Assessing the impact of transcriptomics data analysis pipelines on downstream functional enrichment results

Abstract Transcriptomics is widely used to assess the state of biological systems. There are many tools for the different steps, such as normalization, differential expression, and enrichment. While numerous studies have examined the impact of method choices on differential expression results, littl...

Full description

Saved in:
Bibliographic Details
Published in:Nucleic acids research Vol. 52; no. 14; pp. 8100 - 8111
Main Authors: Paton, Victor, Ramirez Flores, Ricardo Omar, Gabor, Attila, Badia-i-Mompel, Pau, Tanevski, Jovan, Garrido-Rodriguez, Martin, Saez-Rodriguez, Julio
Format: Journal Article
Language:English
Published: England Oxford University Press 29-06-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Abstract Transcriptomics is widely used to assess the state of biological systems. There are many tools for the different steps, such as normalization, differential expression, and enrichment. While numerous studies have examined the impact of method choices on differential expression results, little attention has been paid to their effects on further downstream functional analysis, which typically provides the basis for interpretation and follow-up experiments. To address this, we introduce FLOP, a comprehensive nextflow-based workflow combining methods to perform end-to-end analyses of transcriptomics data. We illustrate FLOP on datasets ranging from end-stage heart failure patients to cancer cell lines. We discovered effects not noticeable at the gene-level, and observed that not filtering the data had the highest impact on the correlation between pipelines in the gene set space. Moreover, we performed three benchmarks to evaluate the 12 pipelines included in FLOP, and confirmed that filtering is essential in scenarios of expected moderate-to-low biological signal. Overall, our results underscore the impact of carefully evaluating the consequences of the choice of preprocessing methods on downstream enrichment analyses. We envision FLOP as a valuable tool to measure the robustness of functional analyses, ultimately leading to more reliable and conclusive biological findings. Graphical Abstract Graphical Abstract
AbstractList Transcriptomics is widely used to assess the state of biological systems. There are many tools for the different steps, such as normalization, differential expression, and enrichment. While numerous studies have examined the impact of method choices on differential expression results, little attention has been paid to their effects on further downstream functional analysis, which typically provides the basis for interpretation and follow-up experiments. To address this, we introduce FLOP, a comprehensive nextflow-based workflow combining methods to perform end-to-end analyses of transcriptomics data. We illustrate FLOP on datasets ranging from end-stage heart failure patients to cancer cell lines. We discovered effects not noticeable at the gene-level, and observed that not filtering the data had the highest impact on the correlation between pipelines in the gene set space. Moreover, we performed three benchmarks to evaluate the 12 pipelines included in FLOP, and confirmed that filtering is essential in scenarios of expected moderate-to-low biological signal. Overall, our results underscore the impact of carefully evaluating the consequences of the choice of preprocessing methods on downstream enrichment analyses. We envision FLOP as a valuable tool to measure the robustness of functional analyses, ultimately leading to more reliable and conclusive biological findings.
Transcriptomics is widely used to assess the state of biological systems. There are many tools for the different steps, such as normalization, differential expression, and enrichment. While numerous studies have examined the impact of method choices on differential expression results, little attention has been paid to their effects on further downstream functional analysis, which typically provides the basis for interpretation and follow-up experiments. To address this, we introduce FLOP, a comprehensive nextflow-based workflow combining methods to perform end-to-end analyses of transcriptomics data. We illustrate FLOP on datasets ranging from end-stage heart failure patients to cancer cell lines. We discovered effects not noticeable at the gene-level, and observed that not filtering the data had the highest impact on the correlation between pipelines in the gene set space. Moreover, we performed three benchmarks to evaluate the 12 pipelines included in FLOP, and confirmed that filtering is essential in scenarios of expected moderate-to-low biological signal. Overall, our results underscore the impact of carefully evaluating the consequences of the choice of preprocessing methods on downstream enrichment analyses. We envision FLOP as a valuable tool to measure the robustness of functional analyses, ultimately leading to more reliable and conclusive biological findings.Transcriptomics is widely used to assess the state of biological systems. There are many tools for the different steps, such as normalization, differential expression, and enrichment. While numerous studies have examined the impact of method choices on differential expression results, little attention has been paid to their effects on further downstream functional analysis, which typically provides the basis for interpretation and follow-up experiments. To address this, we introduce FLOP, a comprehensive nextflow-based workflow combining methods to perform end-to-end analyses of transcriptomics data. We illustrate FLOP on datasets ranging from end-stage heart failure patients to cancer cell lines. We discovered effects not noticeable at the gene-level, and observed that not filtering the data had the highest impact on the correlation between pipelines in the gene set space. Moreover, we performed three benchmarks to evaluate the 12 pipelines included in FLOP, and confirmed that filtering is essential in scenarios of expected moderate-to-low biological signal. Overall, our results underscore the impact of carefully evaluating the consequences of the choice of preprocessing methods on downstream enrichment analyses. We envision FLOP as a valuable tool to measure the robustness of functional analyses, ultimately leading to more reliable and conclusive biological findings.
