Design and optimization methodology for different 3D processed materials (PLA, ABS and carbon fiber reinforced nylon PA12) subjected to static and dynamic loads
This research presents a methodology for the design and optimization of 3D printed parts with material extrusion (MEX) technology with three different commercial materials: PLA, ABS and N + CF (PA12) subjected to tensile and fatigue stresses, which included three stages: pretreatment, design of expe...
Saved in:
Published in: | Journal of the mechanical behavior of biomedical materials Vol. 150; p. 106257 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Netherlands
01-02-2024
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | This research presents a methodology for the design and optimization of 3D printed parts with material extrusion (MEX) technology with three different commercial materials: PLA, ABS and N + CF (PA12) subjected to tensile and fatigue stresses, which included three stages: pretreatment, design of experiments and sequential optimization by statistical modeling. In the pretreatment stage, mainly the printing control factors (inner layer and contour height, printing speed, extrusion temperature, nozzle, infill arrangement and printing orientation) were determined; then, factors to optimize tensile strength as a function of printing pattern (linear, 3D, hexagonal), infill percentage (33%, 66%, 100°) and printing orientation (+45°/-45°, 0°/90°) were evaluated. Fatigue analysis was performed as a function of impression orientation using 100% infill, linear impression pattern, 5 Hz and a load range between 90 and 50% UTS. Optimization of tensile strength resulted in parts that exceeded the UTS of their corresponding filament, leading to infinite life relative to fatigue tests. Results were presented for fatigue life prediction based on Weibull analysis, Basquińs model and a multivariate response surface correlation analysis. The best fatigue behavior was related to the optimized tensile strength, the infill pattern applied to the printing orientation and the intrinsic properties of ABS (1 × 10
cycles, stress up to 20 MPa). With respect to the other materials, a good fatigue behavior was highlighted at the number of cycles achieved 1 × 10
(stress up to 18 MPa) and 1 × 10
(stress up to 24 MPa) for N + CF and PLA, respectively. This study contributes to a better understanding of how printing parameters correlate with tensile and fatigue properties. |
---|---|
AbstractList | This research presents a methodology for the design and optimization of 3D printed parts with material extrusion (MEX) technology with three different commercial materials: PLA, ABS and N + CF (PA12) subjected to tensile and fatigue stresses, which included three stages: pretreatment, design of experiments and sequential optimization by statistical modeling. In the pretreatment stage, mainly the printing control factors (inner layer and contour height, printing speed, extrusion temperature, nozzle, infill arrangement and printing orientation) were determined; then, factors to optimize tensile strength as a function of printing pattern (linear, 3D, hexagonal), infill percentage (33%, 66%, 100°) and printing orientation (+45°/-45°, 0°/90°) were evaluated. Fatigue analysis was performed as a function of impression orientation using 100% infill, linear impression pattern, 5 Hz and a load range between 90 and 50% UTS. Optimization of tensile strength resulted in parts that exceeded the UTS of their corresponding filament, leading to infinite life relative to fatigue tests. Results were presented for fatigue life prediction based on Weibull analysis, Basquińs model and a multivariate response surface correlation analysis. The best fatigue behavior was related to the optimized tensile strength, the infill pattern applied to the printing orientation and the intrinsic properties of ABS (1 × 107cycles, stress up to 20 MPa). With respect to the other materials, a good fatigue behavior was highlighted at the number of cycles achieved 1 × 106 (stress up to 18 MPa) and 1 × 105 (stress up to 24 MPa) for N + CF and PLA, respectively. This study contributes to a better understanding of how printing parameters correlate with tensile and fatigue properties.This research presents a methodology for the design and optimization of 3D printed parts with material extrusion (MEX) technology with three different commercial materials: PLA, ABS and N + CF (PA12) subjected to tensile and fatigue stresses, which included three stages: pretreatment, design of experiments and sequential optimization by statistical modeling. In the pretreatment stage, mainly the printing control factors (inner layer and contour height, printing speed, extrusion temperature, nozzle, infill arrangement and printing orientation) were determined; then, factors to optimize tensile strength