Influence of microstructure on the micro-region fracture toughness of the 30Cr2Ni4MoV turbine rotor welded joint
The fracture toughness of each micro-region in 30Cr2Ni4MoV steam turbine rotor welded joint was studied, including the central zone of the SAW bead (SAW-C), the overlapping zone of the SAW bead (SAW-Z), and the central zone of the TIG weld metal (TIG), coarse-grained heating affected zone (CGHAZ), f...
Saved in:
Published in: | The International journal of pressure vessels and piping Vol. 201; p. 104877 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier Ltd
01-02-2023
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The fracture toughness of each micro-region in 30Cr2Ni4MoV steam turbine rotor welded joint was studied, including the central zone of the SAW bead (SAW-C), the overlapping zone of the SAW bead (SAW-Z), and the central zone of the TIG weld metal (TIG), coarse-grained heating affected zone (CGHAZ), fine-grained HAZ (FGHAZ) and base metal (BM). The microstructure, fracture morphologies and cracking paths were observed by OM and SEM microscope, and the influence of microstructure on fracture toughness was analyzed. The research results show that the fracture toughness of the weld metal is lower than that of BM and HAZ, and the fracture toughness of the weld metal is non-uniform. TIG and SAW-C are composed of columnar tempered bainite, intergranular tempered lath martensite and carbides, and the fracture toughness is the worst. SAW-Z is zigzag columnar tempered bainite and equiaxed granular tempered bainite between weld passes, which has good fracture toughness. CGHAZ and FGHAZ are equiaxed tempered martensite with the best fracture toughness. By observing the fracture morphology and cracking path, SAW-C and TIG are dominated by brittle cleavage fracture mode, and SAW-Z, FGHAZ, CGHAZ and BM are in the ductile fracture mode. The straight columnar grains of SAW-C and TIG are prone to crack propagation, but the tempered bainite acts as a bridge. SAW-Z has a zigzag tempered bainite grains, and the crack propagation path is tortuous. For FGHAZ, CGHAZ and BM with equiaxed grains, the fracture toughness is related to the grain size and the dimple size around the crack tip. The crack propagation process is that the dimples are first formed in a certain range around the crack tip, but only the dimples in the lower strength micro-regions grow and merge preferentially, and rapidly form new cracks.
•The microstructure at the crack tip determines the fracture toughness and fracture mode of the welded joint.•The fracture toughness is related to the grain size and the size of the dimples distribution at the crack tip.•The dimples around the crack tip are formed and grown in a certain range during the crack propagation. |
---|---|
AbstractList | The fracture toughness of each micro-region in 30Cr2Ni4MoV steam turbine rotor welded joint was studied, including the central zone of the SAW bead (SAW-C), the overlapping zone of the SAW bead (SAW-Z), and the central zone of the TIG weld metal (TIG), coarse-grained heating affected zone (CGHAZ), fine-grained HAZ (FGHAZ) and base metal (BM). The microstructure, fracture morphologies and cracking paths were observed by OM and SEM microscope, and the influence of microstructure on fracture toughness was analyzed. The research results show that the fracture toughness of the weld metal is lower than that of BM and HAZ, and the fracture toughness of the weld metal is non-uniform. TIG and SAW-C are composed of columnar tempered bainite, intergranular tempered lath martensite and carbides, and the fracture toughness is the worst. SAW-Z is zigzag columnar tempered bainite and equiaxed granular tempered bainite between weld passes, which has good fracture toughness. CGHAZ and FGHAZ are equiaxed tempered martensite with the best fracture toughness. By observing the fracture morphology and cracking path, SAW-C and TIG are dominated by brittle cleavage fracture mode, and SAW-Z, FGHAZ, CGHAZ and BM are in the ductile fracture mode. The straight columnar grains of SAW-C and TIG are prone to crack propagation, but the tempered bainite acts as a bridge. SAW-Z has a zigzag tempered bainite grains, and the crack propagation path is tortuous. For FGHAZ, CGHAZ and BM with equiaxed grains, the fracture toughness is related to the grain size and the dimple size around the crack tip. The crack propagation process is that the dimples are first formed in a certain range around the crack tip, but only the dimples in the lower strength micro-regions grow and merge preferentially, and rapidly form new cracks.