Abstract Transcriptomics is widely used to assess the state of biological systems. There are many tools for the different steps, such as normalization, differential expression, and enrichment. While numerous studies have examined the impact of method choices on differential expression results, little attention has been paid to their effects on further downstream functional analysis, which typically provides the basis for interpretation and follow-up experiments. To address this, we introduce FLOP, a comprehensive nextflow-based workflow combining methods to perform end-to-end analyses of transcriptomics data. We illustrate FLOP on datasets ranging from end-stage heart failure patients to cancer cell lines. We discovered effects not noticeable at the gene-level, and observed that not filtering the data had the highest impact on the correlation between pipelines in the gene set space. Moreover, we performed three benchmarks to evaluate the 12 pipelines included in FLOP, and confirmed that filtering is essential in scenarios of expected moderate-to-low biological signal. Overall, our results underscore the impact of carefully evaluating the consequences of the choice of preprocessing methods on downstream enrichment analyses. We envision FLOP as a valuable tool to measure the robustness of functional analyses, ultimately leading to more reliable and conclusive biological findings. Graphical Abstract Graphical Abstract
Transcriptomics is widely used to assess the state of biological systems. There are many tools for the different steps, such as normalization, differential expression, and enrichment. While numerous studies have examined the impact of method choices on differential expression results, little attention has been paid to their effects on further downstream functional analysis, which typically provides the basis for interpretation and follow-up experiments. To address this, we introduce FLOP, a comprehensive nextflow-based workflow combining methods to perform end-to-end analyses of transcriptomics data. We illustrate FLOP on datasets ranging from end-stage heart failure patients to cancer cell lines. We discovered effects not noticeable at the gene-level, and observed that not filtering the data had the highest impact on the correlation between pipelines in the gene set space. Moreover, we performed three benchmarks to evaluate the 12 pipelines included in FLOP, and confirmed that filtering is essential in scenarios of expected moderate-to-low biological signal. Overall, our results underscore the impact of carefully evaluating the consequences of the choice of preprocessing methods on downstream enrichment analyses. We envision FLOP as a valuable tool to measure the robustness of functional analyses, ultimately leading to more reliable and conclusive biological findings. Graphical Abstract
Author Ramirez Flores, Ricardo Omar
Tanevski, Jovan
Garrido-Rodriguez, Martin
Paton, Victor
Gabor, Attila
Badia-i-Mompel, Pau
Saez-Rodriguez, Julio
Author_xml – sequence: 1
  givenname: Victor
  orcidid: 0000-0002-6074-6897
  surname: Paton
  fullname: Paton, Victor
– sequence: 2
  givenname: Ricardo Omar
  orcidid: 0000-0003-0087-371X
  surname: Ramirez Flores
  fullname: Ramirez Flores, Ricardo Omar
– sequence: 3
  givenname: Attila
  orcidid: 0000-0002-0776-1182
  surname: Gabor
  fullname: Gabor, Attila
– sequence: 4
  givenname: Pau
  orcidid: 0000-0002-1004-3923
  surname: Badia-i-Mompel
  fullname: Badia-i-Mompel, Pau
– sequence: 5
  givenname: Jovan
  orcidid: 0000-0001-7177-1003
  surname: Tanevski
  fullname: Tanevski, Jovan
– sequence: 6
  givenname: Martin
  orcidid: 0000-0003-4125-5643
  surname: Garrido-Rodriguez
  fullname: Garrido-Rodriguez, Martin
  email: martin.garrido@uni-heidelberg.de
– sequence: 7
  givenname: Julio
  orcidid: 0000-0002-8552-8976
  surname: Saez-Rodriguez
  fullname: Saez-Rodriguez, Julio
  email: pub.saez@uni-heidelberg.de
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38943333$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1P3DAQhi1EBcvHiXvlU4VUpdhxkrVP1QrRDwmpl_ZseZ3xrktiB48D4t_jahdULvgyBz965h29J-QwxACEXHD2hTMlroJJV5s7A21bH5AFF11dNaqrD8mCCdZWnDXymJwg_mWMN7xtjsixkKoR5S3I3QoREH3Y0LwF6sfJ2EyjozmZgDb5KcfRW6S9yYaaYIYn9EgnP8HgAyCNgfbxMWBOYEbq5mCzjwWjEJK32xFCpglwHjKekQ_ODAjn-3lK_ny7-X39o7r99f3n9eq2soLxXPVL5XgNjLe97JetU71k0oFsup47AFF3a8XWrWh5I5VkohzTCekUyE6sG6vEKfm6807zeoTelgjJDHpKfjTpSUfj9duf4Ld6Ex8054IveS2L4XJvSPF-Bsx69GhhGEyAOKMWbCkKWDIU9PMOtSkiJnCvezjT__rRpR-976fQH_-P9sq-FFKATzsgztO7pmcsAp7C
Cites_doi 10.1371/journal.pone.0232271
10.1038/s41576-019-0150-2
10.1186/s12859-018-2261-8
10.1371/journal.pcbi.1009935
10.1186/gb-2014-15-2-r29
10.1093/bioinformatics/btp616
10.1093/bioinformatics/19.2.185
10.1093/bioinformatics/bti623
10.1038/s44161-023-00260-8
10.1093/bioadv/vbac016
10.1038/s41598-020-76881-x
10.1016/j.cels.2015.12.004
10.1038/s41467-017-02391-6
10.1186/gb-2010-11-3-r25
10.1186/gb-2013-14-9-r95
10.1038/s44161-022-00028-6
10.1093/nar/gkt111
10.1186/s13059-014-0550-8
10.1371/journal.pone.0190152
10.1093/bib/bbz158
10.1093/bioinformatics/bts635
10.12688/f1000research.7035.2
10.1186/s12859-022-05023-z
10.1093/nar/gkv806
10.1002/bimj.202200212
10.18547/gcb.2017.vol3.iss3.e31
10.1016/j.ygeno.2014.12.002
10.1093/nar/gkv007
10.12688/f1000research.9005.1
10.1186/s12859-015-0778-7
10.1186/gb-2010-11-10-r106
10.1111/j.2517-6161.1995.tb02031.x
10.1038/nmeth1156
10.1073/pnas.0506580102
10.1186/s13059-023-02962-5
10.1161/CIRCULATIONAHA.113.003863
10.1038/nmeth.4197
10.1038/s41467-017-00050-4
10.1161/JAHA.120.019667
10.1038/s41587-019-0201-4
10.1038/s41592-023-01814-1
10.1093/nar/gkad841
10.1198/016214501753381814
10.1016/j.celrep.2023.112086
10.1186/s12859-021-04554-1
10.1038/nature11003
10.1126/science.abo1984
10.3390/genes11121487
10.1038/s41586-023-06816-9
10.1186/1471-2105-14-91
10.1038/s41586-022-05060-x
10.1093/bioinformatics/18.suppl_1.S96
10.1016/j.xcrm.2021.100492
10.1038/nbt.3820
10.1016/j.celrep.2022.111400
10.1186/s12859-017-1674-0
10.1261/rna.046011.114
10.1038/s41586-022-04817-8
10.1101/2024.04.04.588111
10.1152/ajpheart.00016.2019
10.5603/CJ.a2017.0052
10.1186/s13059-020-02136-7
10.1186/gb-2007-8-9-r183
ContentType Journal Article
Copyright The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research. 2024
The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research.
