An in-depth analysis on the switching response and impedance curves of n-si/In2O3 NW/Ag NPs/In based devices by a double-step glancing angle deposition technique
Silver (Ag) nanoparticles (NPs) were coated upon indium oxide (In2O3) nanowires (NW) by a double-step glancing angle deposition (GLAD) technique. The study focuses on the experimental analysis of current (I) versus voltage (V), current (I) versus time (t), as well as impedance (Zexp) versus voltage...
Saved in:
Published in: | Physica. B, Condensed matter Vol. 660; p. 414886 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier B.V
01-07-2023
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Silver (Ag) nanoparticles (NPs) were coated upon indium oxide (In2O3) nanowires (NW) by a double-step glancing angle deposition (GLAD) technique. The study focuses on the experimental analysis of current (I) versus voltage (V), current (I) versus time (t), as well as impedance (Zexp) versus voltage (V) curves for n-Si/In2O3 NW/Ag NPs/In based devices with a sweeping voltage of ±10 V at room temperature in different frequency responses varying from 100 Hz to 2 MHz. The n-Si/In2O3 NW/Ag NPs/In based device showed faster rise and fall time of 0.13 s and 0.12 s than the other devices due to oxygen-related defect states. The presence of Ag NPs also improved oxygen related defect states, resulting in high impedance value for n-Si/In2O3 NW/Ag NPs/In based device. The series circuit model (SCM) was used to derive the theoretical investigations of impedances, indicating the n-Si/In2O3 NW/Ag NPs/In based device can be used in nanoelectronics applications.
•Experimental analysis of switching responses (current vs. time) for the n-Si/In2O3 TF/In, n- Si/In2O3 NW/In, and n-Si/In2O3 NW/Ag NPs/In based devices.•Experimental impedance (Zexp) versus voltage (V) curves for the n-Si/In2O3 TF/In, n-Si/In2O3 NW/In, and n-Si/In2O3 NW/Ag NPs/In based devices.•At 2 MHz frequency response, n-Si/In2O3 NW/Ag NPs/In based device shows ∼5.60 fold and ∼4.70 fold enhancement in impedances compared to the n-Si/In2O3 TF/In and n-Si/In2O3 NW/In based devices, respectively.•The series circuit model (SCM) has been theoretically investigated to clearly understand the experimental outcomes of n-Si/In2O3 NW/Ag NPs/In based devices. |
---|---|
AbstractList | Silver (Ag) nanoparticles (NPs) were coated upon indium oxide (In2O3) nanowires (NW) by a double-step glancing angle deposition (GLAD) technique. The study focuses on the experimental analysis of current (I) versus voltage (V), current (I) versus time (t), as well as impedance (Zexp) versus voltage (V) curves for n-Si/In2O3 NW/Ag NPs/In based devices with a sweeping voltage of ±10 V at room temperature in different frequency responses varying from 100 Hz to 2 MHz. The n-Si/In2O3 NW/Ag NPs/In based device showed faster rise and fall time of 0.13 s and 0.12 s than the other devices due to oxygen-related defect states. The presence of Ag NPs also improved oxygen related defect states, resulting in high impedance value for n-Si/In2O3 NW/Ag NPs/In based device. The series circuit model (SCM) was used to derive the theoretical investigations of impedances, indicating the n-Si/In2O3 NW/Ag NPs/In based device can be used in nanoelectronics applications.
