Assessing the impact of transcriptomics data analysis pipelines on downstream functional enrichment results
Abstract Transcriptomics is widely used to assess the state of biological systems. There are many tools for the different steps, such as normalization, differential expression, and enrichment. While numerous studies have examined the impact of method choices on differential expression results, littl...
Saved in:
Published in: | Nucleic acids research Vol. 52; no. 14; pp. 8100 - 8111 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
Oxford University Press
29-06-2024
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Abstract
Transcriptomics is widely used to assess the state of biological systems. There are many tools for the different steps, such as normalization, differential expression, and enrichment. While numerous studies have examined the impact of method choices on differential expression results, little attention has been paid to their effects on further downstream functional analysis, which typically provides the basis for interpretation and follow-up experiments. To address this, we introduce FLOP, a comprehensive nextflow-based workflow combining methods to perform end-to-end analyses of transcriptomics data. We illustrate FLOP on datasets ranging from end-stage heart failure patients to cancer cell lines. We discovered effects not noticeable at the gene-level, and observed that not filtering the data had the highest impact on the correlation between pipelines in the gene set space. Moreover, we performed three benchmarks to evaluate the 12 pipelines included in FLOP, and confirmed that filtering is essential in scenarios of expected moderate-to-low biological signal. Overall, our results underscore the impact of carefully evaluating the consequences of the choice of preprocessing methods on downstream enrichment analyses. We envision FLOP as a valuable tool to measure the robustness of functional analyses, ultimately leading to more reliable and conclusive biological findings.
Graphical Abstract
Graphical Abstract |
---|---|
AbstractList | Transcriptomics is widely used to assess the state of biological systems. There are many tools for the different steps, such as normalization, differential expression, and enrichment. While numerous studies have examined the impact of method choices on differential expression results, little attention has been paid to their effects on further downstream functional analysis, which typically provides the basis for interpretation and follow-up experiments. To address this, we introduce FLOP, a comprehensive nextflow-based workflow combining methods to perform end-to-end analyses of transcriptomics data. We illustrate FLOP on datasets ranging from end-stage heart failure patients to cancer cell lines. We discovered effects not noticeable at the gene-level, and observed that not filtering the data had the highest impact on the correlation between pipelines in the gene set space. Moreover, we performed three benchmarks to evaluate the 12 pipelines included in FLOP, and confirmed that filtering is essential in scenarios of expected moderate-to-low biological signal. Overall, our results underscore the impact of carefully evaluating the consequences of the choice of preprocessing methods on downstream enrichment analyses. We envision FLOP as a valuable tool to measure the robustness of functional analyses, ultimately leading to more reliable and conclusive biological findings. Transcriptomics is widely used to assess the state of biological systems. There are many tools for the different steps, such as normalization, differential expression, and enrichment. While numerous studies have examined the impact of method choices on differential expression results, little attention has been paid to their effects on further downstream functional analysis, which typically provides the basis for interpretation and follow-up experiments. To address this, we introduce FLOP, a comprehensive nextflow-based workflow combining methods to perform end-to-end analyses of transcriptomics data. We illustrate FLOP on datasets ranging from end-stage heart failure patients to cancer cell lines. We discovered effects not noticeable at the gene-level, and observed that not filtering the data had the highest impact on the correlation between pipelines in the gene set space. Moreover, we performed three benchmarks to evaluate the 12 pipelines included in FLOP, and confirmed that filtering is essential in scenarios of expected moderate-to-low biological signal. Overall, our results underscore the impact of carefully evaluating the consequences of the choice of preprocessing methods on downstream enrichment analyses. We envision FLOP as a valuable tool to measure the robustness of functional analyses, ultimately leading