Fractal sets attached to homogeneous quadratic maps in two variables
The fractal set attached to the iteration of a “generic” homogeneous quadratic map from the plane to itself is studied and depicted, by using a two-parametric family of normal forms obtained from the theory of invariants of symmetric bilinear maps F:R×R→R under the full linear group of the plane. Wh...
Saved in:
Published in: | Physica. D Vol. 245; no. 1; pp. 8 - 18 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier B.V
15-02-2013
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The fractal set attached to the iteration of a “generic” homogeneous quadratic map from the plane to itself is studied and depicted, by using a two-parametric family of normal forms obtained from the theory of invariants of symmetric bilinear maps F:R×R→R under the full linear group of the plane. While invariant theory classifies maps F:C×C→C on the complex plane, we confine ourselves to consider maps on the real plane, in order to include the results obtained from the theory of two-dimensional discrete dynamical systems. A discrete number of “topological types” for such fractals is conjectured to exist.
► Fractal sets attached to “generic” homogeneous quadratic maps are studied. ► Using invariant theory, two invariants give rise to only six “normal forms”. ► Normal forms partition the plane of invariants into eleven connected regions. ► Comparison of “topological types” for pairs of fractals, per region. ► Conjecture: only a finite and small number of distinct topological types exist. |
---|---|
AbstractList | The fractal set attached to the iteration of a “generic” homogeneous quadratic map from the plane to itself is studied and depicted, by using a two-parametric family of normal forms obtained from the theory of invariants of symmetric bilinear maps F:R×R→R under the full linear group of the plane. While invariant theory classifies maps F:C×C→C on the complex plane, we confine ourselves to consider maps on the real plane, in order to include the results obtained from the theory of two-dimensional discrete dynamical systems. A discrete number of “topological types” for such fractals is conjectured to exist.
► Fractal sets attached to “generic” homogeneous quadratic maps are studied. ► Using invariant theory, two invariants give rise to only six “normal forms”. ► Normal forms partition the plane of invariants into eleven connected regions. ► Comparison of “topological types” for pairs of fractals, per region. ► Conjecture: only a finite and small number of distinct topological types exist. |
Author | Muñoz Masqué, J. Hernández Encinas, L. Durán Díaz, R. |
Author_xml | – sequence: 1 givenname: R. surname: Durán Díaz fullname: Durán Díaz, R. email: raul.duran@uah.es organization: Departamento de Automática, Universidad de Alcalá, Ctra. Madrid–Barcelona, km. 33,600, E-28871 Alcalá de Henares, Spain – sequence: 2 givenname: L. surname: Hernández Encinas fullname: Hernández Encinas, L. email: luis@iec.csic.es organization: Instituto de Seguridad de la Información, CSIC, C/Serrano 144, E-28006 Madrid, Spain – sequence: 3 givenname: J. surname: Muñoz Masqué fullname: Muñoz Masqué, J. email: jaime@iec.csic.es organization: Instituto de Seguridad de la Información, CSIC, C/Serrano 144, E-28006 Madrid, Spain |
BookMark | eNp9kMFOAjEURRuDiYB-gZv-wIx9naHtLFwYFDUhcaPrptO-kRKYYlsw_L2DuHZ1N_fc3JwJGfWhR0JugZXAQNyty93qmFzJGfASoGSMX5AxKMkLxTgfkfHQkgWXqrkik5TWjDGQlRyTx0U0NpsNTZgTNTkbu0JHc6CrsA2f2GPYJ_q1Ny6a7C3dml2ivqf5O9CDid60G0zX5LIzm4Q3fzklH4un9_lLsXx7fp0_LAtbsSoXCkRdV0ogCuQdb6vhwWzIBiR2KA1v2451NauhxUY5AU3bOGBKiUa0s5mrpqQ679oYUorY6V30WxOPGpg-idBr_StCn0RoAD2IGKj7M4XDtYPHqJP12Ft0PqLN2gX_L_8DUidp_Q |