•Experimental analysis of switching responses (current vs. time) for the n-Si/In2O3 TF/In, n- Si/In2O3 NW/In, and n-Si/In2O3 NW/Ag NPs/In based devices.•Experimental impedance (Zexp) versus voltage (V) curves for the n-Si/In2O3 TF/In, n-Si/In2O3 NW/In, and n-Si/In2O3 NW/Ag NPs/In based devices.•At 2 MHz frequency response, n-Si/In2O3 NW/Ag NPs/In based device shows ∼5.60 fold and ∼4.70 fold enhancement in impedances compared to the n-Si/In2O3 TF/In and n-Si/In2O3 NW/In based devices, respectively.•The series circuit model (SCM) has been theoretically investigated to clearly understand the experimental outcomes of n-Si/In2O3 NW/Ag NPs/In based devices. |
ArticleNumber | 414886 |
Author | Sarkar, Mitra Barun Nath, Amitabha |
Author_xml | – sequence: 1 givenname: Amitabha surname: Nath fullname: Nath, Amitabha organization: Department of Electronics and Communication Engineering, National Institute of Technology, Agartala, Jirania, 799046, India – sequence: 2 givenname: Mitra Barun orcidid: 0000-0002-4590-7955 surname: Sarkar fullname: Sarkar, Mitra Barun email: mbarun.ece@nita.ac.in organization: Department of Electronics and Communication Engineering, National Institute of Technology, Agartala, Jirania, 799046, India |
BookMark | eNp9kMlOwzAQhi1UJFrgCbj4BdJ6SdLkwKGqWCohygHE0fIyaVwFJ2TSoj4Ob4pLOTOX0Uj_MvomZBTaAITccDbljOez7bSrD2imggk5TXlaFPkZGfNiLhPBZTYiY1YKnqSZyC_IBHHL4vA5H5PvRaA-JA66oaY66OaAHmkb6FADxS8_2NqHDe0BuzYgRImj_qMDp4MFanf9HqK8oiFBP1sFsZb0-X222NDnF4w3NRrBUQd7b6PQHKimrt2ZBhIcoKObJuYcC3TYNBB1XYt-8Md-sHXwnzu4IueVbhCu__Ylebu_e10-Jk_rh9Vy8ZRYyeSQAEhgUoIxVZGyeV5CzkBklXB2zsE6ZwvIbalNqUuX5oblBkqbikyyymbMyEsiT7m2bxF7qFTX-w_dHxRn6khZbdUvZXWkrE6Uo-v25IL42t5Dr9B6iGyc78EOyrX-X_8P4nGLxA |
CitedBy_id | crossref_primary_10_1007_s10854_024_12780_5 |
Cites_doi | 10.1088/1361-6528/acaf36 10.1186/1556-276X-8-80 10.1109/TNANO.2020.3035179 10.1007/s11664-021-08889-6 10.1007/s11468-014-9852-7 10.1007/s10854-020-04122-y 10.1088/2053-1591/ab1c82 10.1007/s11664-015-3692-x 10.1142/S0129156411006519 10.1016/j.tsf.2007.03.034 10.1088/0957-4484/21/17/175303 10.1116/6.0001208 10.1109/16.772500 10.1007/s003390101037 10.1109/TNANO.2021.3129305 10.1016/j.solener.2013.12.037 10.1109/JSTQE.2017.2737584 10.1109/LED.2022.3168562 10.1007/s11468-020-01262-z 10.1016/j.mee.2005.12.014 10.1063/1.325607 10.1002/er.8175 10.1039/C6RA15287B 10.1088/1361-6463/ab01a9 10.1063/1.2709929 |
ContentType | Journal Article |
Copyright | 2023 Elsevier B.V. |
Copyright_xml | – notice: 2023 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.physb.2023.414886 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1873-2135 |
ExternalDocumentID | 10_1016_j_physb_2023_414886 S0921452623002533 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABMAC ABNEU ABXRA ABYKQ ACDAQ ACFVG ACGFS ACNCT ACRLP ADBBV ADEZE AEBSH AEKER AFKWA AFTJW AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM M38 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SPD SSQ T5K TN5 XPP YNT ZMT ~02 ~G- 29O 6TJ AAEDT AAQXK AAXKI AAYXX ABFNM ABXDB ACNNM ADIYS ADMUD ADVLN AFFNX AFJKZ AGHFR ASPBG AVWKF AZFZN BBWZM CITATION EJD FEDTE FGOYB HMV HVGLF HZ~ H~9 MVM NDZJH R2- SPG SSZ VOH WUQ XJT XOL |
ID | FETCH-LOGICAL-c303t-ee3e033ebbf840769e60e25f2dc71ecddc8e6c9ab9a9d46b06be9c42530fc50b3 |