to more reliable and conclusive biological findings.Transcriptomics is widely used to assess the state of biological systems. There are many tools for the different steps, such as normalization, differential expression, and enrichment. While numerous studies have examined the impact of method choices on differential expression results, little attention has been paid to their effects on further downstream functional analysis, which typically provides the basis for interpretation and follow-up experiments. To address this, we introduce FLOP, a comprehensive nextflow-based workflow combining methods to perform end-to-end analyses of transcriptomics data. We illustrate FLOP on datasets ranging from end-stage heart failure patients to cancer cell lines. We discovered effects not noticeable at the gene-level, and observed that not filtering the data had the highest impact on the correlation between pipelines in the gene set space. Moreover, we performed three benchmarks to evaluate the 12 pipelines included in FLOP, and confirmed that filtering is essential in scenarios of expected moderate-to-low biological signal. Overall, our results underscore the impact of carefully evaluating the consequences of the choice of preprocessing methods on downstream enrichment analyses. We envision FLOP as a valuable tool to measure the robustness of functional analyses, ultimately leading to more reliable and conclusive biological findings. Abstract Transcriptomics is widely used to assess the state of biological systems. There are many tools for the different steps, such as normalization, differential expression, and enrichment. While numerous studies have examined the impact of method choices on differential expression results, little attention has been paid to their effects on further downstream functional analysis, which typically provides the basis for interpretation and follow-up experiments. To address this, we introduce FLOP, a comprehensive nextflow-based workflow combining methods to perform end-to-end analyses of transcriptomics data. We illustrate FLOP on datasets ranging from end-stage heart failure patients to cancer cell lines. We discovered effects not noticeable at the gene-level, and observed that not filtering the data had the highest impact on the correlation between pipelines in the gene set space. Moreover, we performed three benchmarks to evaluate the 12 pipelines included in FLOP, and confirmed that filtering is essential in scenarios of expected moderate-to-low biological signal. Overall, our results underscore the impact of carefully evaluating the consequences of the choice of preprocessing methods on downstream enrichment analyses. We envision FLOP as a valuable tool to measure the robustness of functional analyses, ultimately leading to more reliable and conclusive biological findings. Graphical Abstract Graphical Abstract Transcriptomics is widely used to assess the state of biological systems. There are many tools for the different steps, such as normalization, differential expression, and enrichment. While numerous studies have examined the impact of method choices on differential expression results, little attention has been paid to their effects on further downstream functional analysis, which typically provides the basis for interpretation and follow-up experiments. To address this, we introduce FLOP, a comprehensive nextflow-based workflow combining methods to perform end-to-end analyses of transcriptomics data. We illustrate FLOP on datasets ranging from end-stage heart failure patients to cancer cell lines. We discovered effects not noticeable at the gene-level, and observed that not filtering the data had the highest impact on the correlation between pipelines in the gene set space. Moreover, we performed three benchmarks to evaluate the 12 pipelines included in FLOP, and confirmed that filtering is essential in scenarios of expected moderate-to-low biological signal. Overall, our results underscore the impact of carefully evaluating the consequences of the choice of preprocessing methods on downstream enrichment analyses. We envision FLOP as a valuable tool to measure the robustness of functional analyses, ultimately leading to more reliable and conclusive biological findings. Graphical Abstract |
Author | Ramirez Flores, Ricardo Omar Tanevski, Jovan Garrido-Rodriguez, Martin Paton, Victor Gabor, Attila Badia-i-Mompel, Pau Saez-Rodriguez, Julio |
