Existence and uniqueness of mild solution to fractional stochastic heat equation

For a class of non-autonomous parabolic stochastic partial differential equations defined on a bounded open subset $D\subset {\mathbb{R}^{d}}$ and driven by an ${L^{2}}(D)$-valued fractional Brownian motion with the Hurst index $H>1/2$, a new result on existence and uniqueness of a mild solution...

Full description

Saved in:
Bibliographic Details
Published in:Modern Stochastics: Theory and Applications Vol. 6; no. 1; pp. 57 - 79
Main Authors: Kostiantyn Ralchenko, Georgiy Shevchenko
Format: Journal Article
Language:English
Published: VTeX 01-03-2019
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract For a class of non-autonomous parabolic stochastic partial differential equations defined on a bounded open subset $D\subset {\mathbb{R}^{d}}$ and driven by an ${L^{2}}(D)$-valued fractional Brownian motion with the Hurst index $H>1/2$, a new result on existence and uniqueness of a mild solution is established. Compared to the existing results, the uniqueness in a fully nonlinear case is shown, not assuming the coefficient in front of the noise to be affine. Additionally, the existence of moments for the solution is established.
AbstractList For a class of non-autonomous parabolic stochastic partial differential equations defined on a bounded open subset $D\subset {\mathbb{R}^{d}}$ and driven by an ${L^{2}}(D)$-valued fractional Brownian motion with the Hurst index $H>1/2$, a new result on existence and uniqueness of a mild solution is established. Compared to the existing results, the uniqueness in a fully nonlinear case is shown, not assuming the coefficient in front of the noise to be affine. Additionally, the existence of moments for the solution is established.
Author Kostiantyn Ralchenko
Georgiy Shevchenko
Author_xml – sequence: 1
  fullname: Kostiantyn Ralchenko
  organization: Department of Probability Theory, Statistics and Actuarial Mathematics, Taras Shevchenko National University of Kyiv, 64, Volodymyrs’ka St., 01601 Kyiv, Ukraine
– sequence: 2
  fullname: Georgiy Shevchenko
  organization: Department of Probability Theory, Statistics and Actuarial Mathematics, Taras Shevchenko National University of Kyiv, 64, Volodymyrs’ka St., 01601 Kyiv, Ukraine
BookMark eNo9j91Kw0AUhBepYK298wH2BaL7n81lKVULFQWrt-Fk98SmpFmb3YC-vamKVzPMwPDNJZl0oUNCrjm74Vrr4pbb7O3xZbvgQpyRqZCaZ4ZpNfn3ylyQeYx7xpiwOpfKTsnz6rOJCTuHFDpPh645DthhjDTU9NC0nsbQDqkJHU2B1j24k4eWxhTcDmJqHN0hJIrHAU7VFTmvoY04_9MZeb1bbZcP2ebpfr1cbDInmUhZrmvu0EqwQlWFLyqFYKQrpCqUhpFOCZFbqDSqETz33hqBdY68Ltx4CuSMrH93fYB9-dE3B-i_ygBN-ROE_r2EfqRrsfSSM4dVpVjlFTfGOpTGAPeICjQa-Q3jImEF
CitedBy_id crossref_primary_10_15559_20_VMSTA162
crossref_primary_10_15559_20_VMSTA168
ContentType Journal Article
DBID DOA
DOI 10.15559/18-VMSTA122
DatabaseName DOAJ Directory of Open Access Journals
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2351-6054
EndPage 79
ExternalDocumentID oai_doaj_org_article_d310cebb40bd41668ce366a1dee4a5e6
GroupedDBID ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
GROUPED_DOAJ
OK1
ID FETCH-LOGICAL-c302t-75f1ce83a824b9d9b4ea63c934945a85742278ab5e46047dd862ef7e1f9c054a3
IEDL.DBID DOA
ISSN 2351-6046
IngestDate Tue Oct 22 15:14:24 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c302t-75f1ce83a824b9d9b4ea63c934945a85742278ab5e46047dd862ef7e1f9c054a3
OpenAccessLink https://doaj.org/article/d310cebb40bd41668ce366a1dee4a5e6
PageCount 23
ParticipantIDs doaj_primary_oai_doaj_org_article_d310cebb40bd41668ce366a1dee4a5e6
PublicationCentury 2000
PublicationDate 2019-03-01
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-01
  day: 01
PublicationDecade 2010
PublicationTitle Modern Stochastics: Theory and Applications
PublicationYear 2019
Publisher VTeX
Publisher_xml – name: VTeX
SSID ssj0002857348
Score 2.1557274
Snippet For a class of non-autonomous parabolic stochastic partial differential equations defined on a bounded open subset $D\subset {\mathbb{R}^{d}}$ and driven by an...
SourceID doaj
SourceType Open Website
StartPage 57
SubjectTerms fractional Brownian motion
Green’s function
mild solution
Stochastic partial differential equation
Title Existence and uniqueness of mild solution to fractional stochastic heat equation
URI https://doaj.org/article/d310cebb40bd41668ce366a1dee4a5e6
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ07TwMxDMcj6MSCQIB4KwNr1EvzuGQsUMQCQmpBbKc8fAIELZRW4uPjJAfqxsJ6g3W2L8nfJ-dnQs5MdAZVcWBRCcekd7ik8BRgStbaR-5AtnmI7bi-fTSXo4TJ-R31lXrCCh64BK4fUX8E8F5WPqJ40CaA0NrxCCCdggLbrvRKMfWSfxmphG3Jk-UUZxqrwK7rXaGE7nPDHm7GkyFPM3NXWP35ULnaIpudGqTD8hbbZA2mO-Ru9JVij9mgWObTZUasph2Jzlr69vwa6c_3Qhcz2s7L1QQ0gzouPLkEXqZpi6XwUTjeu-T-ajS5uGbd4AMWRDVYsFq1PIARzgykt9F6CU6LYBNKRjl0TaYLrM4rkOhZHSOWJdDWwFsbUII5sUd609kU9gmtuY1QGcAwasmDMmCdTgbaMIBgxAE5T-4374Vt0STadH6AOWi6HDR_5eDwP4wckQ0UI7b0dx2T3mK-hBOy_hmXpzm338dBqiY
link.rule.ids 315,782,786,866,2106,27933,27934
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Existence+and+uniqueness+of+mild+solution+to+fractional+stochastic+heat+equation&rft.jtitle=Modern+Stochastics%3A+Theory+and+Applications&rft.au=Kostiantyn+Ralchenko&rft.au=Georgiy+Shevchenko&rft.date=2019-03-01&rft.pub=VTeX&rft.issn=2351-6046&rft.eissn=2351-6054&rft.volume=6&rft.issue=1&rft.spage=57&rft.epage=79&rft_id=info:doi/10.15559%2F18-VMSTA122&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d310cebb40bd41668ce366a1dee4a5e6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2351-6046&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2351-6046&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2351-6046&client=summon