CitedBy_id | crossref_primary_10_1155_2013_281707 |
Cites_doi | 10.1007/BF02675947 10.1090/S0002-9939-2011-11047-5 10.1016/j.physd.2010.02.011 10.24033/asens.1491 10.1016/j.physd.2011.07.011 10.4171/RMI/454 10.1016/j.cnsns.2010.04.031 10.1016/j.physd.2008.03.049 10.1016/S0024-3795(02)00564-5 10.1016/j.physd.2009.06.020 10.1016/0097-8493(89)90071-X |
ContentType | Journal Article |
Copyright | 2012 Elsevier B.V. |
Copyright_xml | – notice: 2012 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.physd.2012.11.002 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1872-8022 |
EndPage | 18 |
ExternalDocumentID | 10_1016_j_physd_2012_11_002 S0167278912002928 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AACTN AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABAOU ABMAC ABNEU ABXDB ABYKQ ACAZW ACDAQ ACFVG ACGFS ACNCT ACRLP ADBBV ADEZE ADGUI AEBSH AEKER AFKWA AFTJW AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR BKOJK BLXMC EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HMV IHE J1W K-O KOM M38 M41 MHUIS MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSQ SSW T5K TN5 TWZ XPP YNT ~02 ~G- 29O AAEDT AAQXK AAXKI AAYXX ABFNM ACNNM ADIYS ADMUD ADVLN AFFNX AFJKZ AGHFR ASPBG AVWKF AZFZN BBWZM CITATION FEDTE FGOYB HVGLF HZ~ H~9 MVM NDZJH R2- SEW SPG SSZ WUQ XJT YYP |
ID | FETCH-LOGICAL-c303t-81644386ee6e2f2b37375f2b917efe7a2bbf0f4041be98d619b9d1088696b55d3 |
ISSN | 0167-2789 |
IngestDate | Thu Sep 26 15:56:18 EDT 2024 Fri Feb 23 02:33:29 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Fractal set Bilinear symmetric map Discrete quadratic dynamic systems Invariant functions |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c303t-81644386ee6e2f2b37375f2b917efe7a2bbf0f4041be98d619b9d1088696b55d3 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1016_j_physd_2012_11_002 elsevier_sciencedirect_doi_10_1016_j_physd_2012_11_002 |
PublicationCentury | 2000 |
PublicationDate | 2013-02-15 |
PublicationDateYYYYMMDD | 2013-02-15 |
PublicationDate_xml | – month: 02 year: 2013 text: 2013-02-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Physica. D |
PublicationYear | 2013 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Milnor (br000030) 1992; 1 Portable Network Graphics, Home web page for the portable network graphics format, 2011. Milnor (br000050) 1986; vol. 114 Pisarchik, Zanin (br000015) 2010; 239 Norton (br000085) 1989; 13 Pisarchik, Zanin (br000010) 2008; 237 Trotsenko (br000070) 1997; 38 J. Hubbard, D. Schleicher, Multicorns are not path connected, arXiv.org e-print archive, Report No. 1209.1753, 2012. Lang (br000105) 1993 . Milnor (br000055) 2000 Bonk (br000065) 2006 Tucker, Wilczak (br000005) 2009; 238 Arroyo, Alvarez, Amigó, Li (br000020) 2011; 16 Dudko, Schleicher (br000100) 2012; 140 Douady, Hubbard (br000045) 1985; 18 Tyson, Wu (br000075) 2006; 22 Devaney (br000040) 1994 Rani (br000095) 2010 Gawlik, Mullen, Pavlov, Marsden, Desbrun (br000025) 2011; 240 Lehto, Virtanen (br000060) 1973 Durán Díaz, Masqué, Domínguez (br000080) 2003; 364 Lehto (10.1016/j.physd.2012.11.002_br000060) 1973 Trotsenko (10.1016/j.physd.2012.11.002_br000070) 1997; 38 Lang (10.1016/j.physd.2012.11.002_br000105) 1993 Milnor (10.1016/j.physd.2012.11.002_br000050) 1986; vol. 114 Tyson (10.1016/j.physd.2012.11.002_br000075) 2006; 22 Devaney (10.1016/j.physd.2012.11.002_br000040) 