Identifying naphthenic acid corrosion mechanism on heat exchanger unit by computational fluid dynamic simulation
Corrosion in refinery assets is complex which involves multi factors contributing to damage mechanisms. The present study aims to evaluate the damage mechanism which caused the heat exchanger (HEX) to leak in parallel sequence. In this sense, experiments were conducted to investigate the correlation...
Saved in:
Published in: | Materials today : proceedings Vol. 29; pp. 82 - 87 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier Ltd
01-01-2020
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Corrosion in refinery assets is complex which involves multi factors contributing to damage mechanisms. The present study aims to evaluate the damage mechanism which caused the heat exchanger (HEX) to leak in parallel sequence. In this sense, experiments were conducted to investigate the correlation between convective heat transfer coefficients and reveals the correlation with material degradation in the heat exchanger. Failure analysis was concluded HEX was attacked by naphthenic acid corrosion (NAC) due to sharp-edged, crater-like holes to sharp-edged streamlined grooves with corrosion product consist of sulphide. Material behaviour analysis assisted by computerized fluid dynamics (CFD) software strongly suggested that the inhibitor is not well distributed at the location of 356 mm because the velocity distribution at the specific location of the corrosive tubes was not uniform. Parallel failure initiated in the distribution of inhibitor and heat in HEX using CFD. From the results of the research, it can be concluded that the selection of material needs to be upgraded to at least 9% molybdate alloying content. CFD results reveal the optimum temperature and pressure of heat exchanger to control NAC attack as well as failure associated with the impact of stream detachment inside the bay to a few tubes. Overall results reveal the CFD method is suitable in predicting the fluid flow and thermal condition at the location of the corrosion failure in the shell tube heat exchanger. The location of corrosion can also be identified and the streamline of flow can be visualized by other materials failure analysis techniques. |
---|---|
AbstractList | Corrosion in refinery assets is complex which involves multi factors contributing to damage mechanisms. The present study aims to evaluate the damage mechanism which caused the heat exchanger (HEX) to leak in parallel sequence. In this sense, experiments were conducted to investigate the correlation between convective heat transfer coefficients and reveals the correlation with material degradation in the heat exchanger. Failure analysis was concluded HEX was attacked by naphthenic acid corrosion (NAC) due to sharp-edged, crater-like holes to sharp-edged streamlined grooves with corrosion product consist of sulphide. Material behaviour analysis assisted by computerized fluid dynamics (CFD) software strongly suggested that the inhibitor is not well distributed at the location of 356 mm because the velocity distribution at the specific location of the corrosive tubes was not uniform. Parallel failure initiated in the distribution of inhibitor and heat in HEX using CFD. From the results of the research, it can be concluded that the selection of material needs to be upgraded to at least 9% molybdate alloying content. CFD results reveal the optimum temperature and pressure of heat exchanger to control NAC attack as well as failure associated with the impact of stream detachment inside the bay to a few tubes. Overall results reveal the CFD method is suitable in predicting the fluid flow and thermal condition at the location of the corrosion failure in the shell tube heat exchanger. The location of corrosion can also be identified and the streamline of flow can be visualized by other materials failure analysis techniques. |