ISSN | 0921-4526 |
IngestDate | Thu Sep 26 16:28:26 EDT 2024 Fri Apr 05 04:25:35 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Nanoparticles GLAD Impedance Series circuit model Switching response |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c303t-ee3e033ebbf840769e60e25f2dc71ecddc8e6c9ab9a9d46b06be9c42530fc50b3 |
ORCID | 0000-0002-4590-7955 |
ParticipantIDs | crossref_primary_10_1016_j_physb_2023_414886 elsevier_sciencedirect_doi_10_1016_j_physb_2023_414886 |
PublicationCentury | 2000 |
PublicationDate | 2023-07-01 2023-07-00 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Physica. B, Condensed matter |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Anbarasan, Sadhasivam, Jeganathan (bib19) 2023; 34 Yang, Hu (bib18) 1999; 46 Norde (bib27) 1979; 50 Tataroğlu, Altındal (bib28) 2006; 83 Wang, Lv, Wang, Zhang, Yang, Zhou, Lu, Wu, Wu (bib21) 2018; 24 Nath, Sarkar (bib3) 2020; 16 Nath, Mahajan, Singh, Vishwas, Nanda, Sarkar (bib10) 2021; 50 Hashimoto, Abe, Nakada (bib12) 2008; 1 Nath, Mahajan, Mondal, Singh, Sarkar (bib17) 2021; 39 Pawar, V Desai, M Bodake, Patil, M More, Nimbalkar, S Mali, K Hong, Kim, Patil, D Dongale (bib1) 2019; 52 Prathap, Dahiya, Srivastava, Srivastava, Sivaiah, Haranath, Vandana, Srivastava, Rauthan, Singh (bib4) 2014; 106 Nejm, Ayesh, Zeze, Sleiman, Mabrook, Al-Ghaferi, Hussein (bib14) 2015; 44 Peng, Wang, Zhang, Wang, Zhao, Meng, Zhang (bib11) 2002; 74 Mondal, Dalal, Mondal, Al (bib23) 2022 An, Guo, Li, Wu, Zhi, Cui, Zhao, Li, Tang (bib22) 2016; 6 Vomiero, Bianchi, Comini, Faglia, Ferroni, Poli, Sberveglieri (bib5) 2007; 515 Masuda (bib8) 2021; 364 Nath, Mahajan, Sarkar (bib2) 2020; 19 Sbeta, Yildiz (bib6) 2019; 6 Atilgan, Yildiz (bib7) 2022; 46 Sawyer, Qin, Shing (bib24) 2011; 20 Demirezen, Eroğlu, Azizian-Kalandaragh, Altındal (bib29) 2020; 31 Raman, Nath, Sarkar (bib9) 2022; 43 Yadav, Nath, Sarkar (bib15) 2021; 20 Ding, Chen, Cui, Chen, Sun, Zhou, Lu, Zhang, Shen (bib16) 2013; 8 Nicollian, Brews (bib26) 1982 Zhou, Gall (bib13) 2007; 90 Mondal, Ganguly, Das, Choudhuri, Yadav (bib20) 2015; 10 Fu, Zhao Y (bib25) 2010; 21 Sawyer (10.1016/j.physb.2023.414886_bib24) 2011; 20 Zhou (10.1016/j.physb.2023.414886_bib13) 2007; 90 Mondal (10.1016/j.physb.2023.414886_bib20) 2015; 10 Mondal (10.1016/j.physb.2023.414886_bib23) 2022 Fu (10.1016/j.physb.2023.414886_bib25) 2010; 21 Prathap (10.1016/j.physb.2023.414886_bib4) 2014; 106 Norde (10.1016/j.physb.2023.414886_bib27) 1979; 50 Demirezen (10.1016/j.physb.2023.414886_bib29) 2020; 31 Yadav (10.1016/j.physb.2023.414886_bib15) 2021; 20 An (10.1016/j.physb.2023.414886_bib22) 2016; 6 Nicollian (10.1016/j.physb.2023.414886_bib26) 1982 Sbeta (10.1016/j.physb.2023.414886_bib6) 2019; 6 Nath (10.1016/j.physb.2023.414886_bib10) 2021; 50 Tataroğlu (10.1016/j.physb.2023.414886_bib28) 2006; 83 Peng (10.1016/j.physb.2023.414886_bib11) 2002; 74 Nath (10.1016/j.physb.2023.414886_bib2) 2020; 19 Anbarasan (10.1016/j.physb.2023.414886_bib19) 2023; 34 Vomiero (10.1016/j.physb.2023.414886_bib5) 2007; 515 Nath (10.1016/j.physb.2023.414886_bib17) 2021; 39 Ding (10.1016/j.physb.2023.414886_bib16) 2013; 8 Yang (10.1016/j.physb.2023.414886_bib18) 1999; 46 Wang (10.1016/j.physb.2023.414886_bib21) 2018; 24 Masuda (10.1016/j.physb.2023.414886_bib8) 2021; 364 Atilgan (10.1016/j.physb.2023.414886_bib7) 2022; 46 Raman (10.1016/j.physb.2023.414886_bib9) 2022; 43 Hashimoto (10.1016/j.physb.2023.414886_bib12) 2008; 1 Pawar (10.1016/j.physb.2023.414886_bib1) 2019; 52 Nath (10.1016/j.physb.2023.414886_bib3) 2020; 16 Nejm (10.1016/j.physb.2023.414886_bib14) 2015; 44 |
References_xml | – volume: 39 year: 2021 ident: bib17 article-title: Synthesis and detailed characterizations of Ag nanoparticles coated In publication-title: J. Vac. Sci. Technol. B contributor: fullname: Sarkar – volume: 8 start-page: 80 year: 2013 ident: bib16 article-title: Atomic layer deposition of high-density Pt nanodots on Al publication-title: Nanoscale Res. Lett. contributor: fullname: Shen – volume: 52 year: 2019 ident: bib1 article-title: Highly reliable multilevel resistive switching in a nanoparticulated In publication-title: J. Phys. D Appl. Phys. contributor: fullname: D Dongale – volume: 6 year: 2019 ident: bib6 article-title: Optical response enhancement of GZO/p-Si heterostructures via metal nanoparticles publication-title: Mater. Res. Express contributor: fullname: Yildiz – year: 1982 ident: bib26 article-title: MOS (Metal Oxide Semiconductor) Physics and Technology contributor: fullname: Brews – volume: 364 year: 2021 ident: bib8 article-title: Recent advances in SnO publication-title: Sensor. Actuator. B Chem. contributor: fullname: Masuda – volume: 21 year: 2010 ident: bib25 article-title: Au nanoparticle based localized surface plasmon resonance substrates fabricated by dynamic shadowing growth publication-title: Nanotechnology contributor: fullname: Zhao Y – volume: 24 year: 2018 ident: bib21 article-title: Noise characterization of geiger-mode 4H-SiC avalanche photodiodes for ultraviolet single-photon detection publication-title: IEEE J. Sel. Top. Quant. Electron. contributor: fullname: Wu – volume: 34 year: 2023 ident: bib19 article-title: Ultrasensitive self-powered heterojunction ultraviolet photodetector of p-GaN nanowires on Si by halide chemical vapour deposition publication-title: Nanotechnology contributor: fullname: Jeganathan – volume: 31 start-page: 15589 year: 2020 end-page: 15598 ident: bib29 article-title: Electric and dielectric parameters in Au/n-Si (MS) capacitors with metal oxide-polymer interlayer as function of frequency and voltage publication-title: J. Mater. Sci. Mater. Electron. contributor: fullname: Altındal – volume: 19 start-page: 856 year: 2020 end-page: 863 ident: bib2 article-title: Ag nanoparticles sheltered In publication-title: IEEE Trans. Nanotechnol. contributor: fullname: Sarkar – volume: 515 start-page: 8356 year: 2007 end-page: 8359 ident: bib5 article-title: In publication-title: Thin Solid Films contributor: fullname: Sberveglieri – volume: 20 start-page: 860 year: 2021 end-page: 865 ident: bib15 article-title: Indium nanoparticles coated high dielectric TiO publication-title: IEEE Trans. Nanotechnol. contributor: fullname: Sarkar – volume: 43 start-page: 918 year: 2022 end-page: 921 ident: bib9 article-title: Influence of annealing temperature on ZrO publication-title: IEEE Electron. Device Lett. contributor: fullname: Sarkar – volume: 50 start-page: 5052 year: 1979 ident: bib27 article-title: A modified forward I‐V plot for Schottky diodes with high series resistance publication-title: J. Appl. Phys. contributor: fullname: Norde – volume: 20 start-page: 183 year: 2011 end-page: 194 ident: bib24 article-title: Zinc oxide nanoparticles for ultraviolet photodetection publication-title: Int. J. High Speed Electron. Syst. contributor: fullname: Shing – volume: 16 start-page: 37 year: 2020 end-page: 48 ident: bib3 article-title: Surface-plasmon-induced Ag nanoparticles decorated In publication-title: Plasmonics contributor: fullname: Sarkar – volume: 10 start-page: 667 year: 2015 end-page: 673 ident: bib20 article-title: The Ag nanoparticles/TiO publication-title: Plasmonics contributor: fullname: Yadav – volume: 90 year: 2007 ident: bib13 article-title: Growth competition during glancing angle deposition of nanorod honeycomb arrays publication-title: Appl. Phys. Lett. contributor: fullname: Gall – volume: 83 start-page: 582 year: 2006 end-page: 588 ident: bib28 article-title: Characterization of current–voltage (I–V) and capacitance–voltage–frequency (C–V– publication-title: Microelectron. Eng. contributor: fullname: Altındal – volume: 46 start-page: 1500 year: 1999 end-page: 1501 ident: bib18 article-title: MOS capacitance measurements for high-leakage thin dielectrics publication-title: IEEE Trans. Electron. Dev. contributor: fullname: Hu – volume: 50 start-page: 3722 year: 2021 end-page: 3730 ident: bib10 article-title: Enhancing detectivity of indium-oxide-based photodetectors via vertical nanostructuring through glancing angle deposition publication-title: J. Electron. Mater. contributor: fullname: Sarkar – volume: 106 start-page: 102 year: 2014 end-page: 108 ident: bib4 article-title: Anti-reflection In publication-title: Sol. Energy contributor: fullname: Singh – volume: 46 start-page: 14558 year: 2022 end-page: 14569 ident: bib7 article-title: Ni-doped TiO publication-title: Int. J. Energy Res. contributor: fullname: Yildiz – volume: 44 start-page: 2835 year: 2015 end-page: 2841 ident: bib14 article-title: Electrical characteristics of hybrid-organic memory devices based on Au nanoparticles publication-title: J. Electron. Mater. contributor: fullname: Hussein – volume: 6 start-page: 66924 year: 2016 end-page: 66929 ident: bib22 article-title: Dual-band photodetector with a hybrid Aunanoparticles/β-Ga publication-title: RSC Adv. contributor: fullname: Tang – start-page: 1 year: 2022 end-page: 10 ident: bib23 article-title: Nanoparticles decorated Er:TiO publication-title: Ceram. Int. contributor: fullname: Al – volume: 74 start-page: 437 year: 2002 end-page: 439 ident: bib11 article-title: Large-scale synthesis of In publication-title: Appl. Phys. Mater. Sci. Process contributor: fullname: Zhang – volume: 1 year: 2008 ident: bib12 article-title: High mobility titanium-doped In publication-title: APEX contributor: fullname: Nakada – volume: 34 issue: 13 year: 2023 ident: 10.1016/j.physb.2023.414886_bib19 article-title: Ultrasensitive self-powered heterojunction ultraviolet photodetector of p-GaN nanowires on Si by halide chemical vapour deposition publication-title: Nanotechnology doi: 10.1088/1361-6528/acaf36 contributor: fullname: Anbarasan – volume: 8 start-page: 80 issue: 1 year: 2013 ident: 10.1016/j.physb.2023.414886_bib16 article-title: Atomic layer deposition of high-density Pt nanodots on Al2O3 film using (MeCp)Pt(Me)3 and O2 precursors for nonvolatile memory applications publication-title: Nanoscale Res. Lett. doi: 10.1186/1556-276X-8-80 contributor: fullname: Ding – volume: 19 start-page: 856 year: 2020 ident: 10.1016/j.physb.2023.414886_bib2 article-title: Ag nanoparticles sheltered In2O3 nanowire as a capacitive MOS memory device publication-title: IEEE Trans. Nanotechnol. doi: 10.1109/TNANO.2020.3035179 contributor: fullname: Nath – volume: 50 start-page: 3722 issue: 6 year: 2021 ident: 10.1016/j.physb.2023.414886_bib10 article-title: Enhancing detectivity of indium-oxide-based photodetectors via vertical nanostructuring through glancing angle deposition publication-title: J. Electron. Mater. doi: 10.1007/s11664-021-08889-6 contributor: fullname: Nath – volume: 10 start-page: 667 year: 2015 ident: 10.1016/j.physb.2023.414886_bib20 article-title: The Ag nanoparticles/TiO2 thin film device for enhanced photoconduction and role of traps publication-title: Plasmonics doi: 10.1007/s11468-014-9852-7 contributor: fullname: Mondal – volume: 31 start-page: 15589 year: 2020 ident: 10.1016/j.physb.2023.414886_bib29 article-title: Electric and dielectric parameters in Au/n-Si (MS) capacitors with metal oxide-polymer interlayer as function of frequency and voltage publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-020-04122-y contributor: fullname: Demirezen – volume: 6 issue: 8 year: 2019 ident: 10.1016/j.physb.2023.414886_bib6 article-title: Optical response enhancement of GZO/p-Si heterostructures via metal nanoparticles publication-title: Mater. Res. Express doi: 10.1088/2053-1591/ab1c82 contributor: fullname: Sbeta – volume: 44 start-page: 2835 issue: 8 year: 2015 ident: 10.1016/j.physb.2023.414886_bib14 article-title: Electrical characteristics of hybrid-organic memory devices based on Au nanoparticles publication-title: J. Electron. Mater. doi: 10.1007/s11664-015-3692-x contributor: fullname: Nejm – volume: 20 start-page: 183 issue: 1 year: 2011 ident: 10.1016/j.physb.2023.414886_bib24 article-title: Zinc oxide nanoparticles for ultraviolet photodetection publication-title: Int. J. High Speed Electron. Syst. doi: 10.1142/S0129156411006519 contributor: fullname: Sawyer – year: 1982 ident: 10.1016/j.physb.2023.414886_bib26 contributor: fullname: Nicollian – volume: 515 start-page: 8356 issue: 23 year: 2007 ident: 10.1016/j.physb.2023.414886_bib5 article-title: In2O3 nanowires for gas sensors: morphology and sensing characterization publication-title: Thin Solid Films doi: 10.1016/j.tsf.2007.03.034 contributor: fullname: Vomiero – volume: 21 issue: 17 year: 2010 ident: 10.1016/j.physb.2023.414886_bib25 article-title: Au nanoparticle based localized surface plasmon resonance substrates fabricated by dynamic shadowing growth publication-title: Nanotechnology doi: 10.1088/0957-4484/21/17/175303 contributor: fullname: Fu – volume: 39 issue: 5 year: 2021 ident: 10.1016/j.physb.2023.414886_bib17 article-title: Synthesis and detailed characterizations of Ag nanoparticles coated In2O3 nanostructured devices: an analytical and experimental approach publication-title: J. Vac. Sci. Technol. B doi: 10.1116/6.0001208 contributor: fullname: Nath – volume: 1 issue: 1 year: 2008 ident: 10.1016/j.physb.2023.414886_bib12 article-title: High mobility titanium-doped In2O3 thin films prepared by sputtering/post-annealing technique publication-title: APEX contributor: fullname: Hashimoto – volume: 46 start-page: 1500 issue: 7 year: 1999 ident: 10.1016/j.physb.2023.414886_bib18 article-title: MOS capacitance measurements for high-leakage thin dielectrics publication-title: IEEE Trans. Electron. Dev. doi: 10.1109/16.772500 contributor: fullname: Yang – volume: 74 start-page: 437 issue: 3 year: 2002 ident: 10.1016/j.physb.2023.414886_bib11 article-title: Large-scale synthesis of In2O3 nanowires publication-title: Appl. Phys. Mater. Sci. Process doi: 10.1007/s003390101037 contributor: fullname: Peng – volume: 20 start-page: 860 year: 2021 ident: 10.1016/j.physb.2023.414886_bib15 article-title: Indium nanoparticles coated high dielectric TiO2 nanowire for capacitive memory application publication-title: IEEE Trans. Nanotechnol. doi: 10.1109/TNANO.2021.3129305 contributor: fullname: Yadav – volume: 106 start-page: 102 year: 2014 ident: 10.1016/j.physb.2023.414886_bib4 article-title: Anti-reflection In2O3 nanocones for silicon solar cells publication-title: Sol. Energy doi: 10.1016/j.solener.2013.12.037 contributor: fullname: Prathap – volume: 24 issue: 2 year: 2018 ident: 10.1016/j.physb.2023.414886_bib21 article-title: Noise characterization of geiger-mode 4H-SiC avalanche photodiodes for ultraviolet single-photon detection publication-title: IEEE J. Sel. Top. Quant. Electron. doi: 10.1109/JSTQE.2017.2737584 contributor: fullname: Wang – start-page: 1 year: 2022 ident: 10.1016/j.physb.2023.414886_bib23 article-title: Nanoparticles decorated Er:TiO2 thin film based plasmonic photodetector publication-title: Ceram. Int. contributor: fullname: Mondal – volume: 43 start-page: 918 issue: 6 year: 2022 ident: 10.1016/j.physb.2023.414886_bib9 article-title: Influence of annealing temperature on ZrO2 nanoparticles for improved photodetection publication-title: IEEE Electron. Device Lett. doi: 10.1109/LED.2022.3168562 contributor: fullname: Raman – volume: 16 start-page: 37 issue: 1 year: 2020 ident: 10.1016/j.physb.2023.414886_bib3 article-title: Surface-plasmon-induced Ag nanoparticles decorated In2O3 nanowires for low noise photodetectors publication-title: Plasmonics doi: 10.1007/s11468-020-01262-z contributor: fullname: Nath – volume: 364 year: 2021 ident: 10.1016/j.physb.2023.414886_bib8 article-title: Recent advances in SnO2 nanostructure based gas sensors publication-title: Sensor. Actuator. B Chem. contributor: fullname: Masuda – volume: 83 start-page: 582 issue: 3 year: 2006 ident: 10.1016/j.physb.2023.414886_bib28 article-title: Characterization of current–voltage (I–V) and capacitance–voltage–frequency (C–V–f) features of Al/SiO2/p-Si (MIS) Schottky diodes publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2005.12.014 contributor: fullname: Tataroğlu – volume: 50 start-page: 5052 year: 1979 ident: 10.1016/j.physb.2023.414886_bib27 article-title: A modified forward I‐V plot for Schottky diodes with high series resistance publication-title: J. Appl. Phys. doi: 10.1063/1.325607 contributor: fullname: Norde – volume: 46 start-page: 14558 issue: 10 year: 2022 ident: 10.1016/j.physb.2023.414886_bib7 article-title: Ni-doped TiO2/TiO2 homojunction photoanodes for efficient dye-sensitized solar cells publication-title: Int. J. Energy Res. doi: 10.1002/er.8175 contributor: fullname: Atilgan – volume: 6 start-page: 66924 year: 2016 ident: 10.1016/j.physb.2023.414886_bib22 article-title: Dual-band photodetector with a hybrid Aunanoparticles/β-Ga2O3 structure publication-title: RSC Adv. doi: 10.1039/C6RA15287B contributor: fullname: An – volume: 52 issue: 17 year: 2019 ident: 10.1016/j.physb.2023.414886_bib1 article-title: Highly reliable multilevel resistive switching in a nanoparticulated In2O3 thin-film memristive device publication-title: J. Phys. D Appl. Phys. doi: 10.1088/1361-6463/ab01a9 contributor: fullname: Pawar – volume: 90 issue: 9 year: 2007 ident: 10.1016/j.physb.2023.414886_bib13 article-title: Growth competition during glancing angle deposition of nanorod honeycomb arrays publication-title: Appl. Phys. Lett. doi: 10.1063/1.2709929 contributor: fullname: Zhou |
SSID | ssj0000171 |
Score | 2.4372983 |
Snippet | Silver (Ag) nanoparticles (NPs) were coated upon indium oxide (In2O3) nanowires (NW) by a double-step glancing angle deposition (GLAD) technique. The study... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 414886 |
SubjectTerms | GLAD Impedance Nanoparticles Series circuit model Switching response |
Title | An in-depth analysis on the switching response and impedance curves of n-si/In2O3 NW/Ag NPs/In based devices by a double-step glancing angle deposition technique |
URI | https://dx.doi.org/10.1016/j.physb.2023.414886 |
Volume | 660 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELa6TUjwgGCAGL90D7yFdGncpsljgKINiTKpQ9tbZDtO18GSqk2F-HP4T7mz4zSiCAESL1FrNXGU76t9d7n7jrGXA2pgm4jYz7UR1R4IXxZS-yQORhJTopBUnHwyG08v47eT4aTXcw2ZtmP_FWkcQ6ypcvYv0G4vigP4GTHHI6KOxz_CPaXURXwmS1Oz5hRHbDLj-uuitrmTK5sa27w7QNM5N6UDarNqVGhLf003cVqGH7k3vSDZhbk3PVubMY_2vpwKrmiZIQtWeHm1kV-0j6RZetQXRNnqx7kpzHKpYV4rGds1is8sV_reaxO2ragpL13_RtSd5OGpsCGg9GZRC3nVbiczsfpss8Q_LOqVoDcom7IbzAh5m_jaRNh2qmxsqDJEP3cUNpLZdqGOx9wPB1bqxK3kkW1NsLMr2ADFdZ-CRbJP8_aH6Ab-rMFtdvUZzUaToW-G9iDne-wgxEUM19CD9HRy-b4jTmbc-fbunKaVyR7cmerXdk_Hljm_x-42Tgiklj33WU-Xh-xOR5rykN2yoKwfsO9pCY5R4BgFVQnIKGgZBY5R-JMcWkaBZRRUBRCjjg2fYHpxnM4B2YTfwXAJGi6B_AYCOlwCxyUwXIItl6Dl0kP26d3k_M2J3zT28BVaTLWvNdcB51rKIh4G4yjRUaDDURHmajzQKs9VrCOVCJmIJB9GMoikThTuLjwo1CiQ_BHbL6tSP2ag5DgXCVfoJWt80INYRZES8agoRBEOVXTEXrnHni2tfkvmEhuvM4NSRihlFqUjFjlossYEtaZlhlz63YlP_vXEp-z29o_wjO3Xq41-zvbW-eZFQ7gfZkCsiw |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+in-depth+analysis+on+the+switching+response+and+impedance+curves+of+n-si%2FIn2O3+NW%2FAg+NPs%2FIn+based+devices+by+a+double-step+glancing+angle+deposition+technique&rft.jtitle=Physica.+B%2C+Condensed+matter&rft.au=Nath%2C+Amitabha&rft.au=Sarkar%2C+Mitra+Barun&rft.date=2023-07-01&rft.pub=Elsevier+B.V&rft.issn=0921-4526&rft.eissn=1873-2135&rft.volume=660&rft_id=info:doi/10.1016%2Fj.physb.2023.414886&rft.externalDocID=S0921452623002533 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-4526&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-4526&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-4526&client=summon |