as a function of printing pattern (linear, 3D, hexagonal), infill percentage (33%, 66%, 100°) and printing orientation (+45°/-45°, 0°/90°) were evaluated. Fatigue analysis was performed as a function of impression orientation using 100% infill, linear impression pattern, 5 Hz and a load range between 90 and 50% UTS. Optimization of tensile strength resulted in parts that exceeded the UTS of their corresponding filament, leading to infinite life relative to fatigue tests. Results were presented for fatigue life prediction based on Weibull analysis, Basquińs model and a multivariate response surface correlation analysis. The best fatigue behavior was related to the optimized tensile strength, the infill pattern applied to the printing orientation and the intrinsic properties of ABS (1 × 107cycles, stress up to 20 MPa). With respect to the other materials, a good fatigue behavior was highlighted at the number of cycles achieved 1 × 106 (stress up to 18 MPa) and 1 × 105 (stress up to 24 MPa) for N + CF and PLA, respectively. This study contributes to a better understanding of how printing parameters correlate with tensile and fatigue properties. This research presents a methodology for the design and optimization of 3D printed parts with material extrusion (MEX) technology with three different commercial materials: PLA, ABS and N + CF (PA12) subjected to tensile and fatigue stresses, which included three stages: pretreatment, design of experiments and sequential optimization by statistical modeling. In the pretreatment stage, mainly the printing control factors (inner layer and contour height, printing speed, extrusion temperature, nozzle, infill arrangement and printing orientation) were determined; then, factors to optimize tensile strength as a function of printing pattern (linear, 3D, hexagonal), infill percentage (33%, 66%, 100°) and printing orientation (+45°/-45°, 0°/90°) were evaluated. Fatigue analysis was performed as a function of impression orientation using 100% infill, linear impression pattern, 5 Hz and a load range between 90 and 50% UTS. Optimization of tensile strength resulted in parts that exceeded the UTS of their corresponding filament, leading to infinite life relative to fatigue tests. Results were presented for fatigue life prediction based on Weibull analysis, Basquińs model and a multivariate response surface correlation analysis. The best fatigue behavior was related to the optimized tensile strength, the infill pattern applied to the printing orientation and the intrinsic properties of ABS (1 × 10 cycles, stress up to 20 MPa). With respect to the other materials, a good fatigue behavior was highlighted at the number of cycles achieved 1 × 10 (stress up to 18 MPa) and 1 × 10 (stress up to 24 MPa) for N + CF and PLA, respectively. This study contributes to a better understanding of how printing parameters correlate with tensile and fatigue properties. |
ArticleNumber | 106257 |
Author | García, Ch J Rodríguez-Reyna, S L Gutierrez-Castañeda, Emmanuel J Tapia, Fidencio Díaz-Aguilera, J H Acevedo-Parra, H R |
Author_xml | – sequence: 1 givenname: S L surname: Rodríguez-Reyna fullname: Rodríguez-Reyna, S L email: sandyreyna@uaslp.mx organization: Facultad de Ingeniería, Universidad Autónoma de Luis Potosí, San Luis Potosí, S.L.P, C.P. 78290, Mexico. Electronic address: sandyreyna@uaslp.mx – sequence: 2 givenname: J H surname: Díaz-Aguilera fullname: Díaz-Aguilera, J H email: jhda_ic24@hotmail.com organization: Instituto de Ingeniería Civil, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, C.P. 66455, Mexico. Electronic address: jhda_ic24@hotmail.com – sequence: 3 givenname: H R surname: Acevedo-Parra fullname: Acevedo-Parra, H R email: hacevedo@up.edu.mx organization: Universidad Panamericana, Facultad de Ingeniería, Álvaro del Portillo 49, Zapopan, Jalisco, 45010, Mexico. Electronic address: hacevedo@up.edu.mx – sequence: 4 givenname: Ch J surname: García fullname: García, Ch J email: cjgarcia@ipn.mx organization: Instituto Politécnico Nacional CIITEC-IPN, Ciudad de México, C.P. 02250, Mexico. Electronic address: cjgarcia@ipn.mx – sequence: 5 givenname: Emmanuel J surname: Gutierrez-Castañeda fullname: Gutierrez-Castañeda, Emmanuel J email: emmanuel.gutierrez@uaslp.mx organization: Facultad de Ingeniería, Universidad Autónoma de Luis Potosí, San Luis Potosí, S.L.P, C.P. 78290, Mexico. Electronic address: emmanuel.gutierrez@uaslp.mx – sequence: 6 givenname: Fidencio surname: Tapia fullname: Tapia, Fidencio email: ftapia@up.edu.mx organization: Universidad Panamericana, Facultad de Ingeniería, Álvaro del Portillo 49, Zapopan, Jalisco, 45010, Mexico. Electronic address: ftapia@up.edu.mx |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38048715$$D View this record in MEDLINE/PubMed |
