β-Cyclodextrin polymer binding to DNA: Modulating the physicochemical parameters
Cyclodextrins and cyclodextrins-modified molecules have interesting and appealing properties due to their capacity to host components that are normally insoluble or poorly soluble in water. In this work, we investigate the interaction of a β-cyclodextrin polymer (poly-β-CD) with λ-DNA. The polymers...
Saved in:
Published in: | Physical review. E Vol. 95; no. 5-1; p. 052416 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
01-05-2017
|
Subjects: | |
Online Access: | Get more information |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Cyclodextrins and cyclodextrins-modified molecules have interesting and appealing properties due to their capacity to host components that are normally insoluble or poorly soluble in water. In this work, we investigate the interaction of a β-cyclodextrin polymer (poly-β-CD) with λ-DNA. The polymers are obtained by the reaction of β-CD with epichlorohydrin in alkaline conditions. We have used optical tweezers to characterize the changes of the mechanical properties of DNA molecules by increasing the concentration of poly-β-CD in the sample. The physical chemistry of the interaction is then deduced from these measurements by using a recently developed quenched-disorder statistical model. It is shown that the contour length of the DNA does not change in the whole range of poly-β-CD concentration (<300μM). On the other hand, significant alterations were observed in the persistence length that identifies two binding modes corresponding to the clustering of ∼2.6 and ∼14 polymer molecules along the DNA double helix, depending on the polymer concentration. Comparing these results with the ones obtained for monomeric β-CD, it was observed that the concentration of CD that alters the DNA persistence length is considerably smaller when in the polymeric form. Also, the binding constant of the polymer-DNA interaction is three orders of magnitude higher than the one found for native (monomeric) β-CD. These results show that the polymerization of the β-CD strongly increases its binding affinity to the DNA molecule. This property can be wisely used to modulate the binding of cyclodextrins to the DNA double helix. |
---|---|
ISSN: | 2470-0053 |
DOI: | 10.1103/PhysRevE.95.052416 |