Author_xml | – sequence: 1 givenname: Victor orcidid: 0000-0002-6074-6897 surname: Paton fullname: Paton, Victor – sequence: 2 givenname: Ricardo Omar orcidid: 0000-0003-0087-371X surname: Ramirez Flores fullname: Ramirez Flores, Ricardo Omar – sequence: 3 givenname: Attila orcidid: 0000-0002-0776-1182 surname: Gabor fullname: Gabor, Attila – sequence: 4 givenname: Pau orcidid: 0000-0002-1004-3923 surname: Badia-i-Mompel fullname: Badia-i-Mompel, Pau – sequence: 5 givenname: Jovan orcidid: 0000-0001-7177-1003 surname: Tanevski fullname: Tanevski, Jovan – sequence: 6 givenname: Martin orcidid: 0000-0003-4125-5643 surname: Garrido-Rodriguez fullname: Garrido-Rodriguez, Martin email: martin.garrido@uni-heidelberg.de – sequence: 7 givenname: Julio orcidid: 0000-0002-8552-8976 surname: Saez-Rodriguez fullname: Saez-Rodriguez, Julio email: pub.saez@uni-heidelberg.de |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38943333$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1P3DAQhi1EBcvHiXvlU4VUpdhxkrVP1QrRDwmpl_ZseZ3xrktiB48D4t_jahdULvgyBz965h29J-QwxACEXHD2hTMlroJJV5s7A21bH5AFF11dNaqrD8mCCdZWnDXymJwg_mWMN7xtjsixkKoR5S3I3QoREH3Y0LwF6sfJ2EyjozmZgDb5KcfRW6S9yYaaYIYn9EgnP8HgAyCNgfbxMWBOYEbq5mCzjwWjEJK32xFCpglwHjKekQ_ODAjn-3lK_ny7-X39o7r99f3n9eq2soLxXPVL5XgNjLe97JetU71k0oFsup47AFF3a8XWrWh5I5VkohzTCekUyE6sG6vEKfm6807zeoTelgjJDHpKfjTpSUfj9duf4Ld6Ex8054IveS2L4XJvSPF-Bsx69GhhGEyAOKMWbCkKWDIU9PMOtSkiJnCvezjT__rRpR-976fQH_-P9sq-FFKATzsgztO7pmcsAp7C |
Cites_doi | 10.1371/journal.pone.0232271 10.1038/s41576-019-0150-2 10.1186/s12859-018-2261-8 10.1371/journal.pcbi.1009935 10.1186/gb-2014-15-2-r29 10.1093/bioinformatics/btp616 10.1093/bioinformatics/19.2.185 10.1093/bioinformatics/bti623 10.1038/s44161-023-00260-8 10.1093/bioadv/vbac016 10.1038/s41598-020-76881-x 10.1016/j.cels.2015.12.004 10.1038/s41467-017-02391-6 10.1186/gb-2010-11-3-r25 10.1186/gb-2013-14-9-r95 10.1038/s44161-022-00028-6 10.1093/nar/gkt111 10.1186/s13059-014-0550-8 10.1371/journal.pone.0190152 10.1093/bib/bbz158 10.1093/bioinformatics/bts635 10.12688/f1000research.7035.2 10.1186/s12859-022-05023-z 10.1093/nar/gkv806 10.1002/bimj.202200212 10.18547/gcb.2017.vol3.iss3.e31 10.1016/j.ygeno.2014.12.002 10.1093/nar/gkv007 10.12688/f1000research.9005.1 10.1186/s12859-015-0778-7 10.1186/gb-2010-11-10-r106 10.1111/j.2517-6161.1995.tb02031.x 10.1038/nmeth1156 10.1073/pnas.0506580102 10.1186/s13059-023-02962-5 10.1161/CIRCULATIONAHA.113.003863 10.1038/nmeth.4197 10.1038/s41467-017-00050-4 10.1161/JAHA.120.019667 10.1038/s41587-019-0201-4 10.1038/s41592-023-01814-1 10.1093/nar/gkad841 10.1198/016214501753381814 10.1016/j.celrep.2023.112086 10.1186/s12859-021-04554-1 10.1038/nature11003 10.1126/science.abo1984 10.3390/genes11121487 10.1038/s41586-023-06816-9 10.1186/1471-2105-14-91 10.1038/s41586-022-05060-x 10.1093/bioinformatics/18.suppl_1.S96 10.1016/j.xcrm.2021.100492 10.1038/nbt.3820 10.1016/j.celrep.2022.111400 10.1186/s12859-017-1674-0 10.1261/rna.046011.114 10.1038/s41586-022-04817-8 10.1101/2024.04.04.588111 10.1152/ajpheart.00016.2019 10.5603/CJ.a2017.0052 10.1186/s13059-020-02136-7 10.1186/gb-2007-8-9-r183 |
ContentType | Journal Article |
Copyright | The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research. 2024 The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research. |
Copyright_xml | – notice: The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research. 2024 – notice: The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research. |
DBID | TOX NPM AAYXX CITATION 7X8 5PM |
DOI | 10.1093/nar/gkae552 |
DatabaseName | Oxford Open PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1362-4962 |
EndPage | 8111 |
ExternalDocumentID | 10_1093_nar_gkae552 38943333 10.1093/nar/gkae552 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Life Science Alliance Heidelberg Mannheim – fundername: Heidelberg University – fundername: State Parliament of Baden-Württemberg for the Innovation Campus Health – fundername: CRC/SFB 1550 'Molecular Circuits of Heart Disease' – fundername: ; |
GroupedDBID | --- -DZ -~X .55 .GJ .I3 0R~ 123 18M 1TH 29N 2WC 3O- 4.4 482 53G 5VS 5WA 6.Y 70E 85S A8Z AAFWJ AAHBH AAMVS AAOGV AAPPN AAPXW AAUQX AAVAP AAWDT AAYJJ ABPTD ABQLI ABQTQ ABSAR ABSMQ ABXVV ACFRR ACGFO ACGFS ACIPB ACIWK ACMRT ACNCT ACPQN ACPRK ACUTJ ACZBC ADBBV ADHZD AEGXH AEHUL AEKPW AENEX AENZO AFFNX AFRAH AFSHK AFULF AFYAG AGKRT AGMDO AHMBA AIAGR ALMA_UNASSIGNED_HOLDINGS ALUQC ANFBD AOIJS AQDSO ASAOO ASPBG ATDFG ATTQO AVWKF AZFZN BAWUL BAYMD BCNDV BEYMZ BTTYL C1A CAG CIDKT COF CS3 CXTWN CZ4 D0S DFGAJ DIK DU5 D~K E3Z EBD EBS EJD ELUNK EMOBN ESTFP F20 F5P FEDTE GROUPED_DOAJ GX1 H13 HH5 HVGLF HYE HZ~ H~9 IH2 KAQDR KQ8 KSI M49 MBTAY MVM M~E NTWIH NU- OAWHX OBC OBS OEB OES OJQWA OVD O~Y P2P PB- PEELM PQQKQ QBD R44 RD5 RNI RNS ROL ROX ROZ RPM RXO RZF RZO SJN SV3 TCN TEORI TN5 TOX TR2 UHB WG7 WOQ X7H X7M XSB XSW YSK ZKX ZXP ~91 ~D7 ~KM ABEJV NPM AAYXX CITATION 7X8 5PM AFPKN |
ID | FETCH-LOGICAL-c301t-d79f12e015d8d75f9d808fe846d1fee326b90b5351489803389638f9e863b4c93 |
IEDL.DBID | RPM |
ISSN | 0305-1048 1362-4962 |