•The microstructure at the crack tip determines the fracture toughness and fracture mode of the welded joint.•The fracture toughness is related to the grain size and the size of the dimples distribution at the crack tip.•The dimples around the crack tip are formed and grown in a certain range during the crack propagation. |
ArticleNumber | 104877 |
Author | Li, Zeyu Dong, Zhiwei Zhang, Jianxun Xu, Jian Guo, Yang Xiong, Jiankun Xu, Dexing |
Author_xml | – sequence: 1 givenname: Yang surname: Guo fullname: Guo, Yang organization: State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China – sequence: 2 givenname: Zeyu surname: Li fullname: Li, Zeyu organization: State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China – sequence: 3 givenname: Zhiwei surname: Dong fullname: Dong, Zhiwei organization: State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China – sequence: 4 givenname: Jiankun surname: Xiong fullname: Xiong, Jiankun organization: Dong Fang Turbine Co., Ltd, Deyang, 618000, China – sequence: 5 givenname: Jian surname: Xu fullname: Xu, Jian organization: Dong Fang Turbine Co., Ltd, Deyang, 618000, China – sequence: 6 givenname: Dexing surname: Xu fullname: Xu, Dexing organization: Dong Fang Turbine Co., Ltd, Deyang, 618000, China – sequence: 7 givenname: Jianxun surname: Zhang fullname: Zhang, Jianxun email: jxzhang@mail.xjtu.edu.cn organization: State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China |
BookMark | eNp9kMFOwzAQRC1UJNrCF3DxD6TYcRInBw6oAlqpwAW4WrGzaR21dmQ7Rfw9DuHMaaXZmdXOW6CZsQYQuqVkRQkt7rqV7vpzv0pJmkYlKzm_QHNa8ipheUZnaE4YKZNopVdo4X1HCOUkL-ao35r2OIBRgG2LT1o564MbVBhcVAwOB5jUxMFeR6F19bQMdtgfDHg_BkcbI2uXvursxX7i6JDaAHY2WIe_4NhAgzurTbhGl2199HDzN5fo4-nxfb1Jdm_P2_XDLlGMsJBw1QDjVVmxMq9ASg51XTRtrAa8io5CcU5SkEUmiSzrUjYVU5JWLGcFg1axJWLT3bGRd9CK3ulT7b4FJWKEJjrxC02M0MQELabupxTE184anPBKj3Qa7UAF0Vj9b_4HDMJ6Xw |
CitedBy_id | crossref_primary_10_1016_j_vacuum_2024_113044 crossref_primary_10_1111_ffe_14201 crossref_primary_10_3390_met13121998 crossref_primary_10_1007_s10845_024_02431_1 |
Cites_doi | 10.1016/j.engfailanal.2021.105854 10.1016/0001-6160(86)90222-1 10.1016/j.matdes.2014.09.076 10.1016/j.msea.2021.141626 10.1016/j.msea.2010.03.066 10.1016/j.ijpvp.2020.104189 10.1016/j.msea.2009.09.027 10.1016/j.engfracmech.2015.07.061 10.1016/j.engfracmech.2014.05.012 10.1016/j.mspro.2014.06.140 10.1016/j.engfailanal.2012.10.005 10.1016/j.jmatprotec.2004.04.120 10.1016/S1006-706X(10)60168-9 10.1016/j.engfracmech.2012.02.001 10.1016/j.jcsr.2021.107096 10.1007/s11665-008-9225-5 10.1016/S1359-6454(02)00313-0 10.3390/coatings12020174 10.1016/j.msea.2018.04.061 10.1016/j.engfracmech.2021.107801 10.1016/j.msea.2019.138285 10.1016/j.msea.2020.139248 10.1016/j.msea.2010.09.053 10.1016/j.jallcom.2018.03.222 10.1016/j.msea.2014.07.067 10.1007/BF02816050 10.1016/j.advengsoft.2018.10.006 10.1016/0013-7944(77)90048-0 10.1115/1.4011547 10.1016/S1044-5803(02)00247-4 10.1016/j.msea.2017.03.110 10.1016/j.jmrt.2021.01.038 10.1016/j.engfracmech.2015.09.003 10.1115/1.3601206 10.1016/j.msea.2018.11.122 10.1016/j.msea.2012.11.019 10.1016/j.msea.2020.139379 10.1002/adma.200803322 10.1016/S0921-5093(99)00288-9 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ijpvp.2022.104877 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-3541 |
ExternalDocumentID | 10_1016_j_ijpvp_2022_104877 S0308016122002629 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYOK ABEFU ABFNM ABJNI ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K WUQ XPP ZMT ZY4 ~G- AAXKI AAYXX AFJKZ AKRWK CITATION |
ID | FETCH-LOGICAL-c303t-7cde379893859ebb7eaa6df048e793036c7702eb64b0b8a8bd93cb1935363efc3 |
ISSN | 0308-0161 |
IngestDate | Thu Sep 26 19:05:25 EDT 2024 Fri Feb 23 02:37:47 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Micro-region Welded rotor Microstructure Fracture toughness Crack propagation |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c303t-7cde379893859ebb7eaa6df048e793036c7702eb64b0b8a8bd93cb1935363efc3 |
ParticipantIDs | crossref_primary_10_1016_j_ijpvp_2022_104877 elsevier_sciencedirect_doi_10_1016_j_ijpvp_2022_104877 |
PublicationCentury | 2000 |
PublicationDate | February 2023 2023-02-00 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: February 2023 |
PublicationDecade | 2020 |
PublicationTitle | The International journal of pressure vessels and piping |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Guo, Zhu, Li (bib36) 2022 Lee, Kim, Hwang (bib18) 2002; 50 Li, Ding, Liu (bib30) 2020; 187 Zhu, Joyce (bib1) 2012; 85 Bowen, Druce, Knott (bib17) 1986; 34 García, Rodríguez, Belzunce (bib37) 2014; 3 Liang, Long, Xu (bib15) 2017; 695 Ghosh, Ray, Chakrabarti (bib19) 2013; 561 Rice (bib4) 1968; 35 Golling, Frómeta, Casellas (bib8) 2018; 726 Irwin (bib3) 1957; 24 Ritchie, Thompson (bib38) 1985; 16 Zhao, Guo, Cui, Lu (bib6) 2019; 127 Seshu Kumar, Ravi Kumar, Datta, Ranganath (bib12) 2010; 527 Zerbst, Ainsworth, Beier, Pisarski, Zhang, Nikbin (bib5) 2014; 132 Chen, Lu, Chen (bib24) 2015; 148 Feng, Wettlaufer (bib13) 2019; 743 Guo, Lu, Liu (bib26) 2015; 638 Ge, Lin, Chen (bib34) 2018; 748 Wang, Dong, Xu (bib32) 2020; 785 Zhu, Xuan (bib35) 2010; 527 Zhu, Lei, Su (bib44) 2020; 782 Ribeiro, Pereira Baptista, Fernandes Lima (bib22) 2021; 11 (bib28) 2021 Wells (bib2) 1963; 10 Yang, Shi, Xu (bib23) 2015; 148 Li, Wei, Yang (bib9) 2022; 131 Dirisu, Ganguly, Mehmanparast (bib25) 2019; 765 Pavlina, Van Tyne (bib31) 2008; 17 Moitra, Parameswaran, Sreenivasan (bib16) 2002; 48 Krauss (bib11) 1999; 273–275 Neves, Loureiro (bib20) 2004; 153–154 Wang, Guo, Li (bib27) 2022; 12 Wu, Lu, Cui (bib40) 2014; 615 Jiang, Dai, Wang (bib21) 2022; 189 Luo, Shen, Su (bib14) 2010; 17 Tomokazu, Yasufumi (bib29) 1977; 9 Wang, Wang, Xuan (bib43) 2013; 28 Zhu, Xuan (bib33) 2015; 65 Bowen, Druce, Knott (bib10) 1986; 34 Launey, Ritchie (bib41) 2009; 21 Wang, Zhao, Xin (bib42) 2021; 821 Yu, Cai (bib7) 2021; 252 Cao, Feng, Peng (bib39) 2010; 528 Zhu (10.1016/j.ijpvp.2022.104877_bib44) 2020; 782 (10.1016/j.ijpvp.2022.104877_bib28) 2021 Yang (10.1016/j.ijpvp.2022.104877_bib23) 2015; 148 Wells (10.1016/j.ijpvp.2022.104877_bib2) 1963; 10 Dirisu (10.1016/j.ijpvp.2022.104877_bib25) 2019; 765 Li (10.1016/j.ijpvp.2022.104877_bib30) 2020; 187 Golling (10.1016/j.ijpvp.2022.104877_bib8) 2018; 726 García (10.1016/j.ijpvp.2022.104877_bib37) 2014; 3 Guo (10.1016/j.ijpvp.2022.104877_bib36) 2022 Guo (10.1016/j.ijpvp.2022.104877_bib26) 2015; 638 Ge (10.1016/j.ijpvp.2022.104877_bib34) 2018; 748 Moitra (10.1016/j.ijpvp.2022.104877_bib16) 2002; 48 Bowen (10.1016/j.ijpvp.2022.104877_bib10) 1986; 34 Lee (10.1016/j.ijpvp.2022.104877_bib18) 2002; 50 Bowen (10.1016/j.ijpvp.2022.104877_bib17) 1986; 34 Ghosh (10.1016/j.ijpvp.2022.104877_bib19) 2013; 561 Li (10.1016/j.ijpvp.2022.104877_bib9) 2022; 131 Luo (10.1016/j.ijpvp.2022.104877_bib14) 2010; 17 Liang (10.1016/j.ijpvp.2022.104877_bib15) 2017; 695 Zhu (10.1016/j.ijpvp.2022.104877_bib35) 2010; 527 Launey (10.1016/j.ijpvp.2022.104877_bib41) 2009; 21 Cao (10.1016/j.ijpvp.2022.104877_bib39) 2010; 528 Wang (10.1016/j.ijpvp.2022.104877_bib32) 2020; 785 Wang (10.1016/j.ijpvp.2022.104877_bib42) 2021; 821 Wang (10.1016/j.ijpvp.2022.104877_bib43) 2013; 28 Zerbst (10.1016/j.ijpvp.2022.104877_bib5) 2014; 132 Neves (10.1016/j.ijpvp.2022.104877_bib20) 2004; 153–154 Tomokazu (10.1016/j.ijpvp.2022.104877_bib29) 1977; 9 Zhu (10.1016/j.ijpvp.2022.104877_bib33) 2015; 65 Chen (10.1016/j.ijpvp.2022.104877_bib24) 2015; 148 Yu (10.1016/j.ijpvp.2022.104877_bib7) 2021; 252 Ribeiro (10.1016/j.ijpvp.2022.104877_bib22) 2021; 11 Wu (10.1016/j.ijpvp.2022.104877_bib40) 2014; 615 Zhu (10.1016/j.ijpvp.2022.104877_bib1) 2012; 85 Seshu Kumar (10.1016/j.ijpvp.2022.104877_bib12) 2010; 527 Rice (10.1016/j.ijpvp.2022.104877_bib4) 1968; 35 Krauss (10.1016/j.ijpvp.2022.104877_bib11) 1999; 273–275 Irwin (10.1016/j.ijpvp.2022.104877_bib3) 1957; 24 Zhao (10.1016/j.ijpvp.2022.104877_bib6) 2019; 127 Wang (10.1016/j.ijpvp.2022.104877_bib27) 2022; 12 Ritchie (10.1016/j.ijpvp.2022.104877_bib38) 1985; 16 Feng (10.1016/j.ijpvp.2022.104877_bib13) 2019; 743 Jiang (10.1016/j.ijpvp.2022.104877_bib21) 2022; 189 Pavlina (10.1016/j.ijpvp.2022.104877_bib31) 2008; 17 |
References_xml | – volume: 48 start-page: 55 year: 2002 end-page: 61 ident: bib16 article-title: A toughness study of the weld heat-affected zone of a 9Cr–1Mo steel publication-title: Mater. Char. contributor: fullname: Sreenivasan – volume: 65 start-page: 707 year: 2015 end-page: 715 ident: bib33 article-title: Effect of microstructure on strain hardening and strength distributions along a Cr-Ni-Mo-V steel welded joint publication-title: Mater. Des. contributor: fullname: Xuan – year: 2021 ident: bib28 publication-title: Metallic Materials-Unified Method of Test for Determination of Quasistatic Fracture Toughness – volume: 273–275 start-page: 40 year: 1999 end-page: 57 ident: bib11 article-title: Martensite in steel: strength and structure publication-title: Mater. Sci. Eng., A contributor: fullname: Krauss – volume: 527 start-page: 954 year: 2010 end-page: 960 ident: bib12 article-title: Effect of microstructure and grain size on the fracture toughness of a micro-alloyed steel publication-title: Mater. Sci. Eng., A contributor: fullname: Ranganath – volume: 821 year: 2021 ident: bib42 article-title: Microstructural morphology effects on fracture toughness and crack growth behaviors in a high strength titanium alloy publication-title: Mater. Sci. Eng., A contributor: fullname: Xin – volume: 35 start-page: 379 year: 1968 end-page: 386 ident: bib4 article-title: A path independent integral and the approximate analysis of strain concentration by notches and cracks publication-title: J. Appl. Mech. contributor: fullname: Rice – volume: 615 start-page: 98 year: 2014 end-page: 106 ident: bib40 article-title: Microstructure characteristics and temperature-dependent high cycle fatigue behavior of advanced 9% Cr/CrMoV dissimilarly welded joint publication-title: Mater. Sci. Eng., A contributor: fullname: Cui – volume: 10 start-page: 563 year: 1963 end-page: 570 ident: bib2 article-title: Application of fracture mechanics at and beyond general yielding publication-title: Weld. J. contributor: fullname: Wells – volume: 189 year: 2022 ident: bib21 article-title: Experimental study on fracture toughness of quenched and tempered and TMCP high strength steels publication-title: J. Constr. Steel Res. contributor: fullname: Wang – volume: 638 start-page: 240 year: 2015 end-page: 250 ident: bib26 article-title: Correlation of microstructure and fracture toughness of advanced 9Cr/CrMoV dissimilarly welded joint publication-title: J. Constr. Steel Res. contributor: fullname: Liu – volume: 527 start-page: 4035 year: 2010 end-page: 4042 ident: bib35 article-title: Correlation between microstructure, hardness and strength in HAZ of dissimilar welds of rotor steels publication-title: Mater. Sci. Eng., A contributor: fullname: Xuan – volume: 28 start-page: 134 year: 2013 end-page: 148 ident: bib43 article-title: Fracture mechanism of a dissimilar metal welded joint in nuclear power plant publication-title: Eng. Fail. Anal. contributor: fullname: Xuan – volume: 16 start-page: 233 year: 1985 end-page: 248 ident: bib38 article-title: On macroscopic and microscopic analyses for crack initiation and crack growth toughness in ductile alloys publication-title: Metall. Mater. Trans. A contributor: fullname: Thompson – volume: 85 start-page: 1 year: 2012 end-page: 46 ident: bib1 article-title: Review of fracture toughness (G, K, J, CTOD, CTOA) testing and standardization publication-title: Eng. Fract. Mech. contributor: fullname: Joyce – volume: 528 start-page: 631 year: 2010 end-page: 642 ident: bib39 article-title: Investigation of abnormal high impact toughness in simulated welding CGHAZ of a 8%Ni 980MPa high strength steel publication-title: Mater. Sci. Eng., A contributor: fullname: Peng – volume: 148 start-page: 337 year: 2015 end-page: 349 ident: bib23 article-title: Fracture toughness of the materials in welded joint of X80 pipeline steel publication-title: Eng. Fract. Mech. contributor: fullname: Xu – volume: 34 start-page: 1121 year: 1986 end-page: 1131 ident: bib17 article-title: Effects of microstructure on cleavage fracture in pressure-vessel steel publication-title: Acta Metall. contributor: fullname: Knott – volume: 785 year: 2020 ident: bib32 article-title: Local strain hardening behavior in a dissimilar metal welded joint with buttering layer of ultra-supercritical turbine rotor publication-title: Mater. Sci. Eng. contributor: fullname: Xu – volume: 132 start-page: 200 year: 2014 end-page: 276 ident: bib5 article-title: Review on fracture and crack propagation in weldments-a fracture mechanics perspective publication-title: Eng. Fract. Mech. contributor: fullname: Nikbin – volume: 153–154 start-page: 537 year: 2004 end-page: 554 ident: bib20 article-title: Fracture toughness of welds-effect of brittle zones and strength mismatch publication-title: J. Mater. Process. Technol. contributor: fullname: Loureiro – volume: 148 start-page: 110 year: 2015 end-page: 121 ident: bib24 article-title: A comparison between fracture toughness at different locations of longitudinal submerged arc welded and spiral submerged arc welded joints of API X80 pipeline steels publication-title: Eng. Fract. Mech. contributor: fullname: Chen – volume: 743 start-page: 494 year: 2019 end-page: 499 ident: bib13 article-title: Plane-strain fracture toughness of AISI 4140 steel austempered below MS publication-title: Mater. Sci. Eng., A contributor: fullname: Wettlaufer – volume: 782 year: 2020 ident: bib44 article-title: The interdependence of microstructure, strength and fracture toughness in a novel β titanium alloy Ti-5Al-4Zr-8Mo-7V publication-title: Mater. Sci. Eng., A contributor: fullname: Su – volume: 131 year: 2022 ident: bib9 article-title: The relationship between fracture toughness and tensile property in high-strength steels publication-title: Eng. Fail. Anal. contributor: fullname: Yang – volume: 17 start-page: 888 year: 2008 end-page: 893 ident: bib31 article-title: Correlation of yield strength and tensile strength with hardness for steels publication-title: J. Mater. Eng. Perform. contributor: fullname: Van Tyne – volume: 3 start-page: 861 year: 2014 end-page: 866 ident: bib37 article-title: Estimation of the fracture toughness of structural steels by means of the CTOD evaluation on notched small punch specimens publication-title: Procedia Mater Sci contributor: fullname: Belzunce – volume: 21 start-page: 2103 year: 2009 end-page: 2110 ident: bib41 article-title: On the fracture toughness of advanced materials publication-title: Adv. Mater. contributor: fullname: Ritchie – volume: 24 start-page: 361 year: 1957 end-page: 364 ident: bib3 article-title: Analysis of stresses and strains near the end of a crack traversing a plate publication-title: J. Appl. Mech. contributor: fullname: Irwin – volume: 765 year: 2019 ident: bib25 article-title: Analysis of fracture toughness properties of wire + arc additive manufactured high strength low alloy structural steel components publication-title: Mater. Sci. Eng., A contributor: fullname: Mehmanparast – volume: 17 start-page: 40 year: 2010 end-page: 48 ident: bib14 article-title: Effect of substructure on toughness of lath martensite/bainite mixed structure in low-carbon steels publication-title: J. Iron Steel Res. Int. contributor: fullname: Su – volume: 50 start-page: 4755 year: 2002 end-page: 4762 ident: bib18 article-title: Effect of carbide distribution on the fracture toughness in the transition temperature region of an SA 508 steel publication-title: Acta Mater. contributor: fullname: Hwang – volume: 187 year: 2020 ident: bib30 article-title: Evaluation and comparison of fracture toughness for metallic materials in different conditions by ASTM and ISO standards publication-title: Int. J. Pres. Ves. Pip. contributor: fullname: Liu – volume: 34 start-page: 1121 year: 1986 end-page: 1131 ident: bib10 article-title: Effects of microstructure on cleavage fracture in pressure-vessel steel publication-title: Acta Metall. contributor: fullname: Knott – volume: 561 start-page: 126 year: 2013 end-page: 135 ident: bib19 article-title: Cleavage initiation in steel: competition between large grains and large particles publication-title: Mater. Sci. Eng., A contributor: fullname: Chakrabarti – volume: 252 year: 2021 ident: bib7 article-title: Analytical J-integral model for mode-I cracks in ductile materials with three-dimensional constraints publication-title: Eng. Fract. Mech. contributor: fullname: Cai – volume: 695 start-page: 154 year: 2017 end-page: 164 ident: bib15 article-title: The important role of martensite laths to fracture toughness for the ductile fracture controlled by the strain in EA4T axle steel publication-title: Mater. Sci. Eng., A contributor: fullname: Xu – year: 2022 ident: bib36 article-title: Research on the micro zone strength and strain hardening behavior in the 30Cr2Ni4MoV rotor welded joint publication-title: Mater. Sci. Eng., A contributor: fullname: Li – volume: 9 start-page: 17 year: 1977 end-page: 24 ident: bib29 article-title: Pop-in behavior induced by interaction of cracks publication-title: Eng. Fract. Mech. contributor: fullname: Yasufumi – volume: 748 start-page: 911 year: 2018 end-page: 921 ident: bib34 article-title: Characterization of wire arc additive manufacturing 2Cr13 part: process stability, microstructural evolution, and tensile properties publication-title: J. Alloys Compd. contributor: fullname: Chen – volume: 127 start-page: 8 year: 2019 end-page: 16 ident: bib6 article-title: Numerical simulation on fracture resistance and factors affecting toughness for welded joint of low-alloy steel publication-title: Adv. Eng. Software contributor: fullname: Lu – volume: 726 start-page: 332 year: 2018 end-page: 341 ident: bib8 article-title: Investigation on the influence of loading-rate on fracture toughness of AHSS grades publication-title: Mater. Sci. Eng., A contributor: fullname: Casellas – volume: 12 start-page: 174 year: 2022 ident: bib27 article-title: Fracture toughness of different region materials from a dissimilar metal welded joint in steam turbine rotor publication-title: Coat contributor: fullname: Li – volume: 11 start-page: 801 year: 2021 end-page: 810 ident: bib22 article-title: Effect of laser welding heat input on fatigue crack growth and CTOD fracture toughness of HSLA steel joints publication-title: J. Mater. Res. Technol. contributor: fullname: Fernandes Lima – volume: 131 year: 2022 ident: 10.1016/j.ijpvp.2022.104877_bib9 article-title: The relationship between fracture toughness and tensile property in high-strength steels publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2021.105854 contributor: fullname: Li – volume: 34 start-page: 1121 year: 1986 ident: 10.1016/j.ijpvp.2022.104877_bib10 article-title: Effects of microstructure on cleavage fracture in pressure-vessel steel publication-title: Acta Metall. doi: 10.1016/0001-6160(86)90222-1 contributor: fullname: Bowen – volume: 65 start-page: 707 year: 2015 ident: 10.1016/j.ijpvp.2022.104877_bib33 article-title: Effect of microstructure on strain hardening and strength distributions along a Cr-Ni-Mo-V steel welded joint publication-title: Mater. Des. doi: 10.1016/j.matdes.2014.09.076 contributor: fullname: Zhu – volume: 821 year: 2021 ident: 10.1016/j.ijpvp.2022.104877_bib42 article-title: Microstructural morphology effects on fracture toughness and crack growth behaviors in a high strength titanium alloy publication-title: Mater. Sci. Eng., A doi: 10.1016/j.msea.2021.141626 contributor: fullname: Wang – volume: 527 start-page: 4035 issue: 16–17 year: 2010 ident: 10.1016/j.ijpvp.2022.104877_bib35 article-title: Correlation between microstructure, hardness and strength in HAZ of dissimilar welds of rotor steels publication-title: Mater. Sci. Eng., A doi: 10.1016/j.msea.2010.03.066 contributor: fullname: Zhu – volume: 187 year: 2020 ident: 10.1016/j.ijpvp.2022.104877_bib30 article-title: Evaluation and comparison of fracture toughness for metallic materials in different conditions by ASTM and ISO standards publication-title: Int. J. Pres. Ves. Pip. doi: 10.1016/j.ijpvp.2020.104189 contributor: fullname: Li – volume: 527 start-page: 954 year: 2010 ident: 10.1016/j.ijpvp.2022.104877_bib12 article-title: Effect of microstructure and grain size on the fracture toughness of a micro-alloyed steel publication-title: Mater. Sci. Eng., A doi: 10.1016/j.msea.2009.09.027 contributor: fullname: Seshu Kumar – volume: 148 start-page: 337 year: 2015 ident: 10.1016/j.ijpvp.2022.104877_bib23 article-title: Fracture toughness of the materials in welded joint of X80 pipeline steel publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2015.07.061 contributor: fullname: Yang – volume: 132 start-page: 200 year: 2014 ident: 10.1016/j.ijpvp.2022.104877_bib5 article-title: Review on fracture and crack propagation in weldments-a fracture mechanics perspective publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2014.05.012 contributor: fullname: Zerbst – year: 2022 ident: 10.1016/j.ijpvp.2022.104877_bib36 article-title: Research on the micro zone strength and strain hardening behavior in the 30Cr2Ni4MoV rotor welded joint publication-title: Mater. Sci. Eng., A contributor: fullname: Guo – volume: 10 start-page: 563 year: 1963 ident: 10.1016/j.ijpvp.2022.104877_bib2 article-title: Application of fracture mechanics at and beyond general yielding publication-title: Weld. J. contributor: fullname: Wells – volume: 3 start-page: 861 year: 2014 ident: 10.1016/j.ijpvp.2022.104877_bib37 article-title: Estimation of the fracture toughness of structural steels by means of the CTOD evaluation on notched small punch specimens publication-title: Procedia Mater Sci doi: 10.1016/j.mspro.2014.06.140 contributor: fullname: García – year: 2021 ident: 10.1016/j.ijpvp.2022.104877_bib28 – volume: 28 start-page: 134 year: 2013 ident: 10.1016/j.ijpvp.2022.104877_bib43 article-title: Fracture mechanism of a dissimilar metal welded joint in nuclear power plant publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2012.10.005 contributor: fullname: Wang – volume: 153–154 start-page: 537 year: 2004 ident: 10.1016/j.ijpvp.2022.104877_bib20 article-title: Fracture toughness of welds-effect of brittle zones and strength mismatch publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2004.04.120 contributor: fullname: Neves – volume: 638 start-page: 240 year: 2015 ident: 10.1016/j.ijpvp.2022.104877_bib26 article-title: Correlation of microstructure and fracture toughness of advanced 9Cr/CrMoV dissimilarly welded joint publication-title: J. Constr. Steel Res. contributor: fullname: Guo – volume: 34 start-page: 1121 year: 1986 ident: 10.1016/j.ijpvp.2022.104877_bib17 article-title: Effects of microstructure on cleavage fracture in pressure-vessel steel publication-title: Acta Metall. doi: 10.1016/0001-6160(86)90222-1 contributor: fullname: Bowen – volume: 17 start-page: 40 year: 2010 ident: 10.1016/j.ijpvp.2022.104877_bib14 article-title: Effect of substructure on toughness of lath martensite/bainite mixed structure in low-carbon steels publication-title: J. Iron Steel Res. Int. doi: 10.1016/S1006-706X(10)60168-9 contributor: fullname: Luo – volume: 85 start-page: 1 year: 2012 ident: 10.1016/j.ijpvp.2022.104877_bib1 article-title: Review of fracture toughness (G, K, J, CTOD, CTOA) testing and standardization publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2012.02.001 contributor: fullname: Zhu – volume: 189 year: 2022 ident: 10.1016/j.ijpvp.2022.104877_bib21 article-title: Experimental study on fracture toughness of quenched and tempered and TMCP high strength steels publication-title: J. Constr. Steel Res. doi: 10.1016/j.jcsr.2021.107096 contributor: fullname: Jiang – volume: 17 start-page: 888 year: 2008 ident: 10.1016/j.ijpvp.2022.104877_bib31 article-title: Correlation of yield strength and tensile strength with hardness for steels publication-title: J. Mater. Eng. Perform. doi: 10.1007/s11665-008-9225-5 contributor: fullname: Pavlina – volume: 50 start-page: 4755 issue: 19 year: 2002 ident: 10.1016/j.ijpvp.2022.104877_bib18 article-title: Effect of carbide distribution on the fracture toughness in the transition temperature region of an SA 508 steel publication-title: Acta Mater. doi: 10.1016/S1359-6454(02)00313-0 contributor: fullname: Lee – volume: 12 start-page: 174 year: 2022 ident: 10.1016/j.ijpvp.2022.104877_bib27 article-title: Fracture toughness of different region materials from a dissimilar metal welded joint in steam turbine rotor publication-title: Coat doi: 10.3390/coatings12020174 contributor: fullname: Wang – volume: 726 start-page: 332 year: 2018 ident: 10.1016/j.ijpvp.2022.104877_bib8 article-title: Investigation on the influence of loading-rate on fracture toughness of AHSS grades publication-title: Mater. Sci. Eng., A doi: 10.1016/j.msea.2018.04.061 contributor: fullname: Golling – volume: 252 year: 2021 ident: 10.1016/j.ijpvp.2022.104877_bib7 article-title: Analytical J-integral model for mode-I cracks in ductile materials with three-dimensional constraints publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2021.107801 contributor: fullname: Yu – volume: 765 year: 2019 ident: 10.1016/j.ijpvp.2022.104877_bib25 article-title: Analysis of fracture toughness properties of wire + arc additive manufactured high strength low alloy structural steel components publication-title: Mater. Sci. Eng., A doi: 10.1016/j.msea.2019.138285 contributor: fullname: Dirisu – volume: 782 year: 2020 ident: 10.1016/j.ijpvp.2022.104877_bib44 article-title: The interdependence of microstructure, strength and fracture toughness in a novel β titanium alloy Ti-5Al-4Zr-8Mo-7V publication-title: Mater. Sci. Eng., A doi: 10.1016/j.msea.2020.139248 contributor: fullname: Zhu – volume: 528 start-page: 631 issue: 2 year: 2010 ident: 10.1016/j.ijpvp.2022.104877_bib39 article-title: Investigation of abnormal high impact toughness in simulated welding CGHAZ of a 8%Ni 980MPa high strength steel publication-title: Mater. Sci. Eng., A doi: 10.1016/j.msea.2010.09.053 contributor: fullname: Cao – volume: 748 start-page: 911 year: 2018 ident: 10.1016/j.ijpvp.2022.104877_bib34 article-title: Characterization of wire arc additive manufacturing 2Cr13 part: process stability, microstructural evolution, and tensile properties publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2018.03.222 contributor: fullname: Ge – volume: 615 start-page: 98 year: 2014 ident: 10.1016/j.ijpvp.2022.104877_bib40 article-title: Microstructure characteristics and temperature-dependent high cycle fatigue behavior of advanced 9% Cr/CrMoV dissimilarly welded joint publication-title: Mater. Sci. Eng., A doi: 10.1016/j.msea.2014.07.067 contributor: fullname: Wu – volume: 16 start-page: 233 issue: 2 year: 1985 ident: 10.1016/j.ijpvp.2022.104877_bib38 article-title: On macroscopic and microscopic analyses for crack initiation and crack growth toughness in ductile alloys publication-title: Metall. Mater. Trans. A doi: 10.1007/BF02816050 contributor: fullname: Ritchie – volume: 127 start-page: 8 year: 2019 ident: 10.1016/j.ijpvp.2022.104877_bib6 article-title: Numerical simulation on fracture resistance and factors affecting toughness for welded joint of low-alloy steel publication-title: Adv. Eng. Software doi: 10.1016/j.advengsoft.2018.10.006 contributor: fullname: Zhao – volume: 9 start-page: 17 year: 1977 ident: 10.1016/j.ijpvp.2022.104877_bib29 article-title: Pop-in behavior induced by interaction of cracks publication-title: Eng. Fract. Mech. doi: 10.1016/0013-7944(77)90048-0 contributor: fullname: Tomokazu – volume: 24 start-page: 361 year: 1957 ident: 10.1016/j.ijpvp.2022.104877_bib3 article-title: Analysis of stresses and strains near the end of a crack traversing a plate publication-title: J. Appl. Mech. doi: 10.1115/1.4011547 contributor: fullname: Irwin – volume: 48 start-page: 55 issue: 1 year: 2002 ident: 10.1016/j.ijpvp.2022.104877_bib16 article-title: A toughness study of the weld heat-affected zone of a 9Cr–1Mo steel publication-title: Mater. Char. doi: 10.1016/S1044-5803(02)00247-4 contributor: fullname: Moitra – volume: 695 start-page: 154 year: 2017 ident: 10.1016/j.ijpvp.2022.104877_bib15 article-title: The important role of martensite laths to fracture toughness for the ductile fracture controlled by the strain in EA4T axle steel publication-title: Mater. Sci. Eng., A doi: 10.1016/j.msea.2017.03.110 contributor: fullname: Liang – volume: 11 start-page: 801 year: 2021 ident: 10.1016/j.ijpvp.2022.104877_bib22 article-title: Effect of laser welding heat input on fatigue crack growth and CTOD fracture toughness of HSLA steel joints publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2021.01.038 contributor: fullname: Ribeiro – volume: 148 start-page: 110 year: 2015 ident: 10.1016/j.ijpvp.2022.104877_bib24 article-title: A comparison between fracture toughness at different locations of longitudinal submerged arc welded and spiral submerged arc welded joints of API X80 pipeline steels publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2015.09.003 contributor: fullname: Chen – volume: 35 start-page: 379 year: 1968 ident: 10.1016/j.ijpvp.2022.104877_bib4 article-title: A path independent integral and the approximate analysis of strain concentration by notches and cracks publication-title: J. Appl. Mech. doi: 10.1115/1.3601206 contributor: fullname: Rice – volume: 743 start-page: 494 year: 2019 ident: 10.1016/j.ijpvp.2022.104877_bib13 article-title: Plane-strain fracture toughness of AISI 4140 steel austempered below MS publication-title: Mater. Sci. Eng., A doi: 10.1016/j.msea.2018.11.122 contributor: fullname: Feng – volume: 561 start-page: 126 year: 2013 ident: 10.1016/j.ijpvp.2022.104877_bib19 article-title: Cleavage initiation in steel: competition between large grains and large particles publication-title: Mater. Sci. Eng., A doi: 10.1016/j.msea.2012.11.019 contributor: fullname: Ghosh – volume: 785 year: 2020 ident: 10.1016/j.ijpvp.2022.104877_bib32 article-title: Local strain hardening behavior in a dissimilar metal welded joint with buttering layer of ultra-supercritical turbine rotor publication-title: Mater. Sci. Eng. doi: 10.1016/j.msea.2020.139379 contributor: fullname: Wang – volume: 21 start-page: 2103 issue: 20 year: 2009 ident: 10.1016/j.ijpvp.2022.104877_bib41 article-title: On the fracture toughness of advanced materials publication-title: Adv. Mater. doi: 10.1002/adma.200803322 contributor: fullname: Launey – volume: 273–275 start-page: 40 year: 1999 ident: 10.1016/j.ijpvp.2022.104877_bib11 article-title: Martensite in steel: strength and structure publication-title: Mater. Sci. Eng., A doi: 10.1016/S0921-5093(99)00288-9 contributor: fullname: Krauss |
SSID | ssj0017056 |
Score | 2.4128551 |
Snippet | The fracture toughness of each micro-region in 30Cr2Ni4MoV steam turbine rotor welded joint was studied, including the central zone of the SAW bead (SAW-C),... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 104877 |
SubjectTerms | Crack propagation Fracture toughness Micro-region Microstructure Welded rotor |
Title | Influence of microstructure on the micro-region fracture toughness of the 30Cr2Ni4MoV turbine rotor welded joint |
URI | https://dx.doi.org/10.1016/j.ijpvp.2022.104877 |
Volume | 201 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9swDBbS9rIdhj2x7gUddutcOJIf0rHoMrRF10uzIevFkGx5dVbYQde02L8fqYfjoMWwDtjFCBjLSsgvCkV-Igl5L3Qs6kqnkS7HKkpYbuAnxXRUIaITkSku8ezwwWl-MhMfJ8lkNApNS1ay_2ppkIGt8eTsPazdPxQE8BpsDlewOlz_yu6HoeuIzZwj3c6ViMVEgUsMOGmELRmQZojHpPDNK-zXYxc-Txvg8f4lO2mSz93XHbhDoz962cEefefGXFTgqM67pl0L7U97JmYIMQ4KU1jGLU50jeXKL1xt6AW2zv7ek4CWNnD7Ta1Ex5ZtcGZ-LXuX25OIz86bG9ME6awJ3GLA-49lO4xmMB4I0CHEFo7ZrDhN9miXZdy5qu27xq3UIpcRT13VrLCUM_eoW38LLkIx323mi2ssUsoY5raFbyCzXm_7FGfDyRjyVzImN8gWg1UMFtGtvcPJ7KhPUuVx6lLh_tOFolaWPnhrqrsdn4EzM31MHvldCN1z8HlCRqZ9Sh4OalM-I4seSLSr6TqQaNdSQAgdAokGINEeSDgQbxsAiXogUQsk6oBELZCeky-fJtP9g8i354hK8HuuorysDM8lOLwilUbr3CiVVTV8WQPqAs-ozPOYGZ0lOtZCCV1JXmrYMKQ846Yu-Quy2XateUloonSttJIl-LNJKsaKcZml5XhcMhnXVbpNPgTdFQtXhaUI9MR5YVVdoKoLp-ptkgX9Ft6RdA5iAYD408BX_zrwNXmwQvMbsgn2MG_Jxs9q-c6j5jcMoZrY |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+microstructure+on+the+micro-region+fracture+toughness+of+the+30Cr2Ni4MoV+turbine+rotor+welded+joint&rft.jtitle=The+International+journal+of+pressure+vessels+and+piping&rft.au=Guo%2C+Yang&rft.au=Li%2C+Zeyu&rft.au=Dong%2C+Zhiwei&rft.au=Xiong%2C+Jiankun&rft.date=2023-02-01&rft.pub=Elsevier+Ltd&rft.issn=0308-0161&rft.eissn=1879-3541&rft.volume=201&rft_id=info:doi/10.1016%2Fj.ijpvp.2022.104877&rft.externalDocID=S0308016122002629 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0308-0161&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0308-0161&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0308-0161&client=summon |