1994 Dudko (10.1016/j.physd.2012.11.002_br000100) 2012; 140 Douady (10.1016/j.physd.2012.11.002_br000045) 1985; 18 10.1016/j.physd.2012.11.002_br000090 Rani (10.1016/j.physd.2012.11.002_br000095) 2010 Pisarchik (10.1016/j.physd.2012.11.002_br000010) 2008; 237 Pisarchik (10.1016/j.physd.2012.11.002_br000015) 2010; 239 Bonk (10.1016/j.physd.2012.11.002_br000065) 2006 Tucker (10.1016/j.physd.2012.11.002_br000005) 2009; 238 Milnor (10.1016/j.physd.2012.11.002_br000030) 1992; 1 Milnor (10.1016/j.physd.2012.11.002_br000055) 2000 Arroyo (10.1016/j.physd.2012.11.002_br000020) 2011; 16 Gawlik (10.1016/j.physd.2012.11.002_br000025) 2011; 240 Durán Díaz (10.1016/j.physd.2012.11.002_br000080) 2003; 364 Norton (10.1016/j.physd.2012.11.002_br000085) 1989; 13 10.1016/j.physd.2012.11.002_br000035 |
References_xml | – volume: 1 start-page: 5 year: 1992 end-page: 24 ident: br000030 article-title: Remarks on iterated cubic maps publication-title: Experiment. Math. contributor: fullname: Milnor – year: 1993 ident: br000105 article-title: Algebra contributor: fullname: Lang – volume: 364 start-page: 1 year: 2003 end-page: 12 ident: br000080 article-title: Classifying quadratic maps from plane to plane publication-title: Linear Algebra Appl. contributor: fullname: Domínguez – volume: 240 start-page: 1724 year: 2011 end-page: 1760 ident: br000025 article-title: Geometric, variational discretization of continuum theories publication-title: Physica D contributor: fullname: Desbrun – volume: 239 start-page: 1001 year: 2010 ident: br000015 article-title: Reply to: Comment on: ‘Image encryption with chaotically coupled chaotic maps’ [Physica D 2010] publication-title: Physica D contributor: fullname: Zanin – volume: 38 start-page: 1206 year: 1997 end-page: 1214 ident: br000070 article-title: Fractal straight lines and quasiconformal mappings publication-title: Sib. Math. J. contributor: fullname: Trotsenko – volume: 237 start-page: 2638 year: 2008 end-page: 2648 ident: br000010 article-title: Image encryption with chaotically coupled chaotic maps publication-title: Physica D contributor: fullname: Zanin – volume: 22 start-page: 205 year: 2006 end-page: 258 ident: br000075 article-title: Quasiconformal dimensions of self-similar fractals publication-title: Rev. Mat. Iberoam. contributor: fullname: Wu – volume: 16 start-page: 805 year: 2011 end-page: 813 ident: br000020 article-title: Cryptanalysis of a family of self-synchronizing chaotic stream ciphers publication-title: Commun. Nonlinear Sci. Numer. Simul. contributor: fullname: Li – volume: vol. 114 start-page: 211 year: 1986 end-page: 257 ident: br000050 article-title: Self-similarity and hairiness in the Mandelbrot set publication-title: Computers in Geometry and Topology contributor: fullname: Milnor – volume: 18 start-page: 287 year: 1985 end-page: 343 ident: br000045 article-title: On the dynamics of polynomial-like mappings publication-title: Ann. Sci. Éc. Norm. Supér. contributor: fullname: Hubbard – year: 1973 ident: br000060 article-title: Quasiconformal Mappings in the Plane contributor: fullname: Virtanen – volume: 13 start-page: 267 year: 1989 end-page: 278 ident: br000085 article-title: Julia sets in the quaternions publication-title: Comput. Graph. contributor: fullname: Norton – start-page: 1 year: 1994 end-page: 29 ident: br000040 article-title: The complex dynamics of quadratic polynomials publication-title: Proc. Sympos. Appl. Math., Vol. 49 contributor: fullname: Devaney – start-page: 1349 