IngestDate | Tue Aug 13 05:20:38 EDT 2024 Sat Oct 26 04:27:11 EDT 2024 Fri Nov 22 03:06:56 EST 2024 Sat Nov 02 12:28:38 EDT 2024 Thu Oct 10 23:25:18 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c301t-d79f12e015d8d75f9d808fe846d1fee326b90b5351489803389638f9e863b4c93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-7177-1003 0000-0003-4125-5643 0000-0002-0776-1182 0000-0003-0087-371X 0000-0002-6074-6897 0000-0002-1004-3923 0000-0002-8552-8976 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11317128/ |
PMID | 38943333 |
PQID | 3073712535 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11317128 proquest_miscellaneous_3073712535 crossref_primary_10_1093_nar_gkae552 pubmed_primary_38943333 oup_primary_10_1093_nar_gkae552 |
PublicationCentury | 2000 |
PublicationDate | 2024-06-29 |
PublicationDateYYYYMMDD | 2024-06-29 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-29 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Nucleic acids research |
PublicationTitleAlternate | Nucleic Acids Res |
PublicationYear | 2024 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Schubert (2024081123563708800_B41) 2018; 9 Badia-I-Mompel (2024081123563708800_B24) 2022; 2 Chaffin (2024081123563708800_B48) 2022; 608 Corchete (2024081123563708800_B54) 2020; 10 Amrute (2024081123563708800_B47) 2023; 2 Schiano (2024081123563708800_B61) 2017; 24 Amaratunga (2024081123563708800_B11) 2001; 96 Law (2024081123563708800_B6) 2016; 5 Sha (2024081123563708800_B8) 2015; 2015 Friedrich (2024081123563708800_B34) 2024; 66 Pepin (2024081123563708800_B60) 2019; 317 Seyednasrollah (2024081123563708800_B28) 2016; 44 Douglass (2024081123563708800_B38) 2022; 3 Reichart (2024081123563708800_B46) 2022; 377 Barretina (2024081123563708800_B37) 2012; 483 Dobin (2024081123563708800_B5) 2013; 29 Spurrell (2024081123563708800_B58) 2022; 40 Benjamini (2024081123563708800_B64) 1995; 57 González Gayte (2024081123563708800_B53) 2017; 3 Di Tommaso (2024081123563708800_B35) 2017; 35 Law (2024081123563708800_B10) 2014; 15 Soneson (2024081123563708800_B30) 2013; 14 Koenig (2024081123563708800_B45) 2022; 1 Srivastava (2024081123563708800_B52) 2022; 23 Li (2024081123563708800_B14) 2015; 16 Geistlinger (2024081123563708800_B20) 2021; 22 Subramanian (2024081123563708800_B22) 2005; 102 Lataretu (2024081123563708800_B51) 2020; 11 Ching (2024081123563708800_B31) 2014; 20 Baik (2024081123563708800_B29) 2020; 15 Rich (2024081123563708800_B57) 2024 Patro (2024081123563708800_B4) 2017; 14 Robinson (2024081123563708800_B16) 2010; 26 Love (2024081123563708800_B7) 2016; 4 Love (2024081123563708800_B17) 2014; 15 Ahlmann-Eltze (2024081123563708800_B56) 2023; 20 Bolstad (2024081123563708800_B12) 2003; 19 Robinson (2024081123563708800_B9) 2010; 11 Sonrel (2024081123563708800_B39) 2023; 24 Rapaport (2024081123563708800_B27) 2013; 14 Stark (2024081123563708800_B2) 2019; 20 Liu (2024081123563708800_B59) 2015; 105 Sing (2024081123563708800_B63) 2005; 21 Ritchie (2024081123563708800_B15) 2015; 43 Schuster (2024081123563708800_B1) 2008; 5 Sahraeian (2024081123563708800_B26) 2017; 8 Kim (2024081123563708800_B3) 2019; 37 Müller-Dott (2024081123563708800_B42) 2023; 51 Kuppe (2024081123563708800_B44) 2022; 608 Simonson (2024081123563708800_B49) 2023; 42 Anders (2024081123563708800_B18) 2010; 11 Huber (2024081123563708800_B13) 2002; 18 Ramirez Flores (2024081123563708800_B36) 2021; 10 Quinn (2024081123563708800_B25) 2018; 19 Väremo (2024081123563708800_B23) 2013; 41 Deyneko (2024081123563708800_B55) 2022; 23 Zyla (2024081123563708800_B40) 2017; 18 Yang (2024081123563708800_B62) 2014; 129 Costa-Silva (2024081123563708800_B33) 2017; 12 Liberzon (2024081123563708800_B43) 2015; 1 Wijesooriya (2024081123563708800_B19) 2022; 18 Cui (2024081123563708800_B50) 2024; 625 Huang (2024081123563708800_B21) 2007; 8 Germain (2024081123563708800_B32); 21 |
References_xml | – volume: 15 start-page: e0232271 year: 2020 ident: 2024081123563708800_B29 article-title: Benchmarking RNA-seq differential expression analysis methods using spike-in and simulation data publication-title: PLoS One doi: 10.1371/journal.pone.0232271 contributor: fullname: Baik – volume: 20 start-page: 631 year: 2019 ident: 2024081123563708800_B2 article-title: RNA sequencing: the teenage years publication-title: Nat. Rev. Genet. doi: 10.1038/s41576-019-0150-2 contributor: fullname: Stark – volume: 19 start-page: 274 year: 2018 ident: 2024081123563708800_B25 article-title: Benchmarking differential expression analysis tools for RNA-seq: normalization-based vs. log-ratio transformation-based methods publication-title: BMC Bioinf. doi: 10.1186/s12859-018-2261-8 contributor: fullname: Quinn – volume: 18 start-page: e1009935 year: 2022 ident: 2024081123563708800_B19 article-title: Urgent need for consistent standards in functional enrichment analysis publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1009935 contributor: fullname: Wijesooriya – volume: 15 start-page: R29 year: 2014 ident: 2024081123563708800_B10 