Hall effect of light
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.083901
  contributor:
    fullname: Onoda
– volume: 96
  issue: 07
  year: 2006
  ident: 10.1016/j.optcom.2022.128409_b2
  article-title: Conservation of angular momentum, transverse shift, and spin hall effect in reflection and refraction of an electromagnetic wave packet
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.073903
  contributor:
    fullname: Bliokh
– volume: 46
  start-page: 2537
  issue: 10
  year: 2021
  ident: 10.1016/j.optcom.2022.128409_b26
  article-title: Enhanced and unidirectional photonic spin Hall effect in a plasmonic metasurface with S 4 symmetry
  publication-title: Opt. Lett.
  doi: 10.1364/OL.424277
  contributor:
    fullname: Liu
– volume: 103
  issue: 10
  year: 2009
  ident: 10.1016/j.optcom.2022.128409_b16
  article-title: Transverse angular momentum and geometric spin hall effect of light
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.100401
  contributor:
    fullname: Aiello
– volume: 155
  year: 2021
  ident: 10.1016/j.optcom.2022.128409_b6
  article-title: Photonic spin hall effect detection using weak measurement in the SPR structure using antimonene: a sensing application
  publication-title: Superlattice Microstruct.
  doi: 10.1016/j.spmi.2021.106886
  contributor:
    fullname: Prajapati
– volume: 12
  issue: 6
  year: 2019
  ident: 10.1016/j.optcom.2022.128409_b21
  article-title: Modified model of photonic spin hall effect of Gaussian beam reflected from a dielectric interface
  publication-title: Appl. Phys. Express
  doi: 10.7567/1882-0786/ab1e62
  contributor:
    fullname: Qin
– volume: 484
  start-page: 445
  year: 2019
  ident: 10.1016/j.optcom.2022.128409_b9
  article-title: Highly sensitive biosensor with graphene-MoS2 heterostructure based on photonic spin Hall effect
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2019.04.003
  contributor:
    fullname: Li
– volume: 306
  start-page: 1910
  issue: 5703
  year: 2004
  ident: 10.1016/j.optcom.2022.128409_b4
  article-title: Observation of the spin Hall effect in semiconductors
  publication-title: Science
  doi: 10.1126/science.1105514
  contributor:
    fullname: Kato
– volume: 39
  start-page: 316
  issue: 1
  year: 2022
  ident: 10.1016/j.optcom.2022.128409_b23
  article-title: Enhanced and tunable photonic spin Hall effect in metasurface bilayers
  publication-title: J. Opt. Soc. Am. B
  doi: 10.1364/JOSAB.443687
  contributor:
    fullname: Cheng
– volume: 15
  issue: 7
  year: 2021
  ident: 10.1016/j.optcom.2022.128409_b20
  article-title: Spin Hall effect under arbitrarily polarized or unpolarized light
  publication-title: Laser Photon. Rev.
  contributor:
    fullname: Kim
– volume: 19
  start-page: 422
  issue: 1
  year: 2018
  ident: 10.1016/j.optcom.2022.128409_b10
  article-title: Weak measurement enhanced spin hall effect of light for particle displacement sensing
  publication-title: Nano. Lett.
  doi: 10.1021/acs.nanolett.8b04219
  contributor:
    fullname: Neugebauer
– volume: 28
  start-page: 29086
  issue: 20
  year: 2020
  ident: 10.1016/j.optcom.2022.128409_b14
  article-title: Measurement of the magnetic properties of thin films based on the spin Hall effect of light
  publication-title: Opt. Express
  doi: 10.1364/OE.403831
  contributor:
    fullname: Li
SSID ssj0001438
Score 2.425381
Snippet In this work, the theoretical relationship model between the incident polarization phase and transverse spin splitting (TSS) shifts of photonic spin Hall...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 128409
SubjectTerms Gaussian beam
Photonic spin Hall effect
Polarization phase
Transverse spin splitting
Title Research on the effect of incident polarization phase on transverse spin splitting of reflected beam
URI https://dx.doi.org/10.1016/j.optcom.2022.128409
Volume 519
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9UwFA-6MfBFdCpO58jD3kZGbpo06eOcV6aIPmzC2Etp05TbsbVl915w_73nNOkHXBlT8KWU0Nxccn6cr_xyDiGHeFQlXCyZ5VYxOTMZy510TPE8mxVOF6rr3nB2rr9fmk9zOR9zuuPYf5U0jIGs8ebsX0h7-FEYgHeQOTxB6vB8lNx7Kl04BQiEDV8ZwmIH0RU2ZoAI2d-_PGoXGabza2wWUS-RpOGOlm1Vw-OmGkjRYEcxv4_uqstupx7tj7Yr9GynF01GWmIV0tHfqvveRk6z1FfVr_UIz4--NfZVtciaMUcb8tkLeLkP34YsBQS42GVBjamzjeszXh1HHALYoICd18BGRwzrlU5VtPJqdUPd-8zD9XHTrpD7gwsfo8HlyWjeBtLheXcMDKsJJKYkWPh2W4B6Au24ffJlfvl1sODYEt6X8_R_r79y2fECN9f6s0szcVMuXpDnIb6gJx4YL8kTV--SnY7na5evSNHDgzY1BXhQDw_alLSHB53Cg3bw6D4e4EERHnSAB84d4EERHq_Jz8_zi9MzFhptMAsR44oJrZV2FkstxtJpE5VKaKuEsVpkwuSRySCu5SovhVRJWZSm5LqIsiSPC54XUfSGbNVN7d4SakuwrkmuDE-MnDmZyDI2cRSjHUssl3uE9XuVtr6eStoTDa9Tv7cp7m3q93aP6H5D0-ATel8vBQw8OPPdP898T56NEN4nW6u7tftAni6L9UFAym-Fhoa-
link.rule.ids 315,782,786,27933,27934
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+the+effect+of+incident+polarization+phase+on+transverse+spin+splitting+of+reflected+beam&rft.jtitle=Optics+communications&rft.au=Jiang%2C+Liying&rft.au=Zhang%2C+Zixuan&rft.au=Bai%2C+Zihao&rft.au=Heng%2C+Shengyan&rft.date=2022-09-15&rft.pub=Elsevier+B.V&rft.issn=0030-4018&rft.eissn=1873-0310&rft.volume=519&rft_id=info:doi/10.1016%2Fj.optcom.2022.128409&rft.externalDocID=S0030401822002905
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0030-4018&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0030-4018&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0030-4018&client=summon