year: 2006 end-page: 1373 ident: br000065 article-title: Quasiconformal geometry of fractals publication-title: Proceedings of the International Congress of Mathematicians (ICM), Madrid, Spain, August 22–30, 2006, Volume II: Invited Lectures contributor: fullname: Bonk – volume: 140 start-page: 1947 year: 2012 end-page: 1956 ident: br000100 article-title: Homeomorphisms between limbs of the Mandelbrot set publication-title: Proc. Amer. Math. Soc. contributor: fullname: Schleicher – start-page: 58 year: 2010 end-page: 61 ident: br000095 article-title: Superior tricorns and multicorns publication-title: Proceedings of the 9th WSEAS International Conference on Applications of Computer Engineering contributor: fullname: Rani – volume: 238 start-page: 1923 year: 2009 end-page: 1936 ident: br000005 article-title: A rigorous lower bound for the stability regions of the quadratic map publication-title: Physica D contributor: fullname: Wilczak – year: 2000 ident: br000055 article-title: Dynamics in One Complex Variable contributor: fullname: Milnor – year: 1993 ident: 10.1016/j.physd.2012.11.002_br000105 contributor: fullname: Lang – volume: 38 start-page: 1206 year: 1997 ident: 10.1016/j.physd.2012.11.002_br000070 article-title: Fractal straight lines and quasiconformal mappings publication-title: Sib. Math. J. doi: 10.1007/BF02675947 contributor: fullname: Trotsenko – volume: 140 start-page: 1947 year: 2012 ident: 10.1016/j.physd.2012.11.002_br000100 article-title: Homeomorphisms between limbs of the Mandelbrot set publication-title: Proc. Amer. Math. Soc. doi: 10.1090/S0002-9939-2011-11047-5 contributor: fullname: Dudko – year: 2000 ident: 10.1016/j.physd.2012.11.002_br000055 contributor: fullname: Milnor – volume: 239 start-page: 1001 year: 2010 ident: 10.1016/j.physd.2012.11.002_br000015 article-title: Reply to: Comment on: ‘Image encryption with chaotically coupled chaotic maps’ [Physica D 2010] publication-title: Physica D doi: 10.1016/j.physd.2010.02.011 contributor: fullname: Pisarchik – volume: 1 start-page: 5 year: 1992 ident: 10.1016/j.physd.2012.11.002_br000030 article-title: Remarks on iterated cubic maps publication-title: Experiment. Math. contributor: fullname: Milnor – volume: 18 start-page: 287 year: 1985 ident: 10.1016/j.physd.2012.11.002_br000045 article-title: On the dynamics of polynomial-like mappings publication-title: Ann. Sci. Éc. Norm. Supér. doi: 10.24033/asens.1491 contributor: fullname: Douady – ident: 10.1016/j.physd.2012.11.002_br000035 – start-page: 1349 year: 2006 ident: 10.1016/j.physd.2012.11.002_br000065 article-title: Quasiconformal geometry of fractals contributor: fullname: Bonk – volume: 240 start-page: 1724 year: 2011 ident: 10.1016/j.physd.2012.11.002_br000025 article-title: Geometric, variational discretization of continuum theories publication-title: Physica D doi: 10.1016/j.physd.2011.07.011 contributor: fullname: Gawlik – start-page: 1 year: 1994 ident: 10.1016/j.physd.2012.11.002_br000040 article-title: The complex dynamics of quadratic polynomials contributor: fullname: Devaney – volume: 22 start-page: 205 year: 2006 ident: 10.1016/j.physd.2012.11.002_br000075 article-title: Quasiconformal dimensions of self-similar fractals publication-title: Rev. Mat. Iberoam. doi: 10.4171/RMI/454 contributor: fullname: Tyson – volume: 16 start-page: 805 year: 2011 ident: 10.1016/j.physd.2012.11.002_br000020 article-title: Cryptanalysis of a family of self-synchronizing chaotic stream ciphers publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2010.04.031 