Author | Ismail, Azzura Ayop, S.S. Aizat Razali, Azlizul Nordin, Normayati Mat Noor, Fazimah Haiqal Anif, Amirul |
Author_xml | – sequence: 1 givenname: Azzura surname: Ismail fullname: Ismail, Azzura email: azzura@uthm.edu.my organization: Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn, Malaysia – sequence: 2 givenname: Azlizul surname: Aizat Razali fullname: Aizat Razali, Azlizul organization: Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn, Malaysia – sequence: 3 givenname: Normayati surname: Nordin fullname: Nordin, Normayati organization: Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn, Malaysia – sequence: 4 givenname: Fazimah surname: Mat Noor fullname: Mat Noor, Fazimah organization: Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn, Malaysia – sequence: 5 givenname: Amirul surname: Haiqal Anif fullname: Haiqal Anif, Amirul organization: Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn, Malaysia – sequence: 6 givenname: S.S. surname: Ayop fullname: Ayop, S.S. organization: Faculty of Civil and Environmental Engineering, Universiti Tun Hussein Onn Malaysia, Batu Pahat, Johor, Malaysia |
BookMark | eNp9kMtOwzAQRS1UJErpF7DxDyTYeTlZsEAVj0qV2MDacu1x4ypxIttB5O9xWxasWM2M596r8blFCztYQOiekpQSWj0c016E0aUZyUhKyrRq6iu0zDJaJKwu88Wf_gatvT8SQmhZkZpWSzRuFdhg9GzsAVsxtqEFayQW0igsB-cGbwaLe5CtsMb3OA4tiIDh-_RyAIcnawLez1Hdj1MQIepFh3U3xQQ1W9HHOG_6qTuv7tC1Fp2H9W9doc-X54_NW7J7f91unnaJzEkeEtiXuWSKForljEEmM5ZVuaaaNZQUqmFRVQqqK1XVlEIBpGkypfeqLGRTa5GvUH7JlfEL3oHmozO9cDOnhJ-48SM_c-MnbpyUPHKLrseLC-JpXwYc99KAlaCMAxm4Gsy__h8PTXwa |
CitedBy_id | crossref_primary_10_1007_s40430_022_03830_2 |
Cites_doi | 10.1016/0043-1648(95)07145-8 10.5006/1.3293464 10.5006/2880 10.1179/bcj.1997.32.3.197 10.1016/j.applthermaleng.2018.08.011 10.1016/j.corsci.2004.11.012 10.5006/1737 10.1016/j.pnucene.2018.04.024 10.1016/j.applthermaleng.2016.02.094 10.1080/01457630701421679 10.5006/1940 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd |
Copyright_xml | – notice: 2019 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.matpr.2020.05.698 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2214-7853 |
EndPage | 87 |
ExternalDocumentID | 10_1016_j_matpr_2020_05_698 S2214785320343108 |
GroupedDBID | --M .~1 0R~ 1~. 4.4 457 4G. 5VS 7-5 8P~ AABXZ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC EBS EFJIC EFLBG EJD FDB FIRID FYGXN GBLVA HZ~ KOM M41 NCXOZ O9- OAUVE P-8 P-9 PC. ROL SPC SPCBC SSM SSZ T5K ~G- AAXKI AAYXX ADVLN AFJKZ AKRWK CITATION |
ID | FETCH-LOGICAL-c303t-eb53c7d14d7377e2c27263f1f79104d973035a1f6d6811e4e0992dfbd54c98fa3 |
ISSN | 2214-7853 |
IngestDate | Thu Nov 21 21:30:33 EST 2024 Fri Feb 23 02:49:21 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | High Temperature CFD, Naphthenic Acid Corrosion Refinery Hydrocarbon Pitting Corrosion |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c303t-eb53c7d14d7377e2c27263f1f79104d973035a1f6d6811e4e0992dfbd54c98fa3 |
PageCount | 6 |
ParticipantIDs | crossref_primary_10_1016_j_matpr_2020_05_698 elsevier_sciencedirect_doi_10_1016_j_matpr_2020_05_698 |
PublicationCentury | 2000 |