BookMark | eNo9kVuLFDEQhYOsuBf9BYLkcQV7TDqddOZxdtcbDLigPje5VNY0nWRMMg_jr_Gnmp1ZfaricM5XFOcSncUUAaHXlKwooeL9vJqD1mHVk541RfR8fIYuqBxlR6gkZ20fOe0EFfQcXZYyEyIIkfIFOmeSDHKk_AL9uYPiHyJW0eK0qz7436r6FHGA-jPZtKSHA3YpY-udgwyxYnaHdzkZKAUsDqpC9mop-Pp-u3mHNzffjiyjsm4U5zVknMHHxjDNHw9Lk-83tH-Ly17PYGpTa8KltrvmmLWHqELbl6RseYmeu4aHV0_zCv34-OH77edu-_XTl9vNtjOM8NpZq_Vo1mtCDYdeSGOsdUZxYfgIzjriJDW9GDRATwcnKOOq14MaCR-NdJxdoesTt_32aw-lTsEXA8uiIqR9mXq5lowOTMpmZSeryamUDG7aZR9UPkyUTI_VTPN0rGZ6rGY6VdNSb54O7HUA-z_zrwv2F2cXj8s |
CitedBy_id | crossref_primary_10_3390_polym16101429 crossref_primary_10_1016_j_heliyon_2024_e29920 |
Cites_doi | 10.3390/ma11122521 10.4028/www.scientific.net/MSF.862.174 10.1088/1757-899X/227/1/012033 10.1038/nnano.2007.186 10.3390/app12063192 10.1016/j.ijfatigue.2019.105275 10.3390/ma12233859 10.1007/s00170-018-2398-7 10.3390/polym13091381 10.2298/JSC201123018S 10.1108/13552540010337056 10.3390/c7020042 10.1016/j.compositesb.2016.04.067 10.1016/j.prostr.2018.06.007 10.1016/j.compstruct.2023.116788 10.3390/nano12234292 10.1038/s41563-019-0586-y 10.3390/polym14050886 10.1016/j.ijfatigue.2019.02.042 10.1007/s11665-021-05635-1 10.1016/j.polymertesting.2018.01.002 10.1108/RPJ-09-2013-0086 10.1007/s11665-021-05792-3 10.3390/polym11030559 10.3390/mi14020304 10.1007/s11665-017-2961-7 10.1108/13552541311323290 10.3390/polym12122924 10.1002/pat.5372 10.3390/ma11081333 10.1016/j.compositesb.2016.11.034 10.3390/machines8030052 10.1016/j.ijfatigue.2020.106007 10.3390/molecules25215023 10.1080/09243046.2022.2076019 10.1108/RPJ-07-2018-0183 10.1023/A:1017960704248 10.1088/1757-899X/269/1/012060 10.1115/1.4030993 10.1016/j.prostr.2018.12.121 10.1007/s40964-015-0002-3 10.1177/0021998313519153 10.1016/j.promfg.2019.06.089 10.3390/polym15153267 10.1016/j.jmatprotec.2016.07.025 10.3390/app13158819 10.1177/00219983211020070 10.1016/j.rineng.2021.100264 |
ContentType | Journal Article |
Copyright | Copyright © 2023 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: Copyright © 2023 Elsevier Ltd. All rights reserved. |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
DOI | 10.1016/j.jmbbm.2023.106257 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1878-0180 |
ExternalDocumentID | 10_1016_j_jmbbm_2023_106257 38048715 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABXZ AACTN AAEDT AAEDW AAEPC AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABFNM ABJNI ABMAC ABXDB ABXRA ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AEZYN AFJKZ AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHJVU AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CGR CS3 CUY CVF DU5 EBS ECM EFJIC EIF EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN GBLVA HVGLF HZ~ IHE J1W JJJVA KOM M41 MAGPM MO0 N9A NPM O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SSM SST SSZ T5K ~G- AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-c305t-ddbb7c9901c5e268ccddfca56c57efdf0f81c264bee214f6135a2b4a7057c8f53 |
ISSN | 1751-6161 1878-0180 |
IngestDate | Sat Oct 26 04:33:37 EDT 2024 Thu Sep 26 19:50:36 EDT 2024 Sat Nov 02 12:27:52 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Infinite fatigue life Design methodology Statistical optimization modeling 3D printing Tensile strength |
Language | English |
License | Copyright © 2023 Elsevier Ltd. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c305t-ddbb7c9901c5e268ccddfca56c57efdf0f81c264bee214f6135a2b4a7057c8f53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-4435-7485 0000-0002-5277-9568 0000-0001-9603-7067 0000-0002-8096-3135 0000-0002-1491-5805 0000-0002-3456-3528 |
PMID | 38048715 |
PQID | 2898314388 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2898314388 crossref_primary_10_1016_j_jmbbm_2023_106257 pubmed_primary_38048715 |
PublicationCentury | 2000 |
PublicationDate | 2024-Feb 2024-02-00 20240201 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-Feb |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Journal of the mechanical behavior of biomedical materials |
PublicationTitleAlternate | J Mech Behav Biomed Mater |
PublicationYear | 2024 |
References | Petousis (10.1016/j.jmbbm.2023.106257_bib42) 2022; 12823 Vidakis (10.1016/j.jmbbm.2023.106257_bib62) 2022; 31 Dey (10.1016/j.jmbbm.2023.106257_bib14) 2019; 3 Hikmat (10.1016/j.jmbbm.2023.106257_bib26) 2021; 11 Vidakis (10.1016/j.jmbbm.2023.106257_bib61) 2020; 12 Travieso-Rodriguez (10.1016/j.jmbbm.2023.106257_bib60) 2019; 12 Puchalski (10.1016/j.jmbbm.2023.106257_bib45) 2019; 11 Dickson (10.1016/j.jmbbm.2023.106257_bib16) 2017; 16 Mohammadizadeh (10.1016/j.jmbbm.2023.106257_bib39) 2021; 55 Suhr (10.1016/j.jmbbm.2023.106257_bib58) 2007; 2 Imeri (10.1016/j.jmbbm.2023.106257_bib28) 2018; 98 Shakiba (10.1016/j.jmbbm.2023.106257_bib56) 2021; 32 Cui (10.1016/j.jmbbm.2023.106257_bib11) 2020; 19 Sabatini (10.1016/j.jmbbm.2023.106257_bib50) 2023; 15 Safai (10.1016/j.jmbbm.2023.106257_bib51) 2019; 28 Anisoprint (10.1016/j.jmbbm.2023.106257_bib3) Li (10.1016/j.jmbbm.2023.106257_bib35) 2020; 25 Prüß (10.1016/j.jmbbm.2023.106257_bib43) 2015; 137 Vidakis (10.1016/j.jmbbm.2023.106257_bib65) 2023; 6 Padzi (10.1016/j.jmbbm.2023.106257_bib40) 2017; 269 Corbett (10.1016/j.jmbbm.2023.106257_bib10) 2014 Pertuz (10.1016/j.jmbbm.2023.106257_bib41) 2020; 130 Wang (10.1016/j.jmbbm.2023.106257_bib67) 2017; 110 Blok (10.1016/j.jmbbm.2023.106257_bib6) 2018; 22 Ćwikła (10.1016/j.jmbbm.2023.106257_bib12) 2017; 227 Ziemian (10.1016/j.jmbbm.2023.106257_bib74) 2015; 21 Sans (10.1016/j.jmbbm.2023.106257_bib52) 2017 Šafka (10.1016/j.jmbbm.2023.106257_bib49) 2016; 862 Vidakis (10.1016/j.jmbbm.2023.106257_bib64) 2023; 311 Winnacker (10.1016/j.jmbbm.2023.106257_bib68) 2017; 32 Calignano (10.1016/j.jmbbm.2023.106257_bib7) 2020; 8 Vidakis (10.1016/j.jmbbm.2023.106257_bib66) 2023; 34 Mohammadizadeh (10.1016/j.jmbbm.2023.106257_bib38) 2019; 175 Cojocaru (10.1016/j.jmbbm.2023.106257_bib9) 2022; 14 Hashmi (10.1016/j.jmbbm.2023.106257_bib25) 2021; 81 Azadi (10.1016/j.jmbbm.2023.106257_bib5) 2021; 3 Li (10.1016/j.jmbbm.2023.106257_bib34) 2016; 238 Lee (10.1016/j.jmbbm.2023.106257_bib32) 2013; 19 Ziemian (10.1016/j.jmbbm.2023.106257_bib72) 2011 Marissen (10.1016/j.jmbbm.2023.106257_bib37) 2001; 36 Wittbrodt (10.1016/j.jmbbm.2023.106257_bib69) 2015; 8 Ziemian (10.1016/j.jmbbm.2023.106257_bib73) 2014; 1 Arbeiter (10.1016/j.jmbbm.2023.106257_bib4) 2018; 66 Gordelier (10.1016/j.jmbbm.2023.106257_bib22) 2019; 25 Zhang (10.1016/j.jmbbm.2023.106257_bib71) 2017; 27 Shahrubudin (10.1016/j.jmbbm.2023.106257_bib55) 2019; 35 Cascos Sánchez (10.1016/j.jmbbm.2023.106257_bib8) Rodriguez (10.1016/j.jmbbm.2023.106257_bib48) 2000; 6 Dul (10.1016/j.jmbbm.2023.106257_bib18) 2021; 30 Ezeh (10.1016/j.jmbbm.2023.106257_bib19) 2018; 9 Rodríguez-Reyna (10.1016/j.jmbbm.2023.106257_bib47) 2022; 33 Shabbir (10.1016/j.jmbbm.2023.106257_bib54) 2021; 86 Huang (10.1016/j.jmbbm.2023.106257_bib27) 2015; 49 Ezeh (10.1016/j.jmbbm.2023.106257_bib20) 2018; 13 Rodríguez-Panes (10.1016/j.jmbbm.2023.106257_bib46) 2018; 11 Jap (10.1016/j.jmbbm.2023.106257_bib29) 2019; 124 Maleki (10.1016/j.jmbbm.2023.106257_bib36) 2022; 12 Grigora (10.1016/j.jmbbm.2023.106257_bib23) 2021; 13 Letcher (10.1016/j.jmbbm.2023.106257_bib33) 2014; 2A Prabhakar (10.1016/j.jmbbm.2023.106257_bib44) 2021; 30 Teixeira (10.1016/j.jmbbm.2023.106257_bib59) 2021; 7 Hackney (10.1016/j.jmbbm.2023.106257_bib24) 2020; 51 Domingo-Espin (10.1016/j.jmbbm.2023.106257_bib17) 2018; 11 Yankin (10.1016/j.jmbbm.2023.106257_bib70) 2023; 14 Shanmugam (10.1016/j.jmbbm.2023.106257_bib57) 2021; 143 Lampman (10.1016/j.jmbbm.2023.106257_bib31) 2003 Senatov (10.1016/j.jmbbm.2023.106257_bib53) 2016; 97 Vidakis (10.1016/j.jmbbm.2023.106257_bib63) 2022; 5 Giannakis (10.1016/j.jmbbm.2023.106257_bib21) 1999; XI Díaz López (10.1016/j.jmbbm.2023.106257_bib15) Afrose (10.1016/j.jmbbm.2023.106257_bib2) 2015; 1 Kumar (10.1016/j.jmbbm.2023.106257_bib30) 2021 10.1016/j.jmbbm.2023.106257_bib13 |
References_xml | – volume: 11 start-page: 2521 year: 2018 ident: 10.1016/j.jmbbm.2023.106257_bib17 article-title: Fatigue performance of ABS specimens obtained by fused filament fabrication publication-title: Materials doi: 10.3390/ma11122521 contributor: fullname: Domingo-Espin – volume: 81 start-page: 723 issue: 2 year: 2021 ident: 10.1016/j.jmbbm.2023.106257_bib25 article-title: Improving the surface characteristics of additively manufactured parts: a review publication-title: Mater. Today Proc. contributor: fullname: Hashmi – volume: 30 start-page: 5342 year: 2021 ident: 10.1016/j.jmbbm.2023.106257_bib44 article-title: 3D-Printed microfluidics and potential biomedical applications publication-title: Front. Nanotech. contributor: fullname: Prabhakar – volume: 862 start-page: 174 year: 2016 ident: 10.1016/j.jmbbm.2023.106257_bib49 article-title: Use of composite mater. For FDM 3D print technology publication-title: Mater. Sci. Forum doi: 10.4028/www.scientific.net/MSF.862.174 contributor: fullname: Šafka – volume: 227 year: 2017 ident: 10.1016/j.jmbbm.2023.106257_bib12 article-title: The influence of printing parameters on selected mechanical properties of FDM/FFF 3D-printed parts publication-title: IOP Conf. Ser. Mater. Sci. Eng. doi: 10.1088/1757-899X/227/1/012033 contributor: fullname: Ćwikła – volume: 2A start-page: 1 year: 2014 ident: 10.1016/j.jmbbm.2023.106257_bib33 article-title: Material property testing of 3D-printed specimen in PLA on an entry-level 3D printer publication-title: Adv. Manuf. contributor: fullname: Letcher – volume: 3 year: 2021 ident: 10.1016/j.jmbbm.2023.106257_bib5 article-title: High-cycle bending fatigue properties of additive-manufactured ABS and PLA polymers fabricated by fused deposition modeling 3D-printing publication-title: Forc. Mechan. contributor: fullname: Azadi – volume: 2 start-page: 417 year: 2007 ident: 10.1016/j.jmbbm.2023.106257_bib58 