article-title: voom: precision weights unlock linear model analysis tools for RNA-seq read counts publication-title: Genome Biol. doi: 10.1186/gb-2014-15-2-r29 contributor: fullname: Law – volume: 26 start-page: 139 year: 2010 ident: 2024081123563708800_B16 article-title: edgeR: a bioconductor package for differential expression analysis of digital gene expression data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp616 contributor: fullname: Robinson – volume: 19 start-page: 185 year: 2003 ident: 2024081123563708800_B12 article-title: A comparison of normalization methods for high density oligonucleotide array data based on variance and bias publication-title: Bioinformatics doi: 10.1093/bioinformatics/19.2.185 contributor: fullname: Bolstad – volume: 21 start-page: 3940 year: 2005 ident: 2024081123563708800_B63 article-title: ROCR: visualizing classifier performance in R publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti623 contributor: fullname: Sing – volume: 2 start-page: 399 year: 2023 ident: 2024081123563708800_B47 article-title: Defining cardiac functional recovery in end-stage heart failure at single-cell resolution publication-title: Nat. Cardiovasc. Res. doi: 10.1038/s44161-023-00260-8 contributor: fullname: Amrute – volume: 2 start-page: vbac016 year: 2022 ident: 2024081123563708800_B24 article-title: decoupleR: ensemble of computational methods to infer biological activities from omics data publication-title: Bioinform. Adv. doi: 10.1093/bioadv/vbac016 contributor: fullname: Badia-I-Mompel – volume: 10 start-page: 19737 year: 2020 ident: 2024081123563708800_B54 article-title: Systematic comparison and assessment of RNA-seq procedures for gene expression quantitative analysis publication-title: Sci. Rep. doi: 10.1038/s41598-020-76881-x contributor: fullname: Corchete – volume: 1 start-page: 417 year: 2015 ident: 2024081123563708800_B43 article-title: The Molecular Signatures Database (MSigDB) hallmark gene set collection publication-title: Cell Syst. doi: 10.1016/j.cels.2015.12.004 contributor: fullname: Liberzon – volume: 9 start-page: 20 year: 2018 ident: 2024081123563708800_B41 article-title: Perturbation-response genes reveal signaling footprints in cancer gene expression publication-title: Nat. Commun. doi: 10.1038/s41467-017-02391-6 contributor: fullname: Schubert – volume: 11 start-page: R25 year: 2010 ident: 2024081123563708800_B9 article-title: A scaling normalization method for differential expression analysis of RNA-seq data publication-title: Genome Biol. doi: 10.1186/gb-2010-11-3-r25 contributor: fullname: Robinson – volume: 14 start-page: 3158 year: 2013 ident: 2024081123563708800_B27 article-title: Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data publication-title: Genome Biol. doi: 10.1186/gb-2013-14-9-r95 contributor: fullname: Rapaport – volume: 1 start-page: 263 year: 2022 ident: 2024081123563708800_B45 article-title: Single-cell transcriptomics reveals cell-type-specific diversification in human heart failure publication-title: Nat. Cardiovasc. Res. doi: 10.1038/s44161-022-00028-6 contributor: fullname: Koenig – volume: 41 start-page: 4378 year: 2013 ident: 2024081123563708800_B23 article-title: Enriching the gene set analysis of genome-wide data by incorporating directionality of gene expression and combining statistical hypotheses and methods publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt111 contributor: fullname: Väremo – volume: 15 start-page: 550 year: 2014 ident: 2024081123563708800_B17 article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 publication-title: Genome Biol. doi: 10.1186/s13059-014-0550-8 contributor: fullname: Love – volume: 12 start-page: e0190152 year: 2017 ident: 2024081123563708800_B33 article-title: RNA-seq differential expression analysis: an extended review and a software tool publication-title: PLoS One doi: 10.1371/journal.pone.0190152 contributor: fullname: Costa-Silva – volume: 22 start-page: 545 year: 2021 ident: 2024081123563708800_B20 article-title: Toward a gold standard for benchmarking gene set enrichment analysis publication-title: Brief. Bioinform. doi: 10.1093/bib/bbz158 contributor: fullname: Geistlinger – volume: 29 start-page: 15 year: 2013 ident: 2024081123563708800_B5 article-title: STAR: ultrafast universal RNA-seq aligner publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts635 contributor: fullname: Dobin – volume: 4 start-page: 1070 year: 2016 ident: 2024081123563708800_B7 article-title: RNA-seq workflow: gene-level exploratory analysis and differential expression [version 1; peer review: 2 approved] publication-title: F1000Res. doi: 10.12688/f1000research.7035.2 contributor: fullname: Love – volume: 23 start-page: 488 year: 2022 ident: 2024081123563708800_B55 article-title: Modeling and cleaning RNA-seq