Copyright_xml – notice: The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research. 2024
– notice: The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research.
DBID TOX
NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1093/nar/gkae552
DatabaseName Oxford Open
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef
MEDLINE - Academic


DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1362-4962
EndPage 8111
ExternalDocumentID 10_1093_nar_gkae552
38943333
10.1093/nar/gkae552
Genre Journal Article
GrantInformation_xml – fundername: Life Science Alliance Heidelberg Mannheim
– fundername: Heidelberg University
– fundername: State Parliament of Baden-Württemberg for the Innovation Campus Health
– fundername: CRC/SFB 1550 'Molecular Circuits of Heart Disease'
– fundername: ;
GroupedDBID ---
-DZ
-~X
.55
.GJ
.I3
0R~
123
18M
1TH
29N
2WC
3O-
4.4
482
53G
5VS
5WA
6.Y
70E
85S
A8Z
AAFWJ
AAHBH
AAMVS
AAOGV
AAPPN
AAPXW
AAUQX
AAVAP
AAWDT
AAYJJ
ABPTD
ABQLI
ABQTQ
ABSAR
ABSMQ
ABXVV
ACFRR
ACGFO
ACGFS
ACIPB
ACIWK
ACMRT
ACNCT
ACPQN
ACPRK
ACUTJ
ACZBC
ADBBV
ADHZD
AEGXH
AEHUL
AEKPW
AENEX
AENZO
AFFNX
AFRAH
AFSHK
AFULF
AFYAG
AGKRT
AGMDO
AHMBA
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ANFBD
AOIJS
AQDSO
ASAOO
ASPBG
ATDFG
ATTQO
AVWKF
AZFZN
BAWUL
BAYMD
BCNDV
BEYMZ
BTTYL
C1A
CAG
CIDKT
COF
CS3
CXTWN
CZ4
D0S
DFGAJ
DIK
DU5
D~K
E3Z
EBD
EBS
EJD
ELUNK
EMOBN
ESTFP
F20
F5P
FEDTE
GROUPED_DOAJ
GX1
H13
HH5
HVGLF
HYE
HZ~
H~9
IH2
KAQDR
KQ8
KSI
M49
MBTAY
MVM
M~E
NTWIH
NU-
OAWHX
OBC
OBS
OEB
OES
OJQWA
OVD
O~Y
P2P
PB-
PEELM
PQQKQ
QBD
R44
RD5
RNI
RNS
ROL
ROX
ROZ
RPM
RXO
RZF
RZO
SJN
SV3
TCN
TEORI
TN5
TOX
TR2
UHB
WG7
WOQ
X7H
X7M
XSB
XSW
YSK
ZKX
ZXP
~91
~D7
~KM
ABEJV
NPM
AAYXX
CITATION
7X8
5PM
AFPKN
ID FETCH-LOGICAL-c301t-d79f12e015d8d75f9d808fe846d1fee326b90b5351489803389638f9e863b4c93
IEDL.DBID RPM
ISSN 0305-1048
1362-4962
IngestDate Tue Aug 13 05:20:38 EDT 2024
Sat Oct 26 04:27:11 EDT 2024
Fri Nov 22 03:06:56 EST 2024
Sat Nov 02 12:28:38 EDT 2024
Thu Oct 10 23:25:18 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c301t-d79f12e015d8d75f9d808fe846d1fee326b90b5351489803389638f9e863b4c93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7177-1003
0000-0003-4125-5643
0000-0002-0776-1182
0000-0003-0087-371X
0000-0002-6074-6897
0000-0002-1004-3923
0000-0002-8552-8976
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11317128/
PMID 38943333
PQID 3073712535
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11317128
proquest_miscellaneous_3073712535
crossref_primary_10_1093_nar_gkae552
pubmed_primary_38943333
oup_primary_10_1093_nar_gkae552
PublicationCentury 2000
PublicationDate 2024-06-29
PublicationDateYYYYMMDD 2024-06-29
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-29
  day: 29
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nucleic acids research
PublicationTitleAlternate Nucleic Acids Res
PublicationYear 2024
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Schubert (2024081123563708800_B41) 2018; 9
Badia-I-Mompel (2024081123563708800_B24) 2022; 2
Chaffin (2024081123563708800_B48) 2022; 608
Corchete (2024081123563708800_B54) 2020; 10
Amrute (2024081123563708800_B47) 2023; 2
Schiano (2024081123563708800_B61) 2017; 24
Amaratunga (2024081123563708800_B11) 2001; 96
Law (2024081123563708800_B6) 2016; 5
Sha (2024081123563708800_B8) 2015; 2015
Friedrich (2024081123563708800_B34) 2024; 66
Pepin (2024081123563708800_B60) 2019; 317
Seyednasrollah (2024081123563708800_B28) 2016; 44
Douglass (2024081123563708800_B38) 2022; 3
Reichart (2024081123563708800_B46) 2022; 377
Barretina (2024081123563708800_B37) 2012; 483
Dobin (2024081123563708800_B5) 2013; 29
Spurrell (2024081123563708800_B58) 2022; 40
Benjamini (2024081123563708800_B64) 1995; 57
González Gayte (2024081123563708800_B53) 2017; 3
Di Tommaso (2024081123563708800_B35) 2017; 35
Law (2024081123563708800_B10) 2014; 15
Soneson (2024081123563708800_B30) 2013; 14
Koenig (2024081123563708800_B45) 2022; 1
Srivastava (2024081123563708800_B52) 2022; 23
Li (2024081123563708800_B14) 2015; 16
Geistlinger (2024081123563708800_B20) 2021; 22
