Improving the accuracy of simulation of radiation-reaction effects with implicit Runge-Kutta-Nyström methods
The Landau-Lifshitz equation provides an efficient way to account for the effects of radiation reaction without acquiring the nonphysical solutions typical for the Lorentz-Abraham-Dirac equation. We solve the Landau-Lifshitz equation in its covariant four-vector form in order to control both the ene...
Saved in:
Published in: | Physical review. E, Statistical, nonlinear, and soft matter physics Vol. 89; no. 5; p. 053315 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
01-05-2014
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Landau-Lifshitz equation provides an efficient way to account for the effects of radiation reaction without acquiring the nonphysical solutions typical for the Lorentz-Abraham-Dirac equation. We solve the Landau-Lifshitz equation in its covariant four-vector form in order to control both the energy and momentum of radiating particles. Our study reveals that implicit time-symmetric collocation methods of the Runge-Kutta-Nyström type are superior in accuracy and better at maintaining the mass-shell condition than their explicit counterparts. We carry out an extensive study of numerical accuracy by comparing the analytical and numerical solutions of the Landau-Lifshitz equation. Finally, we present the results of the simulation of particle scattering by a focused laser pulse. Due to radiation reaction, particles are less capable of penetrating into the focal region compared to the case where radiation reaction is neglected. Our results are important for designing forthcoming experiments with high intensity laser fields. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1539-3755 1550-2376 |
DOI: | 10.1103/PhysRevE.89.053315 |