article-title: Fatigue resistance of aligned carbon nanotube arrays under cyclic compression publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2007.186 contributor: fullname: Suhr – volume: 12 start-page: 3192 year: 2022 ident: 10.1016/j.jmbbm.2023.106257_bib36 article-title: Poly(lactic acid)-based electrospun fibrous structures for biomedical applications publication-title: Appl. Sci. doi: 10.3390/app12063192 contributor: fullname: Maleki – volume: 130 year: 2020 ident: 10.1016/j.jmbbm.2023.106257_bib41 article-title: Static and fatigue behaviour of continuous fibre reinforced thermoplastic composites manufactured by fused deposition modelling technique publication-title: Int. J. Fatig. doi: 10.1016/j.ijfatigue.2019.105275 contributor: fullname: Pertuz – ident: 10.1016/j.jmbbm.2023.106257_bib15 contributor: fullname: Díaz López – volume: 12 start-page: 3859 year: 2019 ident: 10.1016/j.jmbbm.2023.106257_bib60 article-title: Mechanical properties of 3D-printing polylactic acid parts subjected to bending stress and fatigue testing publication-title: Materials doi: 10.3390/ma12233859 contributor: fullname: Travieso-Rodriguez – volume: 98 start-page: 2717 year: 2018 ident: 10.1016/j.jmbbm.2023.106257_bib28 article-title: Fatigue analysis of the fiber reinforced additively manufactured objects publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-018-2398-7 contributor: fullname: Imeri – volume: 13 start-page: 1381 year: 2021 ident: 10.1016/j.jmbbm.2023.106257_bib23 article-title: Influence of reactive chain extension on the properties of 3D printed poly(lactic acid) constructs publication-title: Polyms doi: 10.3390/polym13091381 contributor: fullname: Grigora – volume: 86 start-page: 591 issue: 6 year: 2021 ident: 10.1016/j.jmbbm.2023.106257_bib54 article-title: Investigation of the thermal, mechanical and biological properties of PVC/ABS blends loaded with cobalt chloride for biomedical and electronics applications publication-title: J. Serb. Chem. Soc. doi: 10.2298/JSC201123018S contributor: fullname: Shabbir – volume: 6 start-page: 175 year: 2000 ident: 10.1016/j.jmbbm.2023.106257_bib48 article-title: Characterization of the mesostructure of fused‐deposition acrylonitrile‐butadiene‐styrene materials publication-title: Rapid Prototyp. J. doi: 10.1108/13552540010337056 contributor: fullname: Rodriguez – volume: 7 start-page: 42 issue: 2 year: 2021 ident: 10.1016/j.jmbbm.2023.106257_bib59 article-title: Towards controlled degradation of poly(lactic) acid in technical applications publication-title: J. Carbon Res. doi: 10.3390/c7020042 contributor: fullname: Teixeira – volume: 97 start-page: 193 year: 2016 ident: 10.1016/j.jmbbm.2023.106257_bib53 article-title: Low-cycle fatigue behavior of 3d-printed PLA-based porous scaffolds publication-title: Composites, Part B doi: 10.1016/j.compositesb.2016.04.067 contributor: fullname: Senatov – volume: 9 start-page: 29 year: 2018 ident: 10.1016/j.jmbbm.2023.106257_bib19 article-title: On the fatigue strength of 3D-printed polylactide (PLA) publication-title: Procedia Struct. Integr. doi: 10.1016/j.prostr.2018.06.007 contributor: fullname: Ezeh – volume: 311 year: 2023 ident: 10.1016/j.jmbbm.2023.106257_bib64 article-title: Multi-functional medical grade Polyamide12/Carbon black nanocomposites in material extrusion 3D printing publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2023.116788 contributor: fullname: Vidakis – volume: 12823 start-page: 4292 year: 2022 ident: 10.1016/j.jmbbm.2023.106257_bib42 article-title: Three-dimensional printed polyamide 12 (PA12) and polylactic acid (PLA) alumina (Al2O3) nanocomposites with significantly enhanced tensile, flexural, and impact properties publication-title: Nanomaters doi: 10.3390/nano12234292 contributor: fullname: Petousis – volume: 5 year: 2022 ident: 10.1016/j.jmbbm.2023.106257_bib63 article-title: The effect of six key process control parameters on the surface roughness, dimensional accuracy, and porosity in material extrusion 3D printing of polylactic acid: prediction models and optimization supported by robust design analysis publication-title: Adv. Ind. Manuf. Eng. contributor: fullname: Vidakis – ident: 10.1016/j.jmbbm.2023.106257_bib3 contributor: fullname: Anisoprint – volume: 19 start-page: 405 year: 2020 ident: 10.1016/j.jmbbm.2023.106257_bib11 article-title: Fatigue of graphene publication-title: Nat. Mater. doi: 10.1038/s41563-019-0586-y contributor: fullname: Cui – volume: 8 start-page: 110 year: 2015 ident: 10.1016/j.jmbbm.2023.106257_bib69 article-title: The effects of PLA color on material properties of 3-D printed components publication-title: Addit. Manuf. contributor: fullname: Wittbrodt – volume: 14 start-page: 886 year: 2022 ident: 10.1016/j.jmbbm.2023.106257_bib9 article-title: The influence of the process parameters on the mechanical properties of PLA