Subramanian (2024081123563708800_B22) 2005; 102
Lataretu (2024081123563708800_B51) 2020; 11
Ching (2024081123563708800_B31) 2014; 20
Baik (2024081123563708800_B29) 2020; 15
Rich (2024081123563708800_B57) 2024
Patro (2024081123563708800_B4) 2017; 14
Robinson (2024081123563708800_B16) 2010; 26
Love (2024081123563708800_B7) 2016; 4
Love (2024081123563708800_B17) 2014; 15
Ahlmann-Eltze (2024081123563708800_B56) 2023; 20
Bolstad (2024081123563708800_B12) 2003; 19
Robinson (2024081123563708800_B9) 2010; 11
Sonrel (2024081123563708800_B39) 2023; 24
Rapaport (2024081123563708800_B27) 2013; 14
Stark (2024081123563708800_B2) 2019; 20
Liu (2024081123563708800_B59) 2015; 105
Sing (2024081123563708800_B63) 2005; 21
Ritchie (2024081123563708800_B15) 2015; 43
Schuster (2024081123563708800_B1) 2008; 5
Sahraeian (2024081123563708800_B26) 2017; 8
Kim (2024081123563708800_B3) 2019; 37
Müller-Dott (2024081123563708800_B42) 2023; 51
Kuppe (2024081123563708800_B44) 2022; 608
Simonson (2024081123563708800_B49) 2023; 42
Anders (2024081123563708800_B18) 2010; 11
Huber (2024081123563708800_B13) 2002; 18
Ramirez Flores (2024081123563708800_B36) 2021; 10
Quinn (2024081123563708800_B25) 2018; 19
Väremo (2024081123563708800_B23) 2013; 41
Deyneko (2024081123563708800_B55) 2022; 23
Zyla (2024081123563708800_B40) 2017; 18
Yang (2024081123563708800_B62) 2014; 129
Costa-Silva (2024081123563708800_B33) 2017; 12
Liberzon (2024081123563708800_B43) 2015; 1
Wijesooriya (2024081123563708800_B19) 2022; 18
Cui (2024081123563708800_B50) 2024; 625
Huang (2024081123563708800_B21) 2007; 8
Germain (2024081123563708800_B32); 21
References_xml – volume: 15
  start-page: e0232271
  year: 2020
  ident: 2024081123563708800_B29
  article-title: Benchmarking RNA-seq differential expression analysis methods using spike-in and simulation data
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0232271
  contributor:
    fullname: Baik
– volume: 20
  start-page: 631
  year: 2019
  ident: 2024081123563708800_B2
  article-title: RNA sequencing: the teenage years
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/s41576-019-0150-2
  contributor:
    fullname: Stark
– volume: 19
  start-page: 274
  year: 2018
  ident: 2024081123563708800_B25
  article-title: Benchmarking differential expression analysis tools for RNA-seq: normalization-based vs. log-ratio transformation-based methods
  publication-title: BMC Bioinf.
  doi: 10.1186/s12859-018-2261-8
  contributor:
    fullname: Quinn
– volume: 18
  start-page: e1009935
  year: 2022
  ident: 2024081123563708800_B19
  article-title: Urgent need for consistent standards in functional enrichment analysis
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1009935
  contributor:
    fullname: Wijesooriya
– volume: 15
  start-page: R29
  year: 2014
  ident: 2024081123563708800_B10
  article-title: voom: precision weights unlock linear model analysis tools for RNA-seq read counts
  publication-title: Genome Biol.
  doi: 10.1186/gb-2014-15-2-r29
  contributor:
    fullname: Law
– volume: 26
  start-page: 139
  year: 2010
  ident: 2024081123563708800_B16
  article-title: edgeR: a bioconductor package for differential expression analysis of digital gene expression data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp616
  contributor:
    fullname: Robinson
– volume: 19
  start-page: 185
  year: 2003
  ident: 2024081123563708800_B12
  article-title: A comparison of normalization methods for high density oligonucleotide array data based on variance and bias
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/19.2.185
  contributor:
    fullname: Bolstad
– volume: 21
  start-page: 3940
  year: 2005
  ident: 2024081123563708800_B63
  article-title: ROCR: visualizing classifier performance in R
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti623
  contributor:
    fullname: Sing
– volume: 2
  start-page: 399
  year: 2023
  ident: 2024081123563708800_B47
  article-title: Defining cardiac functional recovery in end-stage heart failure at single-cell resolution
  publication-title: Nat. Cardiovasc. Res.
  doi: 10.1038/s44161-023-00260-8
  contributor:
    fullname: Amrute
– volume: 2
  start-page: vbac016
  year: 2022
  ident: 2024081123563708800_B24
  article-title: decoupleR: ensemble of computational methods to infer biological activities from omics data
  publication-title: Bioinform. Adv.
  doi: 10.1093/bioadv/vbac016
  contributor:
    fullname: Badia-I-Mompel
– volume: 10
  start-page: 19737
  year: 2020
  ident: 2024081123563708800_B54
  article-title: Systematic comparison and assessment of RNA-seq procedures for gene expression quantitative analysis
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-76881-x
  contributor:
    fullname: Corchete
– volume: 1
  start-page: 417
  year: 2015
  ident: 2024081123563708800_B43
  article-title: The Molecular Signatures Database (MSigDB) hallmark gene set collection
  publication-title: Cell Syst.
  doi: 10.1016/j.cels.2015.12.004
  contributor:
    fullname: Liberzon
– volume: 9
  start-page: 20
  year: 2018
  ident: 2024081123563708800_B41
  article-title: Perturbation-response genes reveal signaling footprints in cancer gene expression
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-02391-6
  contributor:
    fullname: Schubert
– volume: 11
  start-page: R25
  year: 2010
  ident: 2024081123563708800_B9
  article-title: A scaling normalization method for differential expression analysis of RNA-seq data
  publication-title: Genome Biol.
  doi: 10.1186/gb-2010-11-3-r25
  contributor:
    fullname: Robinson
– volume: 14
  start-page: 3158
  year: 2013
  ident: 2024081123563708800_B27
  article-title: Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data
  publication-title: Genome Biol.
  doi: 10.1186/gb-2013-14-9-r95
  contributor:
    fullname: Rapaport
– volume: 1
  start-page: 263
  year: 2022
  ident: 2024081123563708800_B45
  article-title: Single-cell transcriptomics reveals cell-type-specific diversification in human heart failure
  publication-title: Nat. Cardiovasc. Res.
  doi: 10.1038/s44161-022-00028-6
  contributor:
    fullname: Koenig
– volume: 41
  start-page: 4378
  year: 2013
  ident: 2024081123563708800_B23
  article-title: Enriching the gene set analysis of genome-wide data by incorporating directionality of gene expression and combining statistical hypotheses and methods
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt111
  contributor:
    fullname: Väremo
– volume: 15
  start-page: 550
  year: 2014
  ident: 2024081123563708800_B17
  article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
  publication-title: Genome Biol.
  doi: 10.1186/s13059-014-0550-8
  contributor:
    fullname: Love
– volume: 12
  start-page: e0190152
  year: 2017
  ident: 2024081123563708800_B33
  article-title: RNA-seq differential expression analysis: an extended review and a software tool
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0190152
  contributor:
    fullname: Costa-Silva
– volume: 22
  start-page: 545
  year: 2021
  ident: 2024081123563708800_B20
  article-title: Toward a gold standard for benchmarking gene set enrichment analysis
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbz158
  contributor:
    fullname: Geistlinger
– volume: 29
  start-page: 15
  year: 2013
  ident: 2024081123563708800_B5
  article-title: STAR: ultrafast universal RNA-seq aligner
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts635
  contributor:
    fullname: Dobin
– volume: 4
  start-page: 1070
  year: 2016
  ident: 2024081123563708800_B7
  article-title: RNA-seq workflow: gene-level exploratory analysis and differential expression [version 1; peer review: 2 approved]
  publication-title: F1000Res.
  doi: 10.12688/f1000research.7035.2
  contributor:
    fullname: Love
– volume: 23
  start-page: 488
  year: 2022
  ident: 2024081123563708800_B55
  article-title: Modeling and cleaning RNA-seq data significantly improve detection of differentially expressed genes
  publication-title: BMC Bioinf.
  doi: 10.1186/s12859-022-05023-z
  contributor:
    fullname: Deyneko
– volume: 44
  start-page: e1
  year: 2016
  ident: 2024081123563708800_B28
  article-title: ROTS: reproducible RNA-seq biomarker detector-prognostic markers for clear cell renal cell cancer
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv806
  contributor:
    fullname: Seyednasrollah
– volume: 66
  start-page: e2200212
  year: 2024
  ident: 2024081123563708800_B34
  article-title: On the role of benchmarking data sets and simulations in method comparison studies
  publication-title: Biom. J.
  doi: 10.1002/bimj.202200212
  contributor:
    fullname: Friedrich
– volume: 3
  start-page: 31
  year: 2017
  ident: 2024081123563708800_B53
  article-title: DEgenes Hunter - A flexible R pipeline for automated RNA-seq studies in organisms without reference genome
  publication-title: Genom. Comput. Biol.
  doi: 10.18547/gcb.2017.vol3.iss3.e31
  contributor:
    fullname: González Gayte
– volume: 105
  start-page: 83
  year: 2015
  ident: 2024081123563708800_B59
  article-title: RNA-seq identifies novel myocardial gene expression signatures of heart failure
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2014.12.002
  contributor:
    fullname: Liu
– volume: 43
  start-page: e47
  year: 2015
  ident: 2024081123563708800_B15
  article-title: limma powers differential expression analyses for RNA-sequencing and microarray studies
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv007
  contributor:
    fullname: Ritchie
– volume: 5
  start-page: ISCB Comm J-1408
  year: 2016
  ident: 2024081123563708800_B6
  article-title: RNA-seq analysis is easy as 1-2-3 with limma, Glimma and edgeR [version 3; peer review: 3 approved]
  publication-title: F1000Res.
  doi: 10.12688/f1000research.9005.1
  contributor:
    fullname: Law
– volume: 16
  start-page: 347
  year: 2015
  ident: 2024081123563708800_B14
  article-title: Comparing the normalization methods for the differential analysis of Illumina high-throughput RNA-seq data
  publication-title: BMC Bioinf.
  doi: 10.1186/s12859-015-0778-7
  contributor:
    fullname: Li
– volume: 11
  start-page: R106
  year: 2010
  ident: 2024081123563708800_B18
  article-title: Differential expression analysis for sequence count data
  publication-title: Genome Biol.
  doi: 10.1186/gb-2010-11-10-r106
  contributor:
    fullname: Anders
– volume: 57
  start-page: 289
  year: 1995
  ident: 2024081123563708800_B64
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: J. R. Stat. Soc. Series B Stat. Methodol.
  doi: 10.1111/j.2517-6161.1995.tb02031.x
  contributor:
    fullname: Benjamini
– volume: 5
  start-page: 16
  year: 2008
  ident: 2024081123563708800_B1
  article-title: Next-generation sequencing transforms today's biology
  publication-title: Nat. Methods
  doi: 10.1038/nmeth1156
  contributor:
    fullname: Schuster
– volume: 102
  start-page: 15545
  year: 2005
  ident: 2024081123563708800_B22
  article-title: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0506580102
  contributor:
    fullname: Subramanian
– volume: 24
  start-page: 119
  year: 2023
  ident: 2024081123563708800_B39
  article-title: Meta-analysis of (single-cell method) benchmarks reveals the need for extensibility and interoperability
  publication-title: Genome Biol.
  doi: 10.1186/s13059-023-02962-5
  contributor:
    fullname: Sonrel
– volume: 129
  start-page: 1009
  year: 2014
  ident: 2024081123563708800_B62
  article-title: Deep RNA sequencing reveals dynamic regulation of myocardial noncoding RNAs in failing human heart and remodeling with mechanical circulatory support
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.113.003863
  contributor:
    fullname: Yang
– volume: 14
  start-page: 417
  year: 2017
  ident: 2024081123563708800_B4
  article-title: Salmon provides fast and bias-aware quantification of transcript expression
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4197
  contributor:
    fullname: Patro
– volume: 8
  start-page: 59
  year: 2017
  ident: 2024081123563708800_B26
  article-title: Gaining comprehensive biological insight into the transcriptome by performing a broad-spectrum RNA-seq analysis
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00050-4
  contributor:
    fullname: Sahraeian
– volume: 10
  start-page: e019667
  year: 2021
  ident: 2024081123563708800_B36
  article-title: Consensus transcriptional landscape of Human end-stage heart failure
  publication-title: J. Am. Heart Assoc.
  doi: 10.1161/JAHA.120.019667
  contributor:
    fullname: Ramirez Flores
– volume: 37
  start-page: 907
  year: 2019
  ident: 2024081123563708800_B3
  article-title: Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0201-4
  contributor:
    fullname: Kim
– volume: 2015
  start-page: 6461
  year: 2015
  ident: 2024081123563708800_B8
  article-title: Effect of low-expression gene filtering on detection of differentially expressed genes in RNA-seq data
  publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc.
  contributor:
    fullname: Sha
– volume: 20
  start-page: 665
  year: 2023
  ident: 2024081123563708800_B56
  article-title: Comparison of transformations for single-cell RNA-seq data
  publication-title: Nat. Methods
  doi: 10.1038/s41592-023-01814-1
  contributor:
    fullname: Ahlmann-Eltze
– volume: 51
  start-page: 10934
  year: 2023
  ident: 2024081123563708800_B42
  article-title: Expanding the coverage of regulons from high-confidence prior knowledge for accurate estimation of transcription factor activities
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkad841
  contributor:
    fullname: Müller-Dott
– volume: 96
  start-page: 1161
  year: 2001
  ident: 2024081123563708800_B11
  article-title: Analysis of data from viral DNA microchips
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214501753381814
  contributor:
    fullname: Amaratunga
– volume: 42
  start-page: 112086
  year: 2023
  ident: 2024081123563708800_B49
  article-title: Single-nucleus RNA sequencing in ischemic cardiomyopathy reveals common transcriptional profile underlying end-stage heart failure
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2023.112086
  contributor:
    fullname: Simonson
– volume: 23
  start-page: 54
  year: 2022
  ident: 2024081123563708800_B52
  article-title: NetSeekR: a network analysis pipeline for RNA-Seq time series data
  publication-title: BMC Bioinf.
  doi: 10.1186/s12859-021-04554-1
  contributor:
    fullname: Srivastava
– volume: 483
  start-page: 603
  year: 2012
  ident: 2024081123563708800_B37
  article-title: The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity
  publication-title: Nature
  doi: 10.1038/nature11003
  contributor:
    fullname: Barretina
– volume: 377
  start-page: eabo1984
  year: 2022
  ident: 2024081123563708800_B46
  article-title: Pathogenic variants damage cell composition and single cell transcription in cardiomyopathies
  publication-title: Science
  doi: 10.1126/science.abo1984
  contributor:
    fullname: Reichart
– volume: 11
  start-page: 1487
  year: 2020
  ident: 2024081123563708800_B51
  article-title: RNAflow: an effective and simple RNA-seq differential gene expression pipeline using Nextflow
  publication-title: Genes
  doi: 10.3390/genes11121487
  contributor:
    fullname: Lataretu
– volume: 625
  start-page: 377
  year: 2024
  ident: 2024081123563708800_B50
  article-title: Dictionary of immune responses to cytokines at single-cell resolution
  publication-title: Nature
  doi: 10.1038/s41586-023-06816-9
  contributor:
    fullname: Cui
– volume: 14
  start-page: 91
  year: 2013
  ident: 2024081123563708800_B30
  article-title: A comparison of methods for differential expression analysis of RNA-seq data
  publication-title: BMC Bioinf.
  doi: 10.1186/1471-2105-14-91
  contributor:
    fullname: Soneson
– volume: 608
  start-page: 766
  year: 2022
  ident: 2024081123563708800_B44
  article-title: Spatial multi-omic map of human myocardial infarction
  publication-title: Nature
  doi: 10.1038/s41586-022-05060-x
  contributor:
    fullname: Kuppe
– volume: 18
  start-page: S96
  year: 2002
  ident: 2024081123563708800_B13
  article-title: Variance stabilization applied to microarray data calibration and to the quantification of differential expression
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/18.suppl_1.S96
  contributor:
    fullname: Huber
– volume: 3
  start-page: 100492
  year: 2022
  ident: 2024081123563708800_B38
  article-title: A community challenge for a pancancer drug mechanism of action inference from perturbational profile data
  publication-title: Cell Rep Med
  doi: 10.1016/j.xcrm.2021.100492
  contributor:
    fullname: Douglass
– volume: 35
  start-page: 316
  year: 2017
  ident: 2024081123563708800_B35
  article-title: Nextflow enables reproducible computational workflows
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3820
  contributor:
    fullname: Di Tommaso
– volume: 40
  start-page: 111400
  year: 2022
  ident: 2024081123563708800_B58
  article-title: Genome-wide fetalization of enhancer architecture in heart disease
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2022.111400
  contributor:
    fullname: Spurrell
– volume: 18
  start-page: 256
  year: 2017
  ident: 2024081123563708800_B40
  article-title: Ranking metrics in gene set enrichment analysis: do they matter?
  publication-title: BMC Bioinf.
  doi: 10.1186/s12859-017-1674-0
  contributor:
    fullname: Zyla
– volume: 20
  start-page: 1684
  year: 2014
  ident: 2024081123563708800_B31
  article-title: Power analysis and sample size estimation for RNA-seq differential expression
  publication-title: RNA
  doi: 10.1261/rna.046011.114
  contributor:
    fullname: Ching
– volume: 608
  start-page: 174
  year: 2022
  ident: 2024081123563708800_B48
  article-title: Single-nucleus profiling of human dilated and hypertrophic cardiomyopathy
  publication-title: Nature
  doi: 10.1038/s41586-022-04817-8
  contributor:
    fullname: Chaffin
– year: 2024
  ident: 2024081123563708800_B57
  article-title: The impact of package selection and versioning on single-cell RNA-seq analysis
  doi: 10.1101/2024.04.04.588111
  contributor:
    fullname: Rich
– volume: 317
  start-page: H674
  year: 2019
  ident: 2024081123563708800_B60
  article-title: DNA methylation reprograms cardiac metabolic gene expression in end-stage human heart failure
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
  doi: 10.1152/ajpheart.00016.2019
  contributor:
    fullname: Pepin
– volume: 24
  start-page: 539
  year: 2017
  ident: 2024081123563708800_B61
  article-title: Heart failure: pilot transcriptomic analysis of cardiac tissue by RNA-sequencing
  publication-title: Cardiol. J.
  doi: 10.5603/CJ.a2017.0052
  contributor:
    fullname: Schiano
– volume: 21
  start-page: 227
  ident: 2024081123563708800_B32
  article-title: 2020) pipeComp, a general framework for the evaluation of computational pipelines, reveals performant single cell RNA-seq preprocessing tools
  publication-title: Genome Biol.
  doi: 10.1186/s13059-020-02136-7
  contributor:
    fullname: Germain
– volume: 8
  start-page: R183
  year: 2007
  ident: 2024081123563708800_B21
  article-title: The DAVID Gene Functional Classification Tool: a novel biological module-centric algorithm to functionally analyze large gene lists
  publication-title: Genome Biol.
  doi: 10.1186/gb-2007-8-9-r183
  contributor:
    fullname: Huang
SSID ssj0014154
Score 2.5011115
Snippet Abstract Transcriptomics is widely used to assess the state of biological systems. There are many tools for the different steps, such as normalization,...
Transcriptomics is widely used to assess the state of biological systems. There are many tools for the different steps, such as normalization, differential...
SourceID pubmedcentral
proquest
crossref
pubmed
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 8100
SubjectTerms Computational Biology
Title Assessing the impact of transcriptomics data analysis pipelines on downstream functional enrichment results
URI https://www.ncbi.nlm.nih.gov/pubmed/38943333
https://www.proquest.com/docview/3073712535
https://pubmed.ncbi.nlm.nih.gov/PMC11317128
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4IF70YBR_4wDUh3kof28L2SBDCRWOiJt6aPnaFKAuxcPDfO7NtCXjw4LnbZtOZ3e-b2W9mAToSIQD3Rc9yY9-xfBWkVhgIbnFEPyVdqTKPipMnz_3HN3E_ojY5vaoWxoj202TW1Z_zrp5NjbZyOU_tSidmPz0MXRdRDzdWuwY1JIdVjF6eHSAkFU2jTI9NX5RVeRi62zr-st8_YhkEdIsNp97jnPMdSNopc9tim79Fk1soND6Cw5I-skExzWPYk7oBzYHG0Hn-ze6YEXSaTHkD9ofVZW5N-CgOdxGnGDI-VtRGsoViK8Iqs3NQeXLOSDHK4rJTCVvOllSvLnO20CyjRDQJ0-eM0LBIIjL0v1k6pRwjw8h9_bnKT-B1PHoZTqzyngUrxeW9srJ-qFxPIjHIRNYPVJgJRyiJzCRzlZRI8JLQSQLS_ItQOBjU0qpVoRQ9nvhpyE-hrhdangNDtOfIKQNf-giPcYIDUxU73OsnHqVcW9CpfnW0LNppRMUxOI_QOFFpnBbcoBn-HnFbmSjCX0mnHLGWi3Ue0aaFzoHTbcFZYbLNhyqLt0DsGHMzgJpt7z5BHzRNtyufu_j_q5dw4CElIqGZF15BffW1ltdQy7N126QC2saPfwDUnPjF
link.rule.ids 230,315,729,782,786,866,887,27933,27934,53800,53802
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ74OODFB77wxZoYb6WPbWV7NAjBCMRETbw1fewKARZi4eC_d6YPAx48eO62afvtzvfN7MwswI1ECkC76Bh26FqGq7zY8D3BDY7sp6QtVeJQcXL3pTl4Fw9tapNzV9bCZEn7cTRq6Mm0oUfDLLdyPo3NMk_MfO63bBtZDw2ruQnbuGAtq_TSi90DJKW8bVTWZdMVRV0eOu-mDj_Nj3EoPY_OseHUfZxzvkZKa4VuK3rzd9rkCg919v77BfuwWyhPdp9fP4ANqatweK_R655-sVuW5YJmQfYqVFrlOXCHMM73hZHiGIpFlpdVspliC6K5zOhQZXPKKNmUhUWTEzYfzanUXaZspllCMWzKaZ8yItI8_shw6o7iIYUnGTr9y8kiPYK3Tvu11TWKIxqMGC3DwkiavrIdiZoiEUnTU34iLKEkiprEVlKiNox8K_KoXED4wkJ_mBa88qW445Eb-_wYtvRMy1NgKBQ4ylHPlS4yaxjhwFiFFneakUPR2hrclBgF87wTR5DvoPMAUQ0KVGtQR_z-HnFdYhvgr6QNklDL2TINyN4hKvi6NTjJsf55UDlVaiDWZsHPAOrTvX4Fwc_6dZdgn_3_1jpUuq_9XtB7HDydw46Dyory1Rz_ArYWn0t5CZtpsrzKlsE3oHMNkA
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BkYAL-1K2GglxC1mcUIdbVaiKWIQESNyiJLahgroRaQ_8PTNZEOXAAc5xoiQznvdmNcCRQghAu-hZbuw7lq-D1AoDwS2O6KeVq7T0qDm5f9--fRLnFzQm56zuhSmK9tNkcGLehidm8FLUVmbD1K7rxOy7m67rIuqhYbUzqe1ZmMNN63i1p15lEBCYytFRxaRNX1S9eejA2yZ-t59fYxUEdJYNpwnknPMpYJpqdvvGOX-WTn7Dot7yf75iBZYqBso65ZpVmFFmDdY7Br3v4Qc7ZkVNaBFsX4OFbn0e3Dq8lvlhhDqGpJGV7ZVspNmY4K4wPtThnDMqOmVxNeyEZYOMWt5VzkaGSYplU237kBGglnFIhio8SF8oTMnQ-Z-8jfMNeOxdPHT7VnVUg5WihRhbsh1q11PILaSQ7UCHUjhCKyQ30tVKIUdMQicJqG1AhMJBv5g2vg6VOOWJn4Z8ExpmZNQ2MCQMHGlp4CsfETZOcGGqY4d77cSjqG0Tjmo5RVk5kSMqM-k8QslGlWSb0EIZ_r7isJZvhL-SEiWxUaNJHpHdQ8ng6zZhq5T314NqdWmCmNKErwU0r3v6CipAMbe7FvjO329twfzdeS-6vry92oVFDwkWla154R40xu8TtQ-zuZwcFDvhEw2pEBA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessing+the+impact+of+transcriptomics+data+analysis+pipelines+on+downstream+functional+enrichment+results&rft.jtitle=Nucleic+acids+research&rft.au=Paton%2C+Victor&rft.au=Ramirez%C2%A0Flores%2C+Ricardo+Omar&rft.au=Gabor%2C+Attila&rft.au=Badia-i-Mompel%2C+Pau&rft.date=2024-06-29&rft.pub=Oxford+University+Press&rft.issn=0305-1048&rft.eissn=1362-4962&rft.volume=52&rft.issue=14&rft.spage=8100&rft.epage=8111&rft_id=info:doi/10.1093%2Fnar%2Fgkae552&rft.externalDocID=10.1093%2Fnar%2Fgkae552
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon