Fractal sets attached to homogeneous quadratic maps in two variables

The fractal set attached to the iteration of a “generic” homogeneous quadratic map from the plane to itself is studied and depicted, by using a two-parametric family of normal forms obtained from the theory of invariants of symmetric bilinear maps F:R×R→R under the full linear group of the plane. Wh...

Full description

Saved in:
Bibliographic Details
Published in:Physica. D Vol. 245; no. 1; pp. 8 - 18
Main Authors: Durán Díaz, R., Hernández Encinas, L., Muñoz Masqué, J.
Format: Journal Article
Language:English
Published: Elsevier B.V 15-02-2013
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The fractal set attached to the iteration of a “generic” homogeneous quadratic map from the plane to itself is studied and depicted, by using a two-parametric family of normal forms obtained from the theory of invariants of symmetric bilinear maps F:R×R→R under the full linear group of the plane. While invariant theory classifies maps F:C×C→C on the complex plane, we confine ourselves to consider maps on the real plane, in order to include the results obtained from the theory of two-dimensional discrete dynamical systems. A discrete number of “topological types” for such fractals is conjectured to exist. ► Fractal sets attached to “generic” homogeneous quadratic maps are studied. ► Using invariant theory, two invariants give rise to only six “normal forms”. ► Normal forms partition the plane of invariants into eleven connected regions. ► Comparison of “topological types” for pairs of fractals, per region. ► Conjecture: only a finite and small number of distinct topological types exist.
AbstractList The fractal set attached to the iteration of a “generic” homogeneous quadratic map from the plane to itself is studied and depicted, by using a two-parametric family of normal forms obtained from the theory of invariants of symmetric bilinear maps F:R×R→R under the full linear group of the plane. While invariant theory classifies maps F:C×C→C on the complex plane, we confine ourselves to consider maps on the real plane, in order to include the results obtained from the theory of two-dimensional discrete dynamical systems. A discrete number of “topological types” for such fractals is conjectured to exist. ► Fractal sets attached to “generic” homogeneous quadratic maps are studied. ► Using invariant theory, two invariants give rise to only six “normal forms”. ► Normal forms partition the plane of invariants into eleven connected regions. ► Comparison of “topological types” for pairs of fractals, per region. ► Conjecture: only a finite and small number of distinct topological types exist.
Author Muñoz Masqué, J.
Hernández Encinas, L.
Durán Díaz, R.
Author_xml – sequence: 1
  givenname: R.
  surname: Durán Díaz
  fullname: Durán Díaz, R.
  email: raul.duran@uah.es
  organization: Departamento de Automática, Universidad de Alcalá, Ctra. Madrid–Barcelona, km. 33,600, E-28871 Alcalá de Henares, Spain
– sequence: 2
  givenname: L.
  surname: Hernández Encinas
  fullname: Hernández Encinas, L.
  email: luis@iec.csic.es
  organization: Instituto de Seguridad de la Información, CSIC, C/Serrano 144, E-28006 Madrid, Spain
– sequence: 3
  givenname: J.
  surname: Muñoz Masqué
  fullname: Muñoz Masqué, J.
  email: jaime@iec.csic.es
  organization: Instituto de Seguridad de la Información, CSIC, C/Serrano 144, E-28006 Madrid, Spain
BookMark eNp9kMFOAjEURRuDiYB-gZv-wIx9naHtLFwYFDUhcaPrptO-kRKYYlsw_L2DuHZ1N_fc3JwJGfWhR0JugZXAQNyty93qmFzJGfASoGSMX5AxKMkLxTgfkfHQkgWXqrkik5TWjDGQlRyTx0U0NpsNTZgTNTkbu0JHc6CrsA2f2GPYJ_q1Ny6a7C3dml2ivqf5O9CDid60G0zX5LIzm4Q3fzklH4un9_lLsXx7fp0_LAtbsSoXCkRdV0ogCuQdb6vhwWzIBiR2KA1v2451NauhxUY5AU3bOGBKiUa0s5mrpqQ679oYUorY6V30WxOPGpg-idBr_StCn0RoAD2IGKj7M4XDtYPHqJP12Ft0PqLN2gX_L_8DUidp_Q
CitedBy_id crossref_primary_10_1155_2013_281707
Cites_doi 10.1007/BF02675947
10.1090/S0002-9939-2011-11047-5
10.1016/j.physd.2010.02.011
10.24033/asens.1491
10.1016/j.physd.2011.07.011
10.4171/RMI/454
10.1016/j.cnsns.2010.04.031
10.1016/j.physd.2008.03.049
10.1016/S0024-3795(02)00564-5
10.1016/j.physd.2009.06.020
10.1016/0097-8493(89)90071-X
ContentType Journal Article
Copyright 2012 Elsevier B.V.
Copyright_xml – notice: 2012 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.physd.2012.11.002
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1872-8022
EndPage 18
ExternalDocumentID 10_1016_j_physd_2012_11_002
S0167278912002928
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AACTN
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABAOU
ABMAC
ABNEU
ABXDB
ABYKQ
ACAZW
ACDAQ
ACFVG
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADGUI
AEBSH
AEKER
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMV
IHE
J1W
K-O
KOM
M38
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSQ
SSW
T5K
TN5
TWZ
XPP
YNT
~02
~G-
29O
AAEDT
AAQXK
AAXKI
AAYXX
ABFNM
ACNNM
ADIYS
ADMUD
ADVLN
AFFNX
AFJKZ
AGHFR
ASPBG
AVWKF
AZFZN
BBWZM
CITATION
FEDTE
FGOYB
HVGLF
HZ~
H~9
MVM
NDZJH
R2-
SEW
SPG
SSZ
WUQ
XJT
YYP
ID FETCH-LOGICAL-c303t-81644386ee6e2f2b37375f2b917efe7a2bbf0f4041be98d619b9d1088696b55d3
ISSN 0167-2789
IngestDate Thu Sep 26 15:56:18 EDT 2024
Fri Feb 23 02:33:29 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Fractal set
Bilinear symmetric map
Discrete quadratic dynamic systems
Invariant functions
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c303t-81644386ee6e2f2b37375f2b917efe7a2bbf0f4041be98d619b9d1088696b55d3
PageCount 11
ParticipantIDs crossref_primary_10_1016_j_physd_2012_11_002
elsevier_sciencedirect_doi_10_1016_j_physd_2012_11_002
PublicationCentury 2000
PublicationDate 2013-02-15
PublicationDateYYYYMMDD 2013-02-15
PublicationDate_xml – month: 02
  year: 2013
  text: 2013-02-15
  day: 15
PublicationDecade 2010
PublicationTitle Physica. D
PublicationYear 2013
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Milnor (br000030) 1992; 1
Portable Network Graphics, Home web page for the portable network graphics format, 2011.
Milnor (br000050) 1986; vol. 114
Pisarchik, Zanin (br000015) 2010; 239
Norton (br000085) 1989; 13
Pisarchik, Zanin (br000010) 2008; 237
Trotsenko (br000070) 1997; 38
J. Hubbard, D. Schleicher, Multicorns are not path connected, arXiv.org e-print archive, Report No. 1209.1753, 2012.
Lang (br000105) 1993
.
Milnor (br000055) 2000
Bonk (br000065) 2006
Tucker, Wilczak (br000005) 2009; 238
Arroyo, Alvarez, Amigó, Li (br000020) 2011; 16
Dudko, Schleicher (br000100) 2012; 140
Douady, Hubbard (br000045) 1985; 18
Tyson, Wu (br000075) 2006; 22
Devaney (br000040) 1994
Rani (br000095) 2010
Gawlik, Mullen, Pavlov, Marsden, Desbrun (br000025) 2011; 240
Lehto, Virtanen (br000060) 1973
Durán Díaz, Masqué, Domínguez (br000080) 2003; 364
Lehto (10.1016/j.physd.2012.11.002_br000060) 1973
Trotsenko (10.1016/j.physd.2012.11.002_br000070) 1997; 38
Lang (10.1016/j.physd.2012.11.002_br000105) 1993
Milnor (10.1016/j.physd.2012.11.002_br000050) 1986; vol. 114
Tyson (10.1016/j.physd.2012.11.002_br000075) 2006; 22
Devaney (10.1016/j.physd.2012.11.002_br000040) 1994
Dudko (10.1016/j.physd.2012.11.002_br000100) 2012; 140
Douady (10.1016/j.physd.2012.11.002_br000045) 1985; 18
10.1016/j.physd.2012.11.002_br000090
Rani (10.1016/j.physd.2012.11.002_br000095) 2010
Pisarchik (10.1016/j.physd.2012.11.002_br000010) 2008; 237
Pisarchik (10.1016/j.physd.2012.11.002_br000015) 2010; 239
Bonk (10.1016/j.physd.2012.11.002_br000065) 2006
Tucker (10.1016/j.physd.2012.11.002_br000005) 2009; 238
Milnor (10.1016/j.physd.2012.11.002_br000030) 1992; 1
Milnor (10.1016/j.physd.2012.11.002_br000055) 2000
Arroyo (10.1016/j.physd.2012.11.002_br000020) 2011; 16
Gawlik (10.1016/j.physd.2012.11.002_br000025) 2011; 240
Durán Díaz (10.1016/j.physd.2012.11.002_br000080) 2003; 364
Norton (10.1016/j.physd.2012.11.002_br000085) 1989; 13
10.1016/j.physd.2012.11.002_br000035
References_xml – volume: 1
  start-page: 5
  year: 1992
  end-page: 24
  ident: br000030
  article-title: Remarks on iterated cubic maps
  publication-title: Experiment. Math.
  contributor:
    fullname: Milnor
– year: 1993
  ident: br000105
  article-title: Algebra
  contributor:
    fullname: Lang
– volume: 364
  start-page: 1
  year: 2003
  end-page: 12
  ident: br000080
  article-title: Classifying quadratic maps from plane to plane
  publication-title: Linear Algebra Appl.
  contributor:
    fullname: Domínguez
– volume: 240
  start-page: 1724
  year: 2011
  end-page: 1760
  ident: br000025
  article-title: Geometric, variational discretization of continuum theories
  publication-title: Physica D
  contributor:
    fullname: Desbrun
– volume: 239
  start-page: 1001
  year: 2010
  ident: br000015
  article-title: Reply to: Comment on: ‘Image encryption with chaotically coupled chaotic maps’ [Physica D 2010]
  publication-title: Physica D
  contributor:
    fullname: Zanin
– volume: 38
  start-page: 1206
  year: 1997
  end-page: 1214
  ident: br000070
  article-title: Fractal straight lines and quasiconformal mappings
  publication-title: Sib. Math. J.
  contributor:
    fullname: Trotsenko
– volume: 237
  start-page: 2638
  year: 2008
  end-page: 2648
  ident: br000010
  article-title: Image encryption with chaotically coupled chaotic maps
  publication-title: Physica D
  contributor:
    fullname: Zanin
– volume: 22
  start-page: 205
  year: 2006
  end-page: 258
  ident: br000075
  article-title: Quasiconformal dimensions of self-similar fractals
  publication-title: Rev. Mat. Iberoam.
  contributor:
    fullname: Wu
– volume: 16
  start-page: 805
  year: 2011
  end-page: 813
  ident: br000020
  article-title: Cryptanalysis of a family of self-synchronizing chaotic stream ciphers
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  contributor:
    fullname: Li
– volume: vol. 114
  start-page: 211
  year: 1986
  end-page: 257
  ident: br000050
  article-title: Self-similarity and hairiness in the Mandelbrot set
  publication-title: Computers in Geometry and Topology
  contributor:
    fullname: Milnor
– volume: 18
  start-page: 287
  year: 1985
  end-page: 343
  ident: br000045
  article-title: On the dynamics of polynomial-like mappings
  publication-title: Ann. Sci. Éc. Norm. Supér.
  contributor:
    fullname: Hubbard
– year: 1973
  ident: br000060
  article-title: Quasiconformal Mappings in the Plane
  contributor:
    fullname: Virtanen
– volume: 13
  start-page: 267
  year: 1989
  end-page: 278
  ident: br000085
  article-title: Julia sets in the quaternions
  publication-title: Comput. Graph.
  contributor:
    fullname: Norton
– start-page: 1
  year: 1994
  end-page: 29
  ident: br000040
  article-title: The complex dynamics of quadratic polynomials
  publication-title: Proc. Sympos. Appl. Math., Vol. 49
  contributor:
    fullname: Devaney
– start-page: 1349
  year: 2006
  end-page: 1373
  ident: br000065
  article-title: Quasiconformal geometry of fractals
  publication-title: Proceedings of the International Congress of Mathematicians (ICM), Madrid, Spain, August 22–30, 2006, Volume II: Invited Lectures
  contributor:
    fullname: Bonk
– volume: 140
  start-page: 1947
  year: 2012
  end-page: 1956
  ident: br000100
  article-title: Homeomorphisms between limbs of the Mandelbrot set
  publication-title: Proc. Amer. Math. Soc.
  contributor:
    fullname: Schleicher
– start-page: 58
  year: 2010
  end-page: 61
  ident: br000095
  article-title: Superior tricorns and multicorns
  publication-title: Proceedings of the 9th WSEAS International Conference on Applications of Computer Engineering
  contributor:
    fullname: Rani
– volume: 238
  start-page: 1923
  year: 2009
  end-page: 1936
  ident: br000005
  article-title: A rigorous lower bound for the stability regions of the quadratic map
  publication-title: Physica D
  contributor:
    fullname: Wilczak
– year: 2000
  ident: br000055
  article-title: Dynamics in One Complex Variable
  contributor:
    fullname: Milnor
– year: 1993
  ident: 10.1016/j.physd.2012.11.002_br000105
  contributor:
    fullname: Lang
– volume: 38
  start-page: 1206
  year: 1997
  ident: 10.1016/j.physd.2012.11.002_br000070
  article-title: Fractal straight lines and quasiconformal mappings
  publication-title: Sib. Math. J.
  doi: 10.1007/BF02675947
  contributor:
    fullname: Trotsenko
– volume: 140
  start-page: 1947
  year: 2012
  ident: 10.1016/j.physd.2012.11.002_br000100
  article-title: Homeomorphisms between limbs of the Mandelbrot set
  publication-title: Proc. Amer. Math. Soc.
  doi: 10.1090/S0002-9939-2011-11047-5
  contributor:
    fullname: Dudko
– year: 2000
  ident: 10.1016/j.physd.2012.11.002_br000055
  contributor:
    fullname: Milnor
– volume: 239
  start-page: 1001
  year: 2010
  ident: 10.1016/j.physd.2012.11.002_br000015
  article-title: Reply to: Comment on: ‘Image encryption with chaotically coupled chaotic maps’ [Physica D 2010]
  publication-title: Physica D
  doi: 10.1016/j.physd.2010.02.011
  contributor:
    fullname: Pisarchik
– volume: 1
  start-page: 5
  year: 1992
  ident: 10.1016/j.physd.2012.11.002_br000030
  article-title: Remarks on iterated cubic maps
  publication-title: Experiment. Math.
  contributor:
    fullname: Milnor
– volume: 18
  start-page: 287
  year: 1985
  ident: 10.1016/j.physd.2012.11.002_br000045
  article-title: On the dynamics of polynomial-like mappings
  publication-title: Ann. Sci. Éc. Norm. Supér.
  doi: 10.24033/asens.1491
  contributor:
    fullname: Douady
– ident: 10.1016/j.physd.2012.11.002_br000035
– start-page: 1349
  year: 2006
  ident: 10.1016/j.physd.2012.11.002_br000065
  article-title: Quasiconformal geometry of fractals
  contributor:
    fullname: Bonk
– volume: 240
  start-page: 1724
  year: 2011
  ident: 10.1016/j.physd.2012.11.002_br000025
  article-title: Geometric, variational discretization of continuum theories
  publication-title: Physica D
  doi: 10.1016/j.physd.2011.07.011
  contributor:
    fullname: Gawlik
– start-page: 1
  year: 1994
  ident: 10.1016/j.physd.2012.11.002_br000040
  article-title: The complex dynamics of quadratic polynomials
  contributor:
    fullname: Devaney
– volume: 22
  start-page: 205
  year: 2006
  ident: 10.1016/j.physd.2012.11.002_br000075
  article-title: Quasiconformal dimensions of self-similar fractals
  publication-title: Rev. Mat. Iberoam.
  doi: 10.4171/RMI/454
  contributor:
    fullname: Tyson
– volume: 16
  start-page: 805
  year: 2011
  ident: 10.1016/j.physd.2012.11.002_br000020
  article-title: Cryptanalysis of a family of self-synchronizing chaotic stream ciphers
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2010.04.031
  contributor:
    fullname: Arroyo
– ident: 10.1016/j.physd.2012.11.002_br000090
– volume: 237
  start-page: 2638
  year: 2008
  ident: 10.1016/j.physd.2012.11.002_br000010
  article-title: Image encryption with chaotically coupled chaotic maps
  publication-title: Physica D
  doi: 10.1016/j.physd.2008.03.049
  contributor:
    fullname: Pisarchik
– volume: 364
  start-page: 1
  year: 2003
  ident: 10.1016/j.physd.2012.11.002_br000080
  article-title: Classifying quadratic maps from plane to plane
  publication-title: Linear Algebra Appl.
  doi: 10.1016/S0024-3795(02)00564-5
  contributor:
    fullname: Durán Díaz
– year: 1973
  ident: 10.1016/j.physd.2012.11.002_br000060
  contributor:
    fullname: Lehto
– volume: vol. 114
  start-page: 211
  year: 1986
  ident: 10.1016/j.physd.2012.11.002_br000050
  article-title: Self-similarity and hairiness in the Mandelbrot set
  contributor:
    fullname: Milnor
– volume: 238
  start-page: 1923
  year: 2009
  ident: 10.1016/j.physd.2012.11.002_br000005
  article-title: A rigorous lower bound for the stability regions of the quadratic map
  publication-title: Physica D
  doi: 10.1016/j.physd.2009.06.020
  contributor:
    fullname: Tucker
– volume: 13
  start-page: 267
  year: 1989
  ident: 10.1016/j.physd.2012.11.002_br000085
  article-title: Julia sets in the quaternions
  publication-title: Comput. Graph.
  doi: 10.1016/0097-8493(89)90071-X
  contributor:
    fullname: Norton
– start-page: 58
  year: 2010
  ident: 10.1016/j.physd.2012.11.002_br000095
  article-title: Superior tricorns and multicorns
  contributor:
    fullname: Rani
SSID ssj0001737
Score 2.0968273
Snippet The fractal set attached to the iteration of a “generic” homogeneous quadratic map from the plane to itself is studied and depicted, by using a two-parametric...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 8
SubjectTerms Bilinear symmetric map
Discrete quadratic dynamic systems
Fractal set
Invariant functions
Title Fractal sets attached to homogeneous quadratic maps in two variables
URI https://dx.doi.org/10.1016/j.physd.2012.11.002
Volume 245
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3La9ZAEF--tgh6EK2K9cUevMWE7OZ9rCaliorYCr2F3eyGttCk_ZJY6F_fmWxe5RNRwUsSNrt5zPyYV2YmhLyVijFdgFsSh0lp-0FQ2LLgyo5AdzI4V8gY650Pj6KvJ3Ga-dlqNWYtzWP_ldMwBrzGytm_4PZ0URiAY-A5bIHrsP0jvh9g2RMWgei2sUTbYsNmhRbmaX1RwyqNOa9XnVDrvlfrhbjsM2Lb69r6CX4zVlI1S4v1m2GkM6cGp535vM4qK-0PUtFHob87c2B1XQ1TlL6xsqo4q0zh2Gdn5jDOeM_qG-uLaK4688W-B5WzDEXgbyG4bYoxTXxso0bGhCxBFGO9rdE4RszGEchhl9-Rw9z0lbwDOCNV44V6NtJ6Q_CbGMS5g_EgbADLuIPNWV0-67kp-_AIHwmfiGGGSsLjLbLDQU6BmNzZ_5idfJpUOYtM09XxFca2VX2C4Matfm3aLMyV40fk4eBn0H0DkMdkpatd8mDRfXKX3DOsbZ6QdAANRdDQETS0rekCNHQCDUXQ0LOKAmjoBJqn5MdBdvzh0B5-r2EXYLe0dgyesu_Fodah5iWXHrxsAHtw4HWpI8GlLN3Sd30mdRIr8LRlohhopTAJZRAo7xnZrupKPyfUj9xIBIknQ9f3JVBKs7IQgfAE3Aom75F3I2XyS9NFJR_TC8_znpA5EhL80RwIuUfCkXr5YAgaAy8Hdv9u4Yt_XfiS3J8B_Ypst-tOvyZbjereDJi4BSLdepI
link.rule.ids 315,782,786,27933,27934
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fractal+sets+attached+to+homogeneous+quadratic+maps+in+two+variables&rft.jtitle=Physica.+D&rft.au=Dur%C3%A1n+D%C3%ADaz%2C+R.&rft.au=Hern%C3%A1ndez+Encinas%2C+L.&rft.au=Mu%C3%B1oz+Masqu%C3%A9%2C+J.&rft.date=2013-02-15&rft.pub=Elsevier+B.V&rft.issn=0167-2789&rft.eissn=1872-8022&rft.volume=245&rft.issue=1&rft.spage=8&rft.epage=18&rft_id=info:doi/10.1016%2Fj.physd.2012.11.002&rft.externalDocID=S0167278912002928
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-2789&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-2789&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-2789&client=summon