PublicationDate | 2020-01-01 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Materials today : proceedings |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | I. Azzura, M.S.N. Farhana, M.N. Lokman et al., Int. Conf. on Mech. Eng. Research and Application 494 (201) 1-8. Jiang, Zheng, Ke (b0040) 2005; 47 Rios-Iribe, Cervantes-Gaxiola, Rubio-Castro, Hernández-Calderón (b0075) 2016; 101C P. Jin, W. Robbins, G. Bota, Kinetic Reaction Modelling of Naphthenic Acid Corrosion and Sulfidation in Refineries – A Mechanistic Model, Department of Chemical and Biomolecular Engineering, Ohio University, 2018. R. Baboian, Corrosion Tests and Standards: Application and Interpretation, American Society for Testing and Materials (ASTM), 1995. Schempp, Preub, Troger (b0005) 2016; 72 Neville, Hodgkiess (b0045) 1997; 32 Sundén (b0065) 2007; 28 Neville, Hodgkiess, Dallas (b0050) 1995; 186 Roberge, Sastri (b0030) 1994; 50 Janiga (b0070) 2008 Özdemira, Serincanb (b0060) 2018; 143 Prasada, Gopikaa, Sridharanb, Paridab (b0055) 2018; 107 Ismail, Noor, Razali (b0025) 2019; 5 Patrick, Chakravarti, Devine (b0010) 2015; 71 Ismail (10.1016/j.matpr.2020.05.698_b0025) 2019; 5 10.1016/j.matpr.2020.05.698_b0015 Prasada (10.1016/j.matpr.2020.05.698_b0055) 2018; 107 Schempp (10.1016/j.matpr.2020.05.698_b0005) 2016; 72 Roberge (10.1016/j.matpr.2020.05.698_b0030) 1994; 50 10.1016/j.matpr.2020.05.698_b0035 Janiga (10.1016/j.matpr.2020.05.698_b0070) 2008 Sundén (10.1016/j.matpr.2020.05.698_b0065) 2007; 28 Neville (10.1016/j.matpr.2020.05.698_b0050) 1995; 186 10.1016/j.matpr.2020.05.698_b0020 Patrick (10.1016/j.matpr.2020.05.698_b0010) 2015; 71 Özdemira (10.1016/j.matpr.2020.05.698_b0060) 2018; 143 Jiang (10.1016/j.matpr.2020.05.698_b0040) 2005; 47 Rios-Iribe (10.1016/j.matpr.2020.05.698_b0075) 2016; 101C Neville (10.1016/j.matpr.2020.05.698_b0045) 1997; 32 |
References_xml | – volume: 47 start-page: 2636 year: 2005 end-page: 2658 ident: b0040 publication-title: Corros. Sci. contributor: fullname: Ke – volume: 72 start-page: 843 year: 2016 end-page: 855 ident: b0005 publication-title: Corros. J. contributor: fullname: Troger – volume: 5 start-page: 82 year: 2019 end-page: 86 ident: b0025 publication-title: J. Miner. Met. Mater. Eng. contributor: fullname: Razali – volume: 28 start-page: 898 year: 2007 end-page: 910 ident: b0065 publication-title: Heat Transfer Eng. contributor: fullname: Sundén – volume: 143 start-page: 988 year: 2018 end-page: 1002 ident: b0060 publication-title: Appl. Therm. Eng. contributor: fullname: Serincanb – volume: 71 start-page: 1135 year: 2015 end-page: 1146 ident: b0010 publication-title: Corros. J. contributor: fullname: Devine – volume: 32 start-page: 197 year: 1997 end-page: 205 ident: b0045 publication-title: Br. Corros. J. contributor: fullname: Hodgkiess – volume: 107 start-page: 205 year: 2018 end-page: 214 ident: b0055 publication-title: Prog. Nucl. Energy contributor: fullname: Paridab – volume: 101C start-page: 262 year: 2016 end-page: 272 ident: b0075 publication-title: Appl. Therm. Eng. contributor: fullname: Hernández-Calderón – volume: 186 start-page: 497 year: 1995 end-page: 507 ident: b0050 publication-title: Wear contributor: fullname: Dallas – start-page: 17 year: 2008 end-page: 59 ident: b0070 article-title: A few illustrative examples of CFD-based optimization publication-title: Optimization and Computational Fluid Dynamics contributor: fullname: Janiga – volume: 50 start-page: 744 year: 1994 end-page: 754 ident: b0030 publication-title: Corrosion contributor: fullname: Sastri – volume: 186 start-page: 497 year: 1995 ident: 10.1016/j.matpr.2020.05.698_b0050 publication-title: Wear doi: 10.1016/0043-1648(95)07145-8 contributor: fullname: Neville – volume: 50 start-page: 744 issue: 10 year: 1994 ident: 10.1016/j.matpr.2020.05.698_b0030 publication-title: Corrosion doi: 10.5006/1.3293464 contributor: fullname: Roberge – ident: 10.1016/j.matpr.2020.05.698_b0015 doi: 10.5006/2880 – ident: 10.1016/j.matpr.2020.05.698_b0035 – volume: 32 start-page: 197 issue: 3 year: 1997 ident: 10.1016/j.matpr.2020.05.698_b0045 publication-title: Br. Corros. J. doi: 10.1179/bcj.1997.32.3.197 contributor: fullname: Neville – volume: 143 start-page: 988 year: 2018 ident: 10.1016/j.matpr.2020.05.698_b0060 publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.08.011 contributor: fullname: Özdemira – volume: 47 start-page: 2636 issue: 11 year: 2005 ident: 10.1016/j.matpr.2020.05.698_b0040 publication-title: Corros. Sci. doi: 10.1016/j.corsci.2004.11.012 contributor: fullname: Jiang – volume: 71 start-page: 1135 issue: 9 year: 2015 ident: 10.1016/j.matpr.2020.05.698_b0010 publication-title: Corros. J. doi: 10.5006/1737 contributor: fullname: Patrick – volume: 5 start-page: 82 year: 2019 ident: 10.1016/j.matpr.2020.05.698_b0025 publication-title: J. Miner. Met. Mater. Eng. contributor: fullname: Ismail – ident: 10.1016/j.matpr.2020.05.698_b0020 – volume: 107 start-page: 205 year: 2018 ident: 10.1016/j.matpr.2020.05.698_b0055 publication-title: Prog. Nucl. Energy doi: 10.1016/j.pnucene.2018.04.024 contributor: fullname: Prasada – volume: 101C start-page: 262 year: 2016 ident: 10.1016/j.matpr.2020.05.698_b0075 publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.02.094 contributor: fullname: Rios-Iribe – volume: 28 start-page: 898 issue: 11 year: 2007 ident: 10.1016/j.matpr.2020.05.698_b0065 publication-title: Heat Transfer Eng. doi: 10.1080/01457630701421679 contributor: fullname: Sundén – start-page: 17 year: 2008 ident: 10.1016/j.matpr.2020.05.698_b0070 article-title: A few illustrative examples of CFD-based optimization contributor: fullname: Janiga – volume: 72 start-page: 843 issue: 6 year: 2016 ident: 10.1016/j.matpr.2020.05.698_b0005 publication-title: Corros. J. doi: 10.5006/1940 contributor: fullname: Schempp |
SSID | ssj0001560816 |
Score | 2.1517575 |
Snippet | Corrosion in refinery assets is complex which involves multi factors contributing to damage mechanisms. The present study aims to evaluate the damage mechanism... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 82 |
SubjectTerms | CFD, Naphthenic Acid Corrosion High Temperature Hydrocarbon Pitting Corrosion Refinery |
Title | Identifying naphthenic acid corrosion mechanism on heat exchanger unit by computational fluid dynamic simulation |
URI | https://dx.doi.org/10.1016/j.matpr.2020.05.698 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbK7oULAgFieckHbiWrxHHi5BhBVwsSPbCLtLfI8UN0tS1V20hsfj0zsRN3H0KAxCVqLCVuPV9nPn_yzBDyrsC21RCpImZTFnGT5VFjmyxqYIOrS5uleV-B7_RMzC-KjzM-m0yGnnhh7L9aGsbA1pg5-xfWHl8KA_AZbA5XsDpc_8juLvPWZS-t5Po7VjfAmqxqgflrGwiKaPClwYxfbJABN-iPp-bnkAPcwr8cWanqGz4MYqG9auEN2jWwn24XS9_3a5_dfpE79xOB0WJ-CcoNIUJuAwyX0knPVde1mzEwVJgTOv0qO-lytqvuatGFg4tz2Ce7igdzJNrXMH3Q03cw6JSHE9ktll7l9nIGi2_JGWOeTTjUBK6QsYRHonBlhY_NPWPel3v1xDlj19XoRli_EzCcdnF5DNuDNZaHZTEWcs1dZ-xblbjPcEqckcUp8C5MMT9k4N_AvR5Wn2YXn4O4Bzyy6Nvujt9yqHjVny28M9v9rGiP6Zw_Jo_8FoVWDltPyMSsnpL1Hq5owBVFXNERV3TEFYUbxBUdcUURV7S5pjdwRXtcUY8rGnD1jHw7mZ1_OI18t45IAQ3aRabJUiV0wrVIhTBMMcHy1CZWACPluoRQkmYysbnOiyQx3MDehGnb6IyrsrAyfU4OVj9W5gWhZSy5lIoLqS2PlWwyURaNLZRISsmsPSLvh9Wq164oSz2cVrys-8WtcXHrOKthcY9IPqxo7Xml44s1oOB3D7781wdfkYcB26_JwW7TmjfkwVa3bz1UfgFW56I5 |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+naphthenic+acid+corrosion+mechanism+on+heat+exchanger+unit+by+computational+fluid+dynamic+simulation&rft.jtitle=Materials+today+%3A+proceedings&rft.au=Ismail%2C+Azzura&rft.au=Aizat+Razali%2C+Azlizul&rft.au=Nordin%2C+Normayati&rft.au=Mat+Noor%2C+Fazimah&rft.date=2020-01-01&rft.pub=Elsevier+Ltd&rft.issn=2214-7853&rft.eissn=2214-7853&rft.volume=29&rft.spage=82&rft.epage=87&rft_id=info:doi/10.1016%2Fj.matpr.2020.05.698&rft.externalDocID=S2214785320343108 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-7853&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-7853&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-7853&client=summon |