specimens produced by fused filament fabrication—a review publication-title: Polyms doi: 10.3390/polym14050886 contributor: fullname: Cojocaru – volume: 124 start-page: 328 year: 2019 ident: 10.1016/j.jmbbm.2023.106257_bib29 article-title: The effect of raster orientation on the static and fatigue properties of filament deposited ABS polymer publication-title: Int. J. Fatig. doi: 10.1016/j.ijfatigue.2019.02.042 contributor: fullname: Jap – volume: 30 start-page: 5066 year: 2021 ident: 10.1016/j.jmbbm.2023.106257_bib18 article-title: High-performance polyamide/carbon fiber composites for fused filament fabrication: mechanical and functional performances publication-title: J. Mater. Eng. Perform. doi: 10.1007/s11665-021-05635-1 contributor: fullname: Dul – year: 2017 ident: 10.1016/j.jmbbm.2023.106257_bib52 contributor: fullname: Sans – volume: 66 start-page: 105 year: 2018 ident: 10.1016/j.jmbbm.2023.106257_bib4 article-title: Fracture mechanical characterization and lifetime estimation of near-homogeneous components produced by fused filament fabrication publication-title: Polym. Test. doi: 10.1016/j.polymertesting.2018.01.002 contributor: fullname: Arbeiter – volume: 21 start-page: 270 year: 2015 ident: 10.1016/j.jmbbm.2023.106257_bib74 article-title: Tensile and fatigue behavior of layered acrylonitrile butadiene styrene publication-title: Rapid Prototyp. J. doi: 10.1108/RPJ-09-2013-0086 contributor: fullname: Ziemian – year: 2021 ident: 10.1016/j.jmbbm.2023.106257_bib30 article-title: 3D printing technology for biomedical practice: a review publication-title: J. Mater. Eng. Perform. doi: 10.1007/s11665-021-05792-3 contributor: fullname: Kumar – volume: 22 start-page: 176 year: 2018 ident: 10.1016/j.jmbbm.2023.106257_bib6 article-title: An investigation into 3D printing of fibre reinforced thermoplastic composites publication-title: Addit. Manuf. contributor: fullname: Blok – volume: 51 start-page: 648 year: 2020 ident: 10.1016/j.jmbbm.2023.106257_bib24 article-title: Fatigue analysis of additive manufactured long fibre reinforced nylon materials publication-title: Procedia Manuf. contributor: fullname: Hackney – volume: 11 start-page: 559 issue: 3 year: 2019 ident: 10.1016/j.jmbbm.2023.106257_bib45 article-title: Influence of various climatic conditions on the structural changes of semicrystalline PLA spun-bonded mulching nonwovens during outdoor composting publication-title: Polyms doi: 10.3390/polym11030559 contributor: fullname: Puchalski – volume: 14 start-page: 304 issue: 2 year: 2023 ident: 10.1016/j.jmbbm.2023.106257_bib70 article-title: Optimization of fatigue performance of FDM ABS and nylon printed parts publication-title: Micromachines doi: 10.3390/mi14020304 contributor: fullname: Yankin – start-page: 159 year: 2011 ident: 10.1016/j.jmbbm.2023.106257_bib72 article-title: Anisotropic mechanical properties of ABS parts fabricated by fused deposition modelling contributor: fullname: Ziemian – year: 2003 ident: 10.1016/j.jmbbm.2023.106257_bib31 contributor: fullname: Lampman – volume: 27 start-page: 57 year: 2017 ident: 10.1016/j.jmbbm.2023.106257_bib71 article-title: Tensile, creep, and fatigue behaviors of 3D-printed acrylonitrile butadiene styrene publication-title: J. Mater. Eng. Perform. doi: 10.1007/s11665-017-2961-7 contributor: fullname: Zhang – volume: 19 start-page: 291 issue: 4 year: 2013 ident: 10.1016/j.jmbbm.2023.106257_bib32 article-title: Fatigue analysis of FDM materials publication-title: Rapid Prototyp. J. doi: 10.1108/13552541311323290 contributor: fullname: Lee – volume: 12 start-page: 2924 issue: 12 year: 2020 ident: 10.1016/j.jmbbm.2023.106257_bib61 article-title: On the strain rate sensitivity of fused filament fabrication (FFF) processed PLA, ABS, PETG, PA6, and PP thermoplastic polymers publication-title: Polymers doi: 10.3390/polym12122924 contributor: fullname: Vidakis – volume: 32 start-page: 3368 issue: 9 year: 2021 ident: 10.1016/j.jmbbm.2023.106257_bib56 article-title: Nylon—a material introduction and overview for biomedical applications publication-title: Polym. Adv. Technol. doi: 10.1002/pat.5372 contributor: fullname: Shakiba – volume: 175 year: 2019 ident: 10.1016/j.jmbbm.2023.106257_bib38 article-title: 3D printed fiber reinforced polymer composites - structural analysis publication-title: Engineer contributor: fullname: Mohammadizadeh – volume: 11 start-page: 1333 year: 2018 ident: 10.1016/j.jmbbm.2023.106257_bib46 article-title: The influence of manufacturing parameters on the mechanical behaviour of PLA and ABS pieces manufactured by FDM: a comparative analysis publication-title: Materials doi: 10.3390/ma11081333 contributor: fullname: Rodríguez-Panes – volume: 110 start-page: 442 year: 2017 ident: 10.1016/j.jmbbm.2023.106257_bib67 article-title: 3D printing of polymer matrix composites: a review and prospective publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2016.11.034 contributor: fullname: Wang – volume: 16 start-page: 146 year: 2017 ident: 10.1016/j.jmbbm.2023.106257_bib16 article-title: Fabrication of continuous carbon, glass and Kevlar fibre reinforced polymer composites using additive manufacturing publication-title: Addit. Manuf. contributor: fullname: Dickson – volume: 8 start-page: 52 year: 2020 ident: 10.1016/j.jmbbm.2023.106257_bib7 article-title: Investigation of the mechanical properties of a carbon fibre-reinforced nylon filament for 3D printing publication-title: Machines doi: 10.3390/machines8030052 contributor: fullname: Calignano – volume: 143 year: 2021 ident: 10.1016/j.jmbbm.2023.106257_bib57 article-title: Fatigue behaviour of FDM-3D printed polymers, polymeric composites and architected cellular materials publication-title: Int. J. Fatig. doi: 10.1016/j.ijfatigue.2020.106007 contributor: fullname: Shanmugam – volume: 25 start-page: 5023 issue: 21 year: 2020 ident: 10.1016/j.jmbbm.2023.106257_bib35 article-title: Synthesis and biological application of polylactic acid publication-title: Molecules doi: 10.3390/molecules25215023 contributor: fullname: Li – volume: 6 year: 2023 ident: 10.1016/j.jmbbm.2023.106257_bib65 article-title: Energy consumption versus strength in MEΧ 3D printing of polylactic acid publication-title: Manuf. Eng. contributor: fullname: Vidakis – volume: 31 start-page: 630 issue: 6 year: 2022 ident: 10.1016/j.jmbbm.2023.106257_bib62 article-title: Multi-functional polyamide 12 (PA12)/multiwall carbon nanotube 3D printed nanocomposites with enhanced mechanical and electrical properties publication-title: Adv. Compos. Mater. doi: 10.1080/09243046.2022.2076019 contributor: fullname: Vidakis – start-page: 186 year: 2014 ident: 10.1016/j.jmbbm.2023.106257_bib10 article-title: Identification of mechanical and fatigue characteristics of polymers fabricated by additive manufacturing process contributor: fullname: Corbett – volume: 25 start-page: 953 year: 2019 ident: 10.1016/j.jmbbm.2023.106257_bib22 article-title: Optimising the FDM additive manufacturing process to achieve maximum tensile strength: a state-of-the-art review publication-title: Rapid Prototyp. J. doi: 10.1108/RPJ-07-2018-0183 contributor: fullname: Gordelier – volume: 36 start-page: 4167 year: 2001 ident: 10.1016/j.jmbbm.2023.106257_bib37 article-title: The effect of material defects on the fatigue behavior and the fracture strain of ABS publication-title: J. Mater. Sci. doi: 10.1023/A:1017960704248 contributor: fullname: Marissen – volume: 269 year: 2017 ident: 10.1016/j.jmbbm.2023.106257_bib40 article-title: Fatigue characteristics of 3D printed acrylonitrile butadiene styrene (ABS) publication-title: IOP Conf. Ser. Mater. Sci. Eng. doi: 10.1088/1757-899X/269/1/012060 contributor: fullname: Padzi – volume: 33 year: 2022 ident: 10.1016/j.jmbbm.2023.106257_bib47 article-title: Mechanical properties optimization for PLA, ABS and Nylon + CF manufactured by 3D FDM printing publication-title: Mater. Today Commun. contributor: fullname: Rodríguez-Reyna – volume: 137 start-page: 1 issue: 11 year: 2015 ident: 10.1016/j.jmbbm.2023.106257_bib43 article-title: Design for fiber-reinforced additive manufacturing publication-title: J. Mech. Des. doi: 10.1115/1.4030993 contributor: fullname: Prüß – volume: 13 start-page: 728 year: 2018 ident: 10.1016/j.jmbbm.2023.106257_bib20 article-title: Fatigue behaviour of additively manufactured polylactide (PLA) publication-title: Procedia Struct. Integr. doi: 10.1016/j.prostr.2018.12.121 contributor: fullname: Ezeh – volume: 32 start-page: 3368 issue: 9 year: 2017 ident: 10.1016/j.jmbbm.2023.106257_bib68 article-title: Polyamides and their functionalization: recent concepts for their applications as biomaterials publication-title: Biomater. Sci. contributor: fullname: Winnacker – volume: 1 start-page: 21 year: 2015 ident: 10.1016/j.jmbbm.2023.106257_bib2 article-title: Effects of part build orientations on fatigue behaviour of FDM-processed PLA material publication-title: Progr. Addit. Manuf. doi: 10.1007/s40964-015-0002-3 contributor: fullname: Afrose – volume: 49 start-page: 363 year: 2015 ident: 10.1016/j.jmbbm.2023.106257_bib27 article-title: Raster angle mechanics in fused deposition modelling publication-title: J. Compos. Mater. doi: 10.1177/0021998313519153 contributor: fullname: Huang – volume: 28 start-page: 87 year: 2019 ident: 10.1016/j.jmbbm.2023.106257_bib51 article-title: A review of the fatigue behavior of 3D printed polymers publication-title: Addit. Manuf. contributor: fullname: Safai – volume: 34 year: 2023 ident: 10.1016/j.jmbbm.2023.106257_bib66 article-title: Optimization of key quality indicators in material extrusion 3D printing of acrylonitrile butadiene styrene: the impact of critical process control parameters on the surface roughness, dimensional accuracy, and porosity publication-title: Mater. Today Commun. contributor: fullname: Vidakis – volume: XI start-page: 69 year: 1999 ident: 10.1016/j.jmbbm.2023.106257_bib21 article-title: Static and fatigue properties of 3d printed continuous carbon fiber nylon composites publication-title: Inter. J. Modern Manuf. Technol. contributor: fullname: Giannakis – volume: 35 start-page: 1286 year: 2019 ident: 10.1016/j.jmbbm.2023.106257_bib55 article-title: An overview on 3D printing technology: technological, materials, and applications publication-title: Procedia Manuf. doi: 10.1016/j.promfg.2019.06.089 contributor: fullname: Shahrubudin – volume: 15 start-page: 3267 issue: 15 year: 2023 ident: 10.1016/j.jmbbm.2023.106257_bib50 article-title: A thermal analytical study of LEGO® bricks for investigating light-stability of ABS publication-title: Polymers doi: 10.3390/polym15153267 contributor: fullname: Sabatini – volume: 3 start-page: 64 year: 2019 ident: 10.1016/j.jmbbm.2023.106257_bib14 article-title: A systematic survey of FDM process parameter optimization and their influence on Part Characteristics publication-title: J. Manuf. Mater. Process. contributor: fullname: Dey – volume: 238 start-page: 218 year: 2016 ident: 10.1016/j.jmbbm.2023.106257_bib34 article-title: Rapid prototyping of continuous carbon fiber reinforced polylactic acid composites by 3D printing publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2016.07.025 contributor: fullname: Li – ident: 10.1016/j.jmbbm.2023.106257_bib13 doi: 10.3390/app13158819 – volume: 55 start-page: 3629 year: 2021 ident: 10.1016/j.jmbbm.2023.106257_bib39 article-title: Mechanical benchmarking of additively manufactured continuous and short carbon fiber reinforced nylon publication-title: J. Compos. Mater. doi: 10.1177/00219983211020070 contributor: fullname: Mohammadizadeh – volume: 1 start-page: 44 year: 2014 ident: 10.1016/j.jmbbm.2023.106257_bib73 article-title: Monotonic and cyclic tensile properties of ABS components fabricated by additive manufacturing publication-title: Inter. Solid. Freef. Fabric.S. contributor: fullname: Ziemian – volume: 11 year: 2021 ident: 10.1016/j.jmbbm.2023.106257_bib26 article-title: Investigation of tensile property based Taguchi method of PLA parts fabricated by FDM 3D printing technology publication-title: Results Eng. doi: 10.1016/j.rineng.2021.100264 contributor: fullname: Hikmat – ident: 10.1016/j.jmbbm.2023.106257_bib8 contributor: fullname: Cascos Sánchez |
SSID | ssj0060088 |
Score | 2.4146655 |
Snippet | This research presents a methodology for the design and optimization of 3D printed parts with material extrusion (MEX) technology with three different... |
SourceID | proquest crossref pubmed |
SourceType | Aggregation Database Index Database |
StartPage | 106257 |
SubjectTerms | Carbon Fiber Cytoskeleton Models, Statistical Nylons Polyesters |
Title | Design and optimization methodology for different 3D processed materials (PLA, ABS and carbon fiber reinforced nylon PA12) subjected to static and dynamic loads |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38048715 https://www.proquest.com/docview/2898314388 |
Volume | 150 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLa67QIHxG_KABmJA6hL1ThJkxwD6SioGhPtpN4ix3EmVTSZ0mbS9tfwp_Ls5ySdNqRx4BJVdp1afZ-eP9vvfY-QD0ICaRAjYantj-W6klshY6El7DETLs-zka5FMJ37J8sgnriTXq-pMdq1_VdLQxvYWmXO_oO125dCA3wGm8MTrA7Pe9k91iEZ-k6gBHewNnmWplQ0Ki6p0MKmMsp24MSDC0wXAPIJBBZnqajn6SzSvuPzHNPfeJWqwEQVZDKopNZc1eEDsOkHVxrZTJ0xbOpUne1AO9Bala9kFGGzq4KrQPxfJcfk4js4sWLBa6mSkTV2Gg0B1YU6Abq5nWN3W5ThjX98Xstr66e8wky3-aA92o6xn19b0XkNnrDCGOEuNyMS8lJmpXXKK-ybdrGUXwEjZjyGKJjLNHNawtwmwLp18IFSFLaxetRQ3tHWrAqoh2v8OmycGQpp31py8PRjNVyt01RJGzBn2H37psD3yY_k-Gw2SxaT5WKPHDDwjeCaD6Jvk-X3hj4AAdXFUttJNVJZOijx1o_cpFN_2SNprrR4TB4Zg9II0fmE9GTxlDzckb58Rn4jTikgg-7ilO7glAK-aItT6sS0xSltMUA_AkqPKGBUvwsxSjVGaYdRqjFKFUY_0RahdFtSRKgeaxBKNUKfk7PjyeLL1DLVQiwBa9bWyrI09YW65hWeZONAiCzLBffGwvNlnuWjPLAF0P9USma7OdBYj7PU5T7sWESQe84Lsl-UhXxFKBs5sLRJ4QkxdrkLnJkx6Tk8FW5oizDvk6PmT08uUBQmaaIlV4m2UaJslKCN-uR9Y5gEnLe6keOFLOtNwoIwcGDHEgR98hIt1r7QCWBx9W3v9T1GH5IHHdjfkP1tVcu3ZG-T1e8MvP4Aj83BjA |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+and+optimization+methodology+for+different+3D+processed+materials+%28PLA%2C+ABS+and+carbon+fiber+reinforced+nylon+PA12%29+subjected+to+static+and+dynamic+loads&rft.jtitle=Journal+of+the+mechanical+behavior+of+biomedical+materials&rft.au=Rodr%C3%ADguez-Reyna%2C+S+L&rft.au=D%C3%ADaz-Aguilera%2C+J+H&rft.au=Acevedo-Parra%2C+H+R&rft.au=Garc%C3%ADa%2C+Ch+J&rft.date=2024-02-01&rft.issn=1878-0180&rft.eissn=1878-0180&rft.volume=150&rft.spage=106257&rft_id=info:doi/10.1016%2Fj.jmbbm.2023.106257&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-6161&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-6161&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-6161&client=summon |