Red LED light therapy associated with epidermal growth factor on wound repair process in rats

Epidermal growth factor (EGF) and light-emitting diode (LED) are currently deployed as promissory treatments for skin repair; however, the mechanisms of their association are not yet evidenced. Thus, the present study aimed to evaluate the effects of combined treatment with EGF and red LED on the wo...

Full description

Saved in:
Bibliographic Details
Published in:Lasers in medical science Vol. 38; no. 1; p. 36
Main Authors: Busanello-Costa, Márcia, Renno, Ana Claudia Muniz, de Goes Santos, Cintia Pereira, Quintana, Hananiah Tardivo, Martignago, Cintia Cristina Santi, Tim, Carla Roberta, Assis, Lívia
Format: Journal Article
Language:English
Published: London Springer London 10-01-2023
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Epidermal growth factor (EGF) and light-emitting diode (LED) are currently deployed as promissory treatments for skin repair; however, the mechanisms of their association are not yet evidenced. Thus, the present study aimed to evaluate the effects of combined treatment with EGF and red LED on the wound healing processes in rats. Adult Wistar rats were randomized in control group (CG) wounds without treatment; wounds submitted to EGF treatment (EGF); wounds submitted to LED treatment (LED); wounds submitted to EGF associated with LED treatments (EGF/LED). Treatments were performed immediately after the surgical procedure and each 24 h, totaling 8 sessions. Moreover, LED was applied before EGF treatment at a single point in the center of the wound. Morphological characteristics and the immunoexpression of COX-2, VEGF, and TGF-β were measured. The results demonstrated that EGF/LED group presented a higher wound healing index. Additionally, all experimental groups presented similar findings in the histological evaluation, the degree of inflammation, and the area of dermis-like tissue. However, for EGF-treated animals (with or without LED), neoepithelial length was higher. Furthermore, all the treated groups decreased COX-2 and increased VEGF immunoexpression, and only EGF/LED group enhanced the TGF-β protein expression when compared to the untreated group. This research shows that EGF and LED modulate inflammatory process and increase the vascularity. In addition, treatment of EGF associated with LED promoted a more evident positive effect for increasing TGF-β expression and may be promising resources in the clinical treatment of cutaneous wounds.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1435-604X
0268-8921
1435-604X
DOI:10.1007/s10103-022-03701-1