contributor: fullname: Arroyo – ident: 10.1016/j.physd.2012.11.002_br000090 – volume: 237 start-page: 2638 year: 2008 ident: 10.1016/j.physd.2012.11.002_br000010 article-title: Image encryption with chaotically coupled chaotic maps publication-title: Physica D doi: 10.1016/j.physd.2008.03.049 contributor: fullname: Pisarchik – volume: 364 start-page: 1 year: 2003 ident: 10.1016/j.physd.2012.11.002_br000080 article-title: Classifying quadratic maps from plane to plane publication-title: Linear Algebra Appl. doi: 10.1016/S0024-3795(02)00564-5 contributor: fullname: Durán Díaz – year: 1973 ident: 10.1016/j.physd.2012.11.002_br000060 contributor: fullname: Lehto – volume: vol. 114 start-page: 211 year: 1986 ident: 10.1016/j.physd.2012.11.002_br000050 article-title: Self-similarity and hairiness in the Mandelbrot set contributor: fullname: Milnor – volume: 238 start-page: 1923 year: 2009 ident: 10.1016/j.physd.2012.11.002_br000005 article-title: A rigorous lower bound for the stability regions of the quadratic map publication-title: Physica D doi: 10.1016/j.physd.2009.06.020 contributor: fullname: Tucker – volume: 13 start-page: 267 year: 1989 ident: 10.1016/j.physd.2012.11.002_br000085 article-title: Julia sets in the quaternions publication-title: Comput. Graph. doi: 10.1016/0097-8493(89)90071-X contributor: fullname: Norton – start-page: 58 year: 2010 ident: 10.1016/j.physd.2012.11.002_br000095 article-title: Superior tricorns and multicorns contributor: fullname: Rani |
SSID | ssj0001737 |
Score | 2.0968273 |
Snippet | The fractal set attached to the iteration of a “generic” homogeneous quadratic map from the plane to itself is studied and depicted, by using a two-parametric... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 8 |
SubjectTerms | Bilinear symmetric map Discrete quadratic dynamic systems Fractal set Invariant functions |
Title | Fractal sets attached to homogeneous quadratic maps in two variables |
URI | https://dx.doi.org/10.1016/j.physd.2012.11.002 |
Volume | 245 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3La9ZAEF--tgh6EK2K9cUevMWE7OZ9rCaliorYCr2F3eyGttCk_ZJY6F_fmWxe5RNRwUsSNrt5zPyYV2YmhLyVijFdgFsSh0lp-0FQ2LLgyo5AdzI4V8gY650Pj6KvJ3Ga-dlqNWYtzWP_ldMwBrzGytm_4PZ0URiAY-A5bIHrsP0jvh9g2RMWgei2sUTbYsNmhRbmaX1RwyqNOa9XnVDrvlfrhbjsM2Lb69r6CX4zVlI1S4v1m2GkM6cGp535vM4qK-0PUtFHob87c2B1XQ1TlL6xsqo4q0zh2Gdn5jDOeM_qG-uLaK4688W-B5WzDEXgbyG4bYoxTXxso0bGhCxBFGO9rdE4RszGEchhl9-Rw9z0lbwDOCNV44V6NtJ6Q_CbGMS5g_EgbADLuIPNWV0-67kp-_AIHwmfiGGGSsLjLbLDQU6BmNzZ_5idfJpUOYtM09XxFca2VX2C4Matfm3aLMyV40fk4eBn0H0DkMdkpatd8mDRfXKX3DOsbZ6QdAANRdDQETS0rekCNHQCDUXQ0LOKAmjoBJqn5MdBdvzh0B5-r2EXYLe0dgyesu_Fodah5iWXHrxsAHtw4HWpI8GlLN3Sd30mdRIr8LRlohhopTAJZRAo7xnZrupKPyfUj9xIBIknQ9f3JVBKs7IQgfAE3Aom75F3I2XyS9NFJR_TC8_znpA5EhL80RwIuUfCkXr5YAgaAy8Hdv9u4Yt_XfiS3J8B_Ypst-tOvyZbjereDJi4BSLdepI |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fractal+sets+attached+to+homogeneous+quadratic+maps+in+two+variables&rft.jtitle=Physica.+D&rft.au=Dur%C3%A1n+D%C3%ADaz%2C+R.&rft.au=Hern%C3%A1ndez+Encinas%2C+L.&rft.au=Mu%C3%B1oz+Masqu%C3%A9%2C+J.&rft.date=2013-02-15&rft.pub=Elsevier+B.V&rft.issn=0167-2789&rft.eissn=1872-8022&rft.volume=245&rft.issue=1&rft.spage=8&rft.epage=18&rft_id=info:doi/10.1016%2Fj.physd.2012.11.002&rft.externalDocID=S0167278912002928 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-2789&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-2789&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-2789&client=summon |