data significantly improve detection of differentially expressed genes publication-title: BMC Bioinf. doi: 10.1186/s12859-022-05023-z contributor: fullname: Deyneko – volume: 44 start-page: e1 year: 2016 ident: 2024081123563708800_B28 article-title: ROTS: reproducible RNA-seq biomarker detector-prognostic markers for clear cell renal cell cancer publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv806 contributor: fullname: Seyednasrollah – volume: 66 start-page: e2200212 year: 2024 ident: 2024081123563708800_B34 article-title: On the role of benchmarking data sets and simulations in method comparison studies publication-title: Biom. J. doi: 10.1002/bimj.202200212 contributor: fullname: Friedrich – volume: 3 start-page: 31 year: 2017 ident: 2024081123563708800_B53 article-title: DEgenes Hunter - A flexible R pipeline for automated RNA-seq studies in organisms without reference genome publication-title: Genom. Comput. Biol. doi: 10.18547/gcb.2017.vol3.iss3.e31 contributor: fullname: González Gayte – volume: 105 start-page: 83 year: 2015 ident: 2024081123563708800_B59 article-title: RNA-seq identifies novel myocardial gene expression signatures of heart failure publication-title: Genomics doi: 10.1016/j.ygeno.2014.12.002 contributor: fullname: Liu – volume: 43 start-page: e47 year: 2015 ident: 2024081123563708800_B15 article-title: limma powers differential expression analyses for RNA-sequencing and microarray studies publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv007 contributor: fullname: Ritchie – volume: 5 start-page: ISCB Comm J-1408 year: 2016 ident: 2024081123563708800_B6 article-title: RNA-seq analysis is easy as 1-2-3 with limma, Glimma and edgeR [version 3; peer review: 3 approved] publication-title: F1000Res. doi: 10.12688/f1000research.9005.1 contributor: fullname: Law – volume: 16 start-page: 347 year: 2015 ident: 2024081123563708800_B14 article-title: Comparing the normalization methods for the differential analysis of Illumina high-throughput RNA-seq data publication-title: BMC Bioinf. doi: 10.1186/s12859-015-0778-7 contributor: fullname: Li – volume: 11 start-page: R106 year: 2010 ident: 2024081123563708800_B18 article-title: Differential expression analysis for sequence count data publication-title: Genome Biol. doi: 10.1186/gb-2010-11-10-r106 contributor: fullname: Anders – volume: 57 start-page: 289 year: 1995 ident: 2024081123563708800_B64 article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing publication-title: J. R. Stat. Soc. Series B Stat. Methodol. doi: 10.1111/j.2517-6161.1995.tb02031.x contributor: fullname: Benjamini – volume: 5 start-page: 16 year: 2008 ident: 2024081123563708800_B1 article-title: Next-generation sequencing transforms today's biology publication-title: Nat. Methods doi: 10.1038/nmeth1156 contributor: fullname: Schuster – volume: 102 start-page: 15545 year: 2005 ident: 2024081123563708800_B22 article-title: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0506580102 contributor: fullname: Subramanian – volume: 24 start-page: 119 year: 2023 ident: 2024081123563708800_B39 article-title: Meta-analysis of (single-cell method) benchmarks reveals the need for extensibility and interoperability publication-title: Genome Biol. doi: 10.1186/s13059-023-02962-5 contributor: fullname: Sonrel – volume: 129 start-page: 1009 year: 2014 ident: 2024081123563708800_B62 article-title: Deep RNA sequencing reveals dynamic regulation of myocardial noncoding RNAs in failing human heart and remodeling with mechanical circulatory support publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.113.003863 contributor: fullname: Yang – volume: 14 start-page: 417 year: 2017 ident: 2024081123563708800_B4 article-title: Salmon provides fast and bias-aware quantification of transcript expression publication-title: Nat. Methods doi: 10.1038/nmeth.4197 contributor: fullname: Patro – volume: 8 start-page: 59 year: 2017 ident: 2024081123563708800_B26 article-title: Gaining comprehensive biological insight into the transcriptome by performing a broad-spectrum RNA-seq analysis publication-title: Nat. Commun. doi: 10.1038/s41467-017-00050-4 contributor: fullname: Sahraeian – volume: 10 start-page: e019667 year: 2021 ident: 2024081123563708800_B36 article-title: Consensus transcriptional landscape of Human end-stage heart failure publication-title: J. Am. Heart Assoc. doi: 10.1161/JAHA.120.019667 contributor: fullname: Ramirez Flores – volume: 37 start-page: 907 year: 2019 ident: 2024081123563708800_B3 article-title: Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0201-4 contributor: fullname: Kim – volume: 2015 start-page: 6461 year: 2015 ident: 2024081123563708800_B8 article-title: Effect of low-expression gene filtering on detection of differentially expressed genes in RNA-seq data publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc. contributor: fullname: Sha – volume: 20 start-page: 665 year: 2023 ident: 2024081123563708800_B56 article-title: Comparison of transformations for single-cell RNA-seq data publication-title: Nat. Methods doi: 10.1038/s41592-023-01814-1 contributor: fullname: Ahlmann-Eltze – volume: 51 start-page: 10934 year: 2023 ident: 2024081123563708800_B42 article-title: Expanding the coverage of regulons from high-confidence prior knowledge for accurate estimation of transcription factor activities publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkad841 contributor: fullname: Müller-Dott – volume: 96 start-page: 1161 year: 2001 ident: 2024081123563708800_B11 article-title: Analysis of data from viral DNA microchips publication-title: J. Am. Stat. Assoc. doi: 10.1198/016214501753381814 contributor: fullname: Amaratunga – volume: 42 start-page: 112086 year: 2023 ident: 2024081123563708800_B49 article-title: Single-nucleus RNA sequencing in ischemic cardiomyopathy reveals common transcriptional profile underlying end-stage heart failure publication-title: Cell Rep. doi: 10.1016/j.celrep.2023.112086 contributor: fullname: Simonson – volume: 23 start-page: 54 year: 2022 ident: 2024081123563708800_B52 article-title: NetSeekR: a network analysis pipeline for RNA-Seq time series data publication-title: BMC Bioinf. doi: 10.1186/s12859-021-04554-1 contributor: fullname: Srivastava – volume: 483 start-page: 603 year: 2012 ident: 2024081123563708800_B37 article-title: The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity publication-title: Nature doi: 10.1038/nature11003 contributor: fullname: Barretina – volume: 377 start-page: eabo1984 year: 2022 ident: 2024081123563708800_B46 article-title: Pathogenic variants damage cell composition and single cell transcription in cardiomyopathies publication-title: Science doi: 10.1126/science.abo1984 contributor: fullname: Reichart – volume: 11 start-page: 1487 year: 2020 ident: 2024081123563708800_B51 article-title: RNAflow: an effective and simple RNA-seq differential gene expression pipeline using Nextflow publication-title: Genes doi: 10.3390/genes11121487 contributor: fullname: Lataretu – volume: 625 start-page: 377 year: 2024 ident: 2024081123563708800_B50 article-title: Dictionary of immune responses to cytokines at single-cell resolution publication-title: Nature doi: 10.1038/s41586-023-06816-9 contributor: fullname: Cui – volume: 14 start-page: 91 year: 2013 ident: 2024081123563708800_B30 article-title: A comparison of methods for differential expression analysis of RNA-seq data publication-title: BMC Bioinf. doi: 10.1186/1471-2105-14-91 contributor: fullname: Soneson – volume: 608 start-page: 766 year: 2022 ident: 2024081123563708800_B44 article-title: Spatial multi-omic map of human myocardial infarction publication-title: Nature doi: 10.1038/s41586-022-05060-x contributor: fullname: Kuppe – volume: 18 start-page: S96 year: 2002 ident: 2024081123563708800_B13 article-title: Variance stabilization applied to microarray data calibration and to the quantification of differential expression publication-title: Bioinformatics doi: 10.1093/bioinformatics/18.suppl_1.S96 contributor: fullname: Huber – volume: 3 start-page: 100492 year: 2022 ident: 2024081123563708800_B38 article-title: A community challenge for a pancancer drug mechanism of action inference from perturbational profile data publication-title: Cell Rep Med doi: 10.1016/j.xcrm.2021.100492 contributor: fullname: Douglass – volume: 35 start-page: 316 year: 2017 ident: 2024081123563708800_B35 article-title: Nextflow enables reproducible computational workflows publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3820 contributor: fullname: Di Tommaso – volume: 40 start-page: 111400 year: 2022 ident: 2024081123563708800_B58 article-title: Genome-wide fetalization of enhancer architecture in heart disease publication-title: Cell Rep. doi: 10.1016/j.celrep.2022.111400 contributor: fullname: Spurrell – volume: 18 start-page: 256 year: 2017 ident: 2024081123563708800_B40 article-title: Ranking metrics in gene set enrichment analysis: do they matter? publication-title: BMC Bioinf. doi: 10.1186/s12859-017-1674-0 contributor: fullname: Zyla – volume: 20 start-page: 1684 year: 2014 ident: 2024081123563708800_B31 article-title: Power analysis and sample size estimation for RNA-seq differential expression publication-title: RNA doi: 10.1261/rna.046011.114 contributor: fullname: Ching – volume: 608 start-page: 174 year: 2022 ident: 2024081123563708800_B48 article-title: Single-nucleus profiling of human dilated and hypertrophic cardiomyopathy publication-title: Nature doi: 10.1038/s41586-022-04817-8 contributor: fullname: Chaffin – year: 2024 ident: 2024081123563708800_B57 article-title: The impact of package selection