An in-depth analysis on the switching response and impedance curves of n-si/In2O3 NW/Ag NPs/In based devices by a double-step glancing angle deposition technique

Silver (Ag) nanoparticles (NPs) were coated upon indium oxide (In2O3) nanowires (NW) by a double-step glancing angle deposition (GLAD) technique. The study focuses on the experimental analysis of current (I) versus voltage (V), current (I) versus time (t), as well as impedance (Zexp) versus voltage...

Full description

Saved in:
Bibliographic Details
Published in:Physica. B, Condensed matter Vol. 660; p. 414886
Main Authors: Nath, Amitabha, Sarkar, Mitra Barun
Format: Journal Article
Language:English
Published: Elsevier B.V 01-07-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Silver (Ag) nanoparticles (NPs) were coated upon indium oxide (In2O3) nanowires (NW) by a double-step glancing angle deposition (GLAD) technique. The study focuses on the experimental analysis of current (I) versus voltage (V), current (I) versus time (t), as well as impedance (Zexp) versus voltage (V) curves for n-Si/In2O3 NW/Ag NPs/In based devices with a sweeping voltage of ±10 V at room temperature in different frequency responses varying from 100 Hz to 2 MHz. The n-Si/In2O3 NW/Ag NPs/In based device showed faster rise and fall time of 0.13 s and 0.12 s than the other devices due to oxygen-related defect states. The presence of Ag NPs also improved oxygen related defect states, resulting in high impedance value for n-Si/In2O3 NW/Ag NPs/In based device. The series circuit model (SCM) was used to derive the theoretical investigations of impedances, indicating the n-Si/In2O3 NW/Ag NPs/In based device can be used in nanoelectronics applications. •Experimental analysis of switching responses (current vs. time) for the n-Si/In2O3 TF/In, n- Si/In2O3 NW/In, and n-Si/In2O3 NW/Ag NPs/In based devices.•Experimental impedance (Zexp) versus voltage (V) curves for the n-Si/In2O3 TF/In, n-Si/In2O3 NW/In, and n-Si/In2O3 NW/Ag NPs/In based devices.•At 2 MHz frequency response, n-Si/In2O3 NW/Ag NPs/In based device shows ∼5.60 fold and ∼4.70 fold enhancement in impedances compared to the n-Si/In2O3 TF/In and n-Si/In2O3 NW/In based devices, respectively.•The series circuit model (SCM) has been theoretically investigated to clearly understand the experimental outcomes of n-Si/In2O3 NW/Ag NPs/In based devices.
AbstractList Silver (Ag) nanoparticles (NPs) were coated upon indium oxide (In2O3) nanowires (NW) by a double-step glancing angle deposition (GLAD) technique. The study focuses on the experimental analysis of current (I) versus voltage (V), current (I) versus time (t), as well as impedance (Zexp) versus voltage (V) curves for n-Si/In2O3 NW/Ag NPs/In based devices with a sweeping voltage of ±10 V at room temperature in different frequency responses varying from 100 Hz to 2 MHz. The n-Si/In2O3 NW/Ag NPs/In based device showed faster rise and fall time of 0.13 s and 0.12 s than the other devices due to oxygen-related defect states. The presence of Ag NPs also improved oxygen related defect states, resulting in high impedance value for n-Si/In2O3 NW/Ag NPs/In based device. The series circuit model (SCM) was used to derive the theoretical investigations of impedances, indicating the n-Si/In2O3 NW/Ag NPs/In based device can be used in nanoelectronics applications. •Experimental analysis of switching responses (current vs. time) for the n-Si/In2O3 TF/In, n- Si/In2O3 NW/In, and n-Si/In2O3 NW/Ag NPs/In based devices.•Experimental impedance (Zexp) versus voltage (V) curves for the n-Si/In2O3 TF/In, n-Si/In2O3 NW/In, and n-Si/In2O3 NW/Ag NPs/In based devices.•At 2 MHz frequency response, n-Si/In2O3 NW/Ag NPs/In based device shows ∼5.60 fold and ∼4.70 fold enhancement in impedances compared to the n-Si/In2O3 TF/In and n-Si/In2O3 NW/In based devices, respectively.•The series circuit model (SCM) has been theoretically investigated to clearly understand the experimental outcomes of n-Si/In2O3 NW/Ag NPs/In based devices.
ArticleNumber 414886
Author Sarkar, Mitra Barun
Nath, Amitabha
Author_xml – sequence: 1
  givenname: Amitabha
  surname: Nath
  fullname: Nath, Amitabha
  organization: Department of Electronics and Communication Engineering, National Institute of Technology, Agartala, Jirania, 799046, India
– sequence: 2
  givenname: Mitra Barun
  orcidid: 0000-0002-4590-7955
  surname: Sarkar
  fullname: Sarkar, Mitra Barun
  email: mbarun.ece@nita.ac.in
  organization: Department of Electronics and Communication Engineering, National Institute of Technology, Agartala, Jirania, 799046, India
BookMark eNp9kMlOwzAQhi1UJFrgCbj4BdJ6SdLkwKGqWCohygHE0fIyaVwFJ2TSoj4Ob4pLOTOX0Uj_MvomZBTaAITccDbljOez7bSrD2imggk5TXlaFPkZGfNiLhPBZTYiY1YKnqSZyC_IBHHL4vA5H5PvRaA-JA66oaY66OaAHmkb6FADxS8_2NqHDe0BuzYgRImj_qMDp4MFanf9HqK8oiFBP1sFsZb0-X222NDnF4w3NRrBUQd7b6PQHKimrt2ZBhIcoKObJuYcC3TYNBB1XYt-8Md-sHXwnzu4IueVbhCu__Ylebu_e10-Jk_rh9Vy8ZRYyeSQAEhgUoIxVZGyeV5CzkBklXB2zsE6ZwvIbalNqUuX5oblBkqbikyyymbMyEsiT7m2bxF7qFTX-w_dHxRn6khZbdUvZXWkrE6Uo-v25IL42t5Dr9B6iGyc78EOyrX-X_8P4nGLxA
CitedBy_id crossref_primary_10_1007_s10854_024_12780_5
Cites_doi 10.1088/1361-6528/acaf36
10.1186/1556-276X-8-80
10.1109/TNANO.2020.3035179
10.1007/s11664-021-08889-6
10.1007/s11468-014-9852-7
10.1007/s10854-020-04122-y
10.1088/2053-1591/ab1c82
10.1007/s11664-015-3692-x
10.1142/S0129156411006519
10.1016/j.tsf.2007.03.034
10.1088/0957-4484/21/17/175303
10.1116/6.0001208
10.1109/16.772500
10.1007/s003390101037
10.1109/TNANO.2021.3129305
10.1016/j.solener.2013.12.037
10.1109/JSTQE.2017.2737584
10.1109/LED.2022.3168562
10.1007/s11468-020-01262-z
10.1016/j.mee.2005.12.014
10.1063/1.325607
10.1002/er.8175
10.1039/C6RA15287B
10.1088/1361-6463/ab01a9
10.1063/1.2709929
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.physb.2023.414886
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1873-2135
ExternalDocumentID 10_1016_j_physb_2023_414886
S0921452623002533
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABMAC
ABNEU
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
M38
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SSQ
T5K
TN5
XPP
YNT
ZMT
~02
~G-
29O
6TJ
AAEDT
AAQXK
AAXKI
AAYXX
ABFNM
ABXDB
ACNNM
ADIYS
ADMUD
ADVLN
AFFNX
AFJKZ
AGHFR
ASPBG
AVWKF
AZFZN
BBWZM
CITATION
EJD
FEDTE
FGOYB
HMV
HVGLF
HZ~
H~9
MVM
NDZJH
R2-
SPG
SSZ
VOH
WUQ
XJT
XOL
ID FETCH-LOGICAL-c303t-ee3e033ebbf840769e60e25f2dc71ecddc8e6c9ab9a9d46b06be9c42530fc50b3
ISSN 0921-4526
IngestDate Thu Sep 26 16:28:26 EDT 2024
Fri Apr 05 04:25:35 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Nanoparticles
GLAD
Impedance
Series circuit model
Switching response
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c303t-ee3e033ebbf840769e60e25f2dc71ecddc8e6c9ab9a9d46b06be9c42530fc50b3
ORCID 0000-0002-4590-7955
ParticipantIDs crossref_primary_10_1016_j_physb_2023_414886
elsevier_sciencedirect_doi_10_1016_j_physb_2023_414886
PublicationCentury 2000
PublicationDate 2023-07-01
2023-07-00
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-01
  day: 01
PublicationDecade 2020
PublicationTitle Physica. B, Condensed matter
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Anbarasan, Sadhasivam, Jeganathan (bib19) 2023; 34
Yang, Hu (bib18) 1999; 46
Norde (bib27) 1979; 50
Tataroğlu, Altındal (bib28) 2006; 83
Wang, Lv, Wang, Zhang, Yang, Zhou, Lu, Wu, Wu (bib21) 2018; 24
Nath, Sarkar (bib3) 2020; 16
Nath, Mahajan, Singh, Vishwas, Nanda, Sarkar (bib10) 2021; 50
Hashimoto, Abe, Nakada (bib12) 2008; 1
Nath, Mahajan, Mondal, Singh, Sarkar (bib17) 2021; 39
Pawar, V Desai, M Bodake, Patil, M More, Nimbalkar, S Mali, K Hong, Kim, Patil, D Dongale (bib1) 2019; 52
Prathap, Dahiya, Srivastava, Srivastava, Sivaiah, Haranath, Vandana, Srivastava, Rauthan, Singh (bib4) 2014; 106
Nejm, Ayesh, Zeze, Sleiman, Mabrook, Al-Ghaferi, Hussein (bib14) 2015; 44
Peng, Wang, Zhang, Wang, Zhao, Meng, Zhang (bib11) 2002; 74
Mondal, Dalal, Mondal, Al (bib23) 2022
An, Guo, Li, Wu, Zhi, Cui, Zhao, Li, Tang (bib22) 2016; 6
Vomiero, Bianchi, Comini, Faglia, Ferroni, Poli, Sberveglieri (bib5) 2007; 515
Masuda (bib8) 2021; 364
Nath, Mahajan, Sarkar (bib2) 2020; 19
Sbeta, Yildiz (bib6) 2019; 6
Atilgan, Yildiz (bib7) 2022; 46
Sawyer, Qin, Shing (bib24) 2011; 20
Demirezen, Eroğlu, Azizian-Kalandaragh, Altındal (bib29) 2020; 31
Raman, Nath, Sarkar (bib9) 2022; 43
Yadav, Nath, Sarkar (bib15) 2021; 20
Ding, Chen, Cui, Chen, Sun, Zhou, Lu, Zhang, Shen (bib16) 2013; 8
Nicollian, Brews (bib26) 1982
Zhou, Gall (bib13) 2007; 90
Mondal, Ganguly, Das, Choudhuri, Yadav (bib20) 2015; 10
Fu, Zhao Y (bib25) 2010; 21
Sawyer (10.1016/j.physb.2023.414886_bib24) 2011; 20
Zhou (10.1016/j.physb.2023.414886_bib13) 2007; 90
Mondal (10.1016/j.physb.2023.414886_bib20) 2015; 10
Mondal (10.1016/j.physb.2023.414886_bib23) 2022
Fu (10.1016/j.physb.2023.414886_bib25) 2010; 21
Prathap (10.1016/j.physb.2023.414886_bib4) 2014; 106
Norde (10.1016/j.physb.2023.414886_bib27) 1979; 50
Demirezen (10.1016/j.physb.2023.414886_bib29) 2020; 31
Yadav (10.1016/j.physb.2023.414886_bib15) 2021; 20
An (10.1016/j.physb.2023.414886_bib22) 2016; 6
Nicollian (10.1016/j.physb.2023.414886_bib26) 1982
Sbeta (10.1016/j.physb.2023.414886_bib6) 2019; 6
Nath (10.1016/j.physb.2023.414886_bib10) 2021; 50
Tataroğlu (10.1016/j.physb.2023.414886_bib28) 2006; 83
Peng (10.1016/j.physb.2023.414886_bib11) 2002; 74
Nath (10.1016/j.physb.2023.414886_bib2) 2020; 19
Anbarasan (10.1016/j.physb.2023.414886_bib19) 2023; 34
Vomiero (10.1016/j.physb.2023.414886_bib5) 2007; 515
Nath (10.1016/j.physb.2023.414886_bib17) 2021; 39
Ding (10.1016/j.physb.2023.414886_bib16) 2013; 8
Yang (10.1016/j.physb.2023.414886_bib18) 1999; 46
Wang (10.1016/j.physb.2023.414886_bib21) 2018; 24
Masuda (10.1016/j.physb.2023.414886_bib8) 2021; 364
Atilgan (10.1016/j.physb.2023.414886_bib7) 2022; 46
Raman (10.1016/j.physb.2023.414886_bib9) 2022; 43
Hashimoto (10.1016/j.physb.2023.414886_bib12) 2008; 1
Pawar (10.1016/j.physb.2023.414886_bib1) 2019; 52
Nath (10.1016/j.physb.2023.414886_bib3) 2020; 16
Nejm (10.1016/j.physb.2023.414886_bib14) 2015; 44
References_xml – volume: 39
  year: 2021
  ident: bib17
  article-title: Synthesis and detailed characterizations of Ag nanoparticles coated In
  publication-title: J. Vac. Sci. Technol. B
  contributor:
    fullname: Sarkar
– volume: 8
  start-page: 80
  year: 2013
  ident: bib16
  article-title: Atomic layer deposition of high-density Pt nanodots on Al
  publication-title: Nanoscale Res. Lett.
  contributor:
    fullname: Shen
– volume: 52
  year: 2019
  ident: bib1
  article-title: Highly reliable multilevel resistive switching in a nanoparticulated In
  publication-title: J. Phys. D Appl. Phys.
  contributor:
    fullname: D Dongale
– volume: 6
  year: 2019
  ident: bib6
  article-title: Optical response enhancement of GZO/p-Si heterostructures via metal nanoparticles
  publication-title: Mater. Res. Express
  contributor:
    fullname: Yildiz
– year: 1982
  ident: bib26
  article-title: MOS (Metal Oxide Semiconductor) Physics and Technology
  contributor:
    fullname: Brews
– volume: 364
  year: 2021
  ident: bib8
  article-title: Recent advances in SnO
  publication-title: Sensor. Actuator. B Chem.
  contributor:
    fullname: Masuda
– volume: 21
  year: 2010
  ident: bib25
  article-title: Au nanoparticle based localized surface plasmon resonance substrates fabricated by dynamic shadowing growth
  publication-title: Nanotechnology
  contributor:
    fullname: Zhao Y
– volume: 24
  year: 2018
  ident: bib21
  article-title: Noise characterization of geiger-mode 4H-SiC avalanche photodiodes for ultraviolet single-photon detection
  publication-title: IEEE J. Sel. Top. Quant. Electron.
  contributor:
    fullname: Wu
– volume: 34
  year: 2023
  ident: bib19
  article-title: Ultrasensitive self-powered heterojunction ultraviolet photodetector of p-GaN nanowires on Si by halide chemical vapour deposition
  publication-title: Nanotechnology
  contributor:
    fullname: Jeganathan
– volume: 31
  start-page: 15589
  year: 2020
  end-page: 15598
  ident: bib29
  article-title: Electric and dielectric parameters in Au/n-Si (MS) capacitors with metal oxide-polymer interlayer as function of frequency and voltage
  publication-title: J. Mater. Sci. Mater. Electron.
  contributor:
    fullname: Altındal
– volume: 19
  start-page: 856
  year: 2020
  end-page: 863
  ident: bib2
  article-title: Ag nanoparticles sheltered In
  publication-title: IEEE Trans. Nanotechnol.
  contributor:
    fullname: Sarkar
– volume: 515
  start-page: 8356
  year: 2007
  end-page: 8359
  ident: bib5
  article-title: In
  publication-title: Thin Solid Films
  contributor:
    fullname: Sberveglieri
– volume: 20
  start-page: 860
  year: 2021
  end-page: 865
  ident: bib15
  article-title: Indium nanoparticles coated high dielectric TiO
  publication-title: IEEE Trans. Nanotechnol.
  contributor:
    fullname: Sarkar
– volume: 43
  start-page: 918
  year: 2022
  end-page: 921
  ident: bib9
  article-title: Influence of annealing temperature on ZrO
  publication-title: IEEE Electron. Device Lett.
  contributor:
    fullname: Sarkar
– volume: 50
  start-page: 5052
  year: 1979
  ident: bib27
  article-title: A modified forward I‐V plot for Schottky diodes with high series resistance
  publication-title: J. Appl. Phys.
  contributor:
    fullname: Norde
– volume: 20
  start-page: 183
  year: 2011
  end-page: 194
  ident: bib24
  article-title: Zinc oxide nanoparticles for ultraviolet photodetection
  publication-title: Int. J. High Speed Electron. Syst.
  contributor:
    fullname: Shing
– volume: 16
  start-page: 37
  year: 2020
  end-page: 48
  ident: bib3
  article-title: Surface-plasmon-induced Ag nanoparticles decorated In
  publication-title: Plasmonics
  contributor:
    fullname: Sarkar
– volume: 10
  start-page: 667
  year: 2015
  end-page: 673
  ident: bib20
  article-title: The Ag nanoparticles/TiO
  publication-title: Plasmonics
  contributor:
    fullname: Yadav
– volume: 90
  year: 2007
  ident: bib13
  article-title: Growth competition during glancing angle deposition of nanorod honeycomb arrays
  publication-title: Appl. Phys. Lett.
  contributor:
    fullname: Gall
– volume: 83
  start-page: 582
  year: 2006
  end-page: 588
  ident: bib28
  article-title: Characterization of current–voltage (I–V) and capacitance–voltage–frequency (C–V–
  publication-title: Microelectron. Eng.
  contributor:
    fullname: Altındal
– volume: 46
  start-page: 1500
  year: 1999
  end-page: 1501
  ident: bib18
  article-title: MOS capacitance measurements for high-leakage thin dielectrics
  publication-title: IEEE Trans. Electron. Dev.
  contributor:
    fullname: Hu
– volume: 50
  start-page: 3722
  year: 2021
  end-page: 3730
  ident: bib10
  article-title: Enhancing detectivity of indium-oxide-based photodetectors via vertical nanostructuring through glancing angle deposition
  publication-title: J. Electron. Mater.
  contributor:
    fullname: Sarkar
– volume: 106
  start-page: 102
  year: 2014
  end-page: 108
  ident: bib4
  article-title: Anti-reflection In
  publication-title: Sol. Energy
  contributor:
    fullname: Singh
– volume: 46
  start-page: 14558
  year: 2022
  end-page: 14569
  ident: bib7
  article-title: Ni-doped TiO
  publication-title: Int. J. Energy Res.
  contributor:
    fullname: Yildiz
– volume: 44
  start-page: 2835
  year: 2015
  end-page: 2841
  ident: bib14
  article-title: Electrical characteristics of hybrid-organic memory devices based on Au nanoparticles
  publication-title: J. Electron. Mater.
  contributor:
    fullname: Hussein
– volume: 6
  start-page: 66924
  year: 2016
  end-page: 66929
  ident: bib22
  article-title: Dual-band photodetector with a hybrid Aunanoparticles/β-Ga
  publication-title: RSC Adv.
  contributor:
    fullname: Tang
– start-page: 1
  year: 2022
  end-page: 10
  ident: bib23
  article-title: Nanoparticles decorated Er:TiO
  publication-title: Ceram. Int.
  contributor:
    fullname: Al
– volume: 74
  start-page: 437
  year: 2002
  end-page: 439
  ident: bib11
  article-title: Large-scale synthesis of In
  publication-title: Appl. Phys. Mater. Sci. Process
  contributor:
    fullname: Zhang
– volume: 1
  year: 2008
  ident: bib12
  article-title: High mobility titanium-doped In
  publication-title: APEX
  contributor:
    fullname: Nakada
– volume: 34
  issue: 13
  year: 2023
  ident: 10.1016/j.physb.2023.414886_bib19
  article-title: Ultrasensitive self-powered heterojunction ultraviolet photodetector of p-GaN nanowires on Si by halide chemical vapour deposition
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/acaf36
  contributor:
    fullname: Anbarasan
– volume: 8
  start-page: 80
  issue: 1
  year: 2013
  ident: 10.1016/j.physb.2023.414886_bib16
  article-title: Atomic layer deposition of high-density Pt nanodots on Al2O3 film using (MeCp)Pt(Me)3 and O2 precursors for nonvolatile memory applications
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/1556-276X-8-80
  contributor:
    fullname: Ding
– volume: 19
  start-page: 856
  year: 2020
  ident: 10.1016/j.physb.2023.414886_bib2
  article-title: Ag nanoparticles sheltered In2O3 nanowire as a capacitive MOS memory device
  publication-title: IEEE Trans. Nanotechnol.
  doi: 10.1109/TNANO.2020.3035179
  contributor:
    fullname: Nath
– volume: 50
  start-page: 3722
  issue: 6
  year: 2021
  ident: 10.1016/j.physb.2023.414886_bib10
  article-title: Enhancing detectivity of indium-oxide-based photodetectors via vertical nanostructuring through glancing angle deposition
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-021-08889-6
  contributor:
    fullname: Nath
– volume: 10
  start-page: 667
  year: 2015
  ident: 10.1016/j.physb.2023.414886_bib20
  article-title: The Ag nanoparticles/TiO2 thin film device for enhanced photoconduction and role of traps
  publication-title: Plasmonics
  doi: 10.1007/s11468-014-9852-7
  contributor:
    fullname: Mondal
– volume: 31
  start-page: 15589
  year: 2020
  ident: 10.1016/j.physb.2023.414886_bib29
  article-title: Electric and dielectric parameters in Au/n-Si (MS) capacitors with metal oxide-polymer interlayer as function of frequency and voltage
  publication-title: J. Mater. Sci. Mater. Electron.
  doi: 10.1007/s10854-020-04122-y
  contributor:
    fullname: Demirezen
– volume: 6
  issue: 8
  year: 2019
  ident: 10.1016/j.physb.2023.414886_bib6
  article-title: Optical response enhancement of GZO/p-Si heterostructures via metal nanoparticles
  publication-title: Mater. Res. Express
  doi: 10.1088/2053-1591/ab1c82
  contributor:
    fullname: Sbeta
– volume: 44
  start-page: 2835
  issue: 8
  year: 2015
  ident: 10.1016/j.physb.2023.414886_bib14
  article-title: Electrical characteristics of hybrid-organic memory devices based on Au nanoparticles
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-015-3692-x
  contributor:
    fullname: Nejm
– volume: 20
  start-page: 183
  issue: 1
  year: 2011
  ident: 10.1016/j.physb.2023.414886_bib24
  article-title: Zinc oxide nanoparticles for ultraviolet photodetection
  publication-title: Int. J. High Speed Electron. Syst.
  doi: 10.1142/S0129156411006519
  contributor:
    fullname: Sawyer
– year: 1982
  ident: 10.1016/j.physb.2023.414886_bib26
  contributor:
    fullname: Nicollian
– volume: 515
  start-page: 8356
  issue: 23
  year: 2007
  ident: 10.1016/j.physb.2023.414886_bib5
  article-title: In2O3 nanowires for gas sensors: morphology and sensing characterization
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2007.03.034
  contributor:
    fullname: Vomiero
– volume: 21
  issue: 17
  year: 2010
  ident: 10.1016/j.physb.2023.414886_bib25
  article-title: Au nanoparticle based localized surface plasmon resonance substrates fabricated by dynamic shadowing growth
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/21/17/175303
  contributor:
    fullname: Fu
– volume: 39
  issue: 5
  year: 2021
  ident: 10.1016/j.physb.2023.414886_bib17
  article-title: Synthesis and detailed characterizations of Ag nanoparticles coated In2O3 nanostructured devices: an analytical and experimental approach
  publication-title: J. Vac. Sci. Technol. B
  doi: 10.1116/6.0001208
  contributor:
    fullname: Nath
– volume: 1
  issue: 1
  year: 2008
  ident: 10.1016/j.physb.2023.414886_bib12
  article-title: High mobility titanium-doped In2O3 thin films prepared by sputtering/post-annealing technique
  publication-title: APEX
  contributor:
    fullname: Hashimoto
– volume: 46
  start-page: 1500
  issue: 7
  year: 1999
  ident: 10.1016/j.physb.2023.414886_bib18
  article-title: MOS capacitance measurements for high-leakage thin dielectrics
  publication-title: IEEE Trans. Electron. Dev.
  doi: 10.1109/16.772500
  contributor:
    fullname: Yang
– volume: 74
  start-page: 437
  issue: 3
  year: 2002
  ident: 10.1016/j.physb.2023.414886_bib11
  article-title: Large-scale synthesis of In2O3 nanowires
  publication-title: Appl. Phys. Mater. Sci. Process
  doi: 10.1007/s003390101037
  contributor:
    fullname: Peng
– volume: 20
  start-page: 860
  year: 2021
  ident: 10.1016/j.physb.2023.414886_bib15
  article-title: Indium nanoparticles coated high dielectric TiO2 nanowire for capacitive memory application
  publication-title: IEEE Trans. Nanotechnol.
  doi: 10.1109/TNANO.2021.3129305
  contributor:
    fullname: Yadav
– volume: 106
  start-page: 102
  year: 2014
  ident: 10.1016/j.physb.2023.414886_bib4
  article-title: Anti-reflection In2O3 nanocones for silicon solar cells
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2013.12.037
  contributor:
    fullname: Prathap
– volume: 24
  issue: 2
  year: 2018
  ident: 10.1016/j.physb.2023.414886_bib21
  article-title: Noise characterization of geiger-mode 4H-SiC avalanche photodiodes for ultraviolet single-photon detection
  publication-title: IEEE J. Sel. Top. Quant. Electron.
  doi: 10.1109/JSTQE.2017.2737584
  contributor:
    fullname: Wang
– start-page: 1
  year: 2022
  ident: 10.1016/j.physb.2023.414886_bib23
  article-title: Nanoparticles decorated Er:TiO2 thin film based plasmonic photodetector
  publication-title: Ceram. Int.
  contributor:
    fullname: Mondal
– volume: 43
  start-page: 918
  issue: 6
  year: 2022
  ident: 10.1016/j.physb.2023.414886_bib9
  article-title: Influence of annealing temperature on ZrO2 nanoparticles for improved photodetection
  publication-title: IEEE Electron. Device Lett.
  doi: 10.1109/LED.2022.3168562
  contributor:
    fullname: Raman
– volume: 16
  start-page: 37
  issue: 1
  year: 2020
  ident: 10.1016/j.physb.2023.414886_bib3
  article-title: Surface-plasmon-induced Ag nanoparticles decorated In2O3 nanowires for low noise photodetectors
  publication-title: Plasmonics
  doi: 10.1007/s11468-020-01262-z
  contributor:
    fullname: Nath
– volume: 364
  year: 2021
  ident: 10.1016/j.physb.2023.414886_bib8
  article-title: Recent advances in SnO2 nanostructure based gas sensors
  publication-title: Sensor. Actuator. B Chem.
  contributor:
    fullname: Masuda
– volume: 83
  start-page: 582
  issue: 3
  year: 2006
  ident: 10.1016/j.physb.2023.414886_bib28
  article-title: Characterization of current–voltage (I–V) and capacitance–voltage–frequency (C–V–f) features of Al/SiO2/p-Si (MIS) Schottky diodes
  publication-title: Microelectron. Eng.
  doi: 10.1016/j.mee.2005.12.014
  contributor:
    fullname: Tataroğlu
– volume: 50
  start-page: 5052
  year: 1979
  ident: 10.1016/j.physb.2023.414886_bib27
  article-title: A modified forward I‐V plot for Schottky diodes with high series resistance
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.325607
  contributor:
    fullname: Norde
– volume: 46
  start-page: 14558
  issue: 10
  year: 2022
  ident: 10.1016/j.physb.2023.414886_bib7
  article-title: Ni-doped TiO2/TiO2 homojunction photoanodes for efficient dye-sensitized solar cells
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.8175
  contributor:
    fullname: Atilgan
– volume: 6
  start-page: 66924
  year: 2016
  ident: 10.1016/j.physb.2023.414886_bib22
  article-title: Dual-band photodetector with a hybrid Aunanoparticles/β-Ga2O3 structure
  publication-title: RSC Adv.
  doi: 10.1039/C6RA15287B
  contributor:
    fullname: An
– volume: 52
  issue: 17
  year: 2019
  ident: 10.1016/j.physb.2023.414886_bib1
  article-title: Highly reliable multilevel resistive switching in a nanoparticulated In2O3 thin-film memristive device
  publication-title: J. Phys. D Appl. Phys.
  doi: 10.1088/1361-6463/ab01a9
  contributor:
    fullname: Pawar
– volume: 90
  issue: 9
  year: 2007
  ident: 10.1016/j.physb.2023.414886_bib13
  article-title: Growth competition during glancing angle deposition of nanorod honeycomb arrays
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2709929
  contributor:
    fullname: Zhou
SSID ssj0000171
Score 2.4372983
Snippet Silver (Ag) nanoparticles (NPs) were coated upon indium oxide (In2O3) nanowires (NW) by a double-step glancing angle deposition (GLAD) technique. The study...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 414886
SubjectTerms GLAD
Impedance
Nanoparticles
Series circuit model
Switching response
Title An in-depth analysis on the switching response and impedance curves of n-si/In2O3 NW/Ag NPs/In based devices by a double-step glancing angle deposition technique
URI https://dx.doi.org/10.1016/j.physb.2023.414886
Volume 660
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELa6TUjwgGCAGL90D7yFdGncpsljgKINiTKpQ9tbZDtO18GSqk2F-HP4T7mz4zSiCAESL1FrNXGU76t9d7n7jrGXA2pgm4jYz7UR1R4IXxZS-yQORhJTopBUnHwyG08v47eT4aTXcw2ZtmP_FWkcQ6ypcvYv0G4vigP4GTHHI6KOxz_CPaXURXwmS1Oz5hRHbDLj-uuitrmTK5sa27w7QNM5N6UDarNqVGhLf003cVqGH7k3vSDZhbk3PVubMY_2vpwKrmiZIQtWeHm1kV-0j6RZetQXRNnqx7kpzHKpYV4rGds1is8sV_reaxO2ragpL13_RtSd5OGpsCGg9GZRC3nVbiczsfpss8Q_LOqVoDcom7IbzAh5m_jaRNh2qmxsqDJEP3cUNpLZdqGOx9wPB1bqxK3kkW1NsLMr2ADFdZ-CRbJP8_aH6Ab-rMFtdvUZzUaToW-G9iDne-wgxEUM19CD9HRy-b4jTmbc-fbunKaVyR7cmerXdk_Hljm_x-42Tgiklj33WU-Xh-xOR5rykN2yoKwfsO9pCY5R4BgFVQnIKGgZBY5R-JMcWkaBZRRUBRCjjg2fYHpxnM4B2YTfwXAJGi6B_AYCOlwCxyUwXIItl6Dl0kP26d3k_M2J3zT28BVaTLWvNdcB51rKIh4G4yjRUaDDURHmajzQKs9VrCOVCJmIJB9GMoikThTuLjwo1CiQ_BHbL6tSP2ag5DgXCVfoJWt80INYRZES8agoRBEOVXTEXrnHni2tfkvmEhuvM4NSRihlFqUjFjlossYEtaZlhlz63YlP_vXEp-z29o_wjO3Xq41-zvbW-eZFQ7gfZkCsiw
link.rule.ids 315,782,786,27933,27934
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+in-depth+analysis+on+the+switching+response+and+impedance+curves+of+n-si%2FIn2O3+NW%2FAg+NPs%2FIn+based+devices+by+a+double-step+glancing+angle+deposition+technique&rft.jtitle=Physica.+B%2C+Condensed+matter&rft.au=Nath%2C+Amitabha&rft.au=Sarkar%2C+Mitra+Barun&rft.date=2023-07-01&rft.pub=Elsevier+B.V&rft.issn=0921-4526&rft.eissn=1873-2135&rft.volume=660&rft_id=info:doi/10.1016%2Fj.physb.2023.414886&rft.externalDocID=S0921452623002533
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-4526&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-4526&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-4526&client=summon