and versioning on single-cell RNA-seq analysis doi: 10.1101/2024.04.04.588111 contributor: fullname: Rich – volume: 317 start-page: H674 year: 2019 ident: 2024081123563708800_B60 article-title: DNA methylation reprograms cardiac metabolic gene expression in end-stage human heart failure publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.00016.2019 contributor: fullname: Pepin – volume: 24 start-page: 539 year: 2017 ident: 2024081123563708800_B61 article-title: Heart failure: pilot transcriptomic analysis of cardiac tissue by RNA-sequencing publication-title: Cardiol. J. doi: 10.5603/CJ.a2017.0052 contributor: fullname: Schiano – volume: 21 start-page: 227 ident: 2024081123563708800_B32 article-title: 2020) pipeComp, a general framework for the evaluation of computational pipelines, reveals performant single cell RNA-seq preprocessing tools publication-title: Genome Biol. doi: 10.1186/s13059-020-02136-7 contributor: fullname: Germain – volume: 8 start-page: R183 year: 2007 ident: 2024081123563708800_B21 article-title: The DAVID Gene Functional Classification Tool: a novel biological module-centric algorithm to functionally analyze large gene lists publication-title: Genome Biol. doi: 10.1186/gb-2007-8-9-r183 contributor: fullname: Huang |
SSID | ssj0014154 |
Score | 2.5011115 |
Snippet | Abstract
Transcriptomics is widely used to assess the state of biological systems. There are many tools for the different steps, such as normalization,... Transcriptomics is widely used to assess the state of biological systems. There are many tools for the different steps, such as normalization, differential... |
SourceID | pubmedcentral proquest crossref pubmed oup |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 8100 |
SubjectTerms | Computational Biology |
Title | Assessing the impact of transcriptomics data analysis pipelines on downstream functional enrichment results |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38943333 https://www.proquest.com/docview/3073712535 https://pubmed.ncbi.nlm.nih.gov/PMC11317128 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4IF70YBR_4wDUh3kof28L2SBDCRWOiJt6aPnaFKAuxcPDfO7NtCXjw4LnbZtOZ3e-b2W9mAToSIQD3Rc9yY9-xfBWkVhgIbnFEPyVdqTKPipMnz_3HN3E_ojY5vaoWxoj202TW1Z_zrp5NjbZyOU_tSidmPz0MXRdRDzdWuwY1JIdVjF6eHSAkFU2jTI9NX5RVeRi62zr-st8_YhkEdIsNp97jnPMdSNopc9tim79Fk1soND6Cw5I-skExzWPYk7oBzYHG0Hn-ze6YEXSaTHkD9ofVZW5N-CgOdxGnGDI-VtRGsoViK8Iqs3NQeXLOSDHK4rJTCVvOllSvLnO20CyjRDQJ0-eM0LBIIjL0v1k6pRwjw8h9_bnKT-B1PHoZTqzyngUrxeW9srJ-qFxPIjHIRNYPVJgJRyiJzCRzlZRI8JLQSQLS_ItQOBjU0qpVoRQ9nvhpyE-hrhdangNDtOfIKQNf-giPcYIDUxU73OsnHqVcW9CpfnW0LNppRMUxOI_QOFFpnBbcoBn-HnFbmSjCX0mnHLGWi3Ue0aaFzoHTbcFZYbLNhyqLt0DsGHMzgJpt7z5BHzRNtyufu_j_q5dw4CElIqGZF15BffW1ltdQy7N126QC2saPfwDUnPjF |
link.rule.ids | 230,315,729,782,786,866,887,27933,27934,53800,53802 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ74OODFB77wxZoYb6WPbWV7NAjBCMRETbw1fewKARZi4eC_d6YPAx48eO62afvtzvfN7MwswI1ECkC76Bh26FqGq7zY8D3BDY7sp6QtVeJQcXL3pTl4Fw9tapNzV9bCZEn7cTRq6Mm0oUfDLLdyPo3NMk_MfO63bBtZDw2ruQnbuGAtq_TSi90DJKW8bVTWZdMVRV0eOu-mDj_Nj3EoPY_OseHUfZxzvkZKa4VuK3rzd9rkCg919v77BfuwWyhPdp9fP4ANqatweK_R655-sVuW5YJmQfYqVFrlOXCHMM73hZHiGIpFlpdVspliC6K5zOhQZXPKKNmUhUWTEzYfzanUXaZspllCMWzKaZ8yItI8_shw6o7iIYUnGTr9y8kiPYK3Tvu11TWKIxqMGC3DwkiavrIdiZoiEUnTU34iLKEkiprEVlKiNox8K_KoXED4wkJ_mBa88qW445Eb-_wYtvRMy1NgKBQ4ylHPlS4yaxjhwFiFFneakUPR2hrclBgF87wTR5DvoPMAUQ0KVGtQR_z-HnFdYhvgr6QNklDL2TINyN4hKvi6NTjJsf55UDlVaiDWZsHPAOrTvX4Fwc_6dZdgn_3_1jpUuq_9XtB7HDydw46Dyory1Rz_ArYWn0t5CZtpsrzKlsE3oHMNkA |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BkYAL-1K2GglxC1mcUIdbVaiKWIQESNyiJLahgroRaQ_8PTNZEOXAAc5xoiQznvdmNcCRQghAu-hZbuw7lq-D1AoDwS2O6KeVq7T0qDm5f9--fRLnFzQm56zuhSmK9tNkcGLehidm8FLUVmbD1K7rxOy7m67rIuqhYbUzqe1ZmMNN63i1p15lEBCYytFRxaRNX1S9eejA2yZ-t59fYxUEdJYNpwnknPMpYJpqdvvGOX-WTn7Dot7yf75iBZYqBso65ZpVmFFmDdY7Br3v4Qc7ZkVNaBFsX4OFbn0e3Dq8lvlhhDqGpJGV7ZVspNmY4K4wPtThnDMqOmVxNeyEZYOMWt5VzkaGSYplU237kBGglnFIhio8SF8oTMnQ-Z-8jfMNeOxdPHT7VnVUg5WihRhbsh1q11PILaSQ7UCHUjhCKyQ30tVKIUdMQicJqG1AhMJBv5g2vg6VOOWJn4Z8ExpmZNQ2MCQMHGlp4CsfETZOcGGqY4d77cSjqG0Tjmo5RVk5kSMqM-k8QslGlWSb0EIZ_r7isJZvhL-SEiWxUaNJHpHdQ8ng6zZhq5T314NqdWmCmNKErwU0r3v6CipAMbe7FvjO329twfzdeS-6vry92oVFDwkWla154R40xu8TtQ-zuZwcFDvhEw2pEBA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessing+the+impact+of+transcriptomics+data+analysis+pipelines+on+downstream+functional+enrichment+results&rft.jtitle=Nucleic+acids+research&rft.au=Paton%2C+Victor&rft.au=Ramirez%C2%A0Flores%2C+Ricardo+Omar&rft.au=Gabor%2C+Attila&rft.au=Badia-i-Mompel%2C+Pau&rft.date=2024-06-29&rft.pub=Oxford+University+Press&rft.issn=0305-1048&rft.eissn=1362-4962&rft.volume=52&rft.issue=14&rft.spage=8100&rft.epage=8111&rft_id=info:doi/10.1093%2Fnar%2Fgkae552&rft.externalDocID=10.1093%2Fnar%2Fgkae552 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon |