A systems approach for decoding mitochondrial retrograde signaling pathways
Mitochondrial dysfunctions activate retrograde signaling from mitochondria to the nucleus. To identify transcription factors and their associated pathways that underlie mitochondrial retrograde signaling, we performed gene expression profiling of the cells engineered to have varying amounts of mitoc...
Saved in:
Published in: | Science signaling Vol. 6; no. 264; p. rs4 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
26-02-2013
|
Subjects: | |
Online Access: | Get more information |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Mitochondrial dysfunctions activate retrograde signaling from mitochondria to the nucleus. To identify transcription factors and their associated pathways that underlie mitochondrial retrograde signaling, we performed gene expression profiling of the cells engineered to have varying amounts of mitochondrial DNA with an A3243G mutation (mt3243) in the leucine transfer RNA (tRNA(Leu)), which reduces the abundance of proteins involved in oxidative phosphorylation that are encoded by the mitochondrial genome. The cells with the mutation exhibited reduced mitochondrial function, including compromised oxidative phosphorylation, which would activate diverse mitochondrial retrograde signaling pathways. By analyzing the gene expression profiles in cells with the mutant tRNA(Leu) and the transcription factors that recognize the differentially regulated genes, we identified 72 transcription factors that were potentially involved in mitochondrial retrograde signaling. We experimentally validated that the mt3243 mutation induced a retrograde signaling pathway involving RXRA (retinoid X receptor α), reactive oxygen species, kinase JNK (c-JUN N-terminal kinase), and transcriptional coactivator PGC1α (peroxisome proliferator-activated receptor γ, coactivator 1 α). This RXR pathway contributed to the decrease in mRNA abundances of oxidative phosphorylation enzymes encoded in the nuclear genome, thereby aggravating the dysfunction in oxidative phosphorylation caused by the reduced abundance of mitochondria-encoded enzymes of oxidative phosphorylation. Thus, matching transcription factors to differentially regulated gene expression profiles was an effective approach to understand mitochondrial retrograde signaling pathways and their roles in mitochondrial dysfunction. |
---|---|
AbstractList | Mitochondrial dysfunctions activate retrograde signaling from mitochondria to the nucleus. To identify transcription factors and their associated pathways that underlie mitochondrial retrograde signaling, we performed gene expression profiling of the cells engineered to have varying amounts of mitochondrial DNA with an A3243G mutation (mt3243) in the leucine transfer RNA (tRNA(Leu)), which reduces the abundance of proteins involved in oxidative phosphorylation that are encoded by the mitochondrial genome. The cells with the mutation exhibited reduced mitochondrial function, including compromised oxidative phosphorylation, which would activate diverse mitochondrial retrograde signaling pathways. By analyzing the gene expression profiles in cells with the mutant tRNA(Leu) and the transcription factors that recognize the differentially regulated genes, we identified 72 transcription factors that were potentially involved in mitochondrial retrograde signaling. We experimentally validated that the mt3243 mutation induced a retrograde signaling pathway involving RXRA (retinoid X receptor α), reactive oxygen species, kinase JNK (c-JUN N-terminal kinase), and transcriptional coactivator PGC1α (peroxisome proliferator-activated receptor γ, coactivator 1 α). This RXR pathway contributed to the decrease in mRNA abundances of oxidative phosphorylation enzymes encoded in the nuclear genome, thereby aggravating the dysfunction in oxidative phosphorylation caused by the reduced abundance of mitochondria-encoded enzymes of oxidative phosphorylation. Thus, matching transcription factors to differentially regulated gene expression profiles was an effective approach to understand mitochondrial retrograde signaling pathways and their roles in mitochondrial dysfunction. |
Author | Park, Kyong Soo Chae, Sehyun Yu, Myeong-Hee Byun, Kyunghee Hwang, Daehee Ahn, Byung Yong Cho, Young Min Lee, Bonghee |
Author_xml | – sequence: 1 givenname: Sehyun surname: Chae fullname: Chae, Sehyun organization: School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea – sequence: 2 givenname: Byung Yong surname: Ahn fullname: Ahn, Byung Yong – sequence: 3 givenname: Kyunghee surname: Byun fullname: Byun, Kyunghee – sequence: 4 givenname: Young Min surname: Cho fullname: Cho, Young Min – sequence: 5 givenname: Myeong-Hee surname: Yu fullname: Yu, Myeong-Hee – sequence: 6 givenname: Bonghee surname: Lee fullname: Lee, Bonghee – sequence: 7 givenname: Daehee surname: Hwang fullname: Hwang, Daehee – sequence: 8 givenname: Kyong Soo surname: Park fullname: Park, Kyong Soo |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23443683$$D View this record in MEDLINE/PubMed |
BookMark | eNo1j8tKxDAYRoMozkUfwI3kBTr-yZ-mk-Uw6CgOuNH1kObSRtqmJBXp24uMrr7N4Ry-Fbkc4uAIuWOwYYzLh2xCDs2guw0HQC7lBVkyhVWhmCgXZJXzJ4BknKtrsuAoBMotLsnrjuY5T67PVI9jitq01MdErTPRhqGhfZiiaeNgU9AdTW5KsUnaOnqu_SKjntpvPecbcuV1l93t367Jx9Pj-_65OL4dXva7Y2EQ2FTU0uFWgETv9VYZdDWCFg69tV6CM7pUNQihAC03EkpZoWWKS2U8L00FfE3uz97xq-6dPY0p9DrNp_9X_AerhlHD |
CitedBy_id | crossref_primary_10_1186_s13059_021_02500_1 crossref_primary_10_3390_cancers12092632 crossref_primary_10_1371_journal_pone_0190457 crossref_primary_10_1186_s13041_020_0551_3 crossref_primary_10_1007_s10585_016_9786_x crossref_primary_10_1016_j_bbadis_2023_166920 crossref_primary_10_1186_s13578_021_00696_0 crossref_primary_10_1152_ajpendo_00665_2013 crossref_primary_10_1016_j_biocel_2015_04_016 crossref_primary_10_1016_j_celrep_2022_110408 crossref_primary_10_1016_j_cmet_2014_01_011 crossref_primary_10_1038_s41598_017_06553_w crossref_primary_10_1038_s41467_021_26746_2 crossref_primary_10_1242_dmm_019323 crossref_primary_10_1158_0008_5472_CAN_19_2481 crossref_primary_10_1074_mcp_M115_053181 crossref_primary_10_1021_acs_jproteome_2c00218 crossref_primary_10_1038_s42003_022_03658_5 crossref_primary_10_3390_antiox11010007 crossref_primary_10_1016_j_biocel_2014_02_012 crossref_primary_10_12688_f1000research_19950_1 crossref_primary_10_1038_s41598_021_81834_z crossref_primary_10_1016_j_scib_2024_01_031 crossref_primary_10_7554_eLife_92376 crossref_primary_10_1016_j_freeradbiomed_2015_11_032 crossref_primary_10_1038_s41467_018_05721_4 crossref_primary_10_3389_fnins_2018_00682 crossref_primary_10_3389_fgene_2020_577795 crossref_primary_10_1093_molbev_msu321 crossref_primary_10_4174_astr_2024_106_4_195 crossref_primary_10_1038_s41389_020_0231_2 crossref_primary_10_1016_j_phrs_2020_105161 crossref_primary_10_3389_fcell_2020_00467 crossref_primary_10_1134_S0006297916040039 crossref_primary_10_1016_j_jdermsci_2022_05_002 crossref_primary_10_1002_bies_201500082 crossref_primary_10_37349_emed_2022_00110 crossref_primary_10_4161_15476286_2014_992269 crossref_primary_10_1093_database_bav022 crossref_primary_10_1161_CIRCULATIONAHA_117_031589 crossref_primary_10_1007_s00439_013_1402_4 crossref_primary_10_3390_ph16030436 crossref_primary_10_3389_fcell_2023_1270341 crossref_primary_10_1016_j_mito_2013_08_007 crossref_primary_10_1038_onc_2016_211 crossref_primary_10_1038_s41598_017_02842_6 crossref_primary_10_1101_gr_226324_117 crossref_primary_10_3390_life10090173 crossref_primary_10_1016_j_ymeth_2014_06_003 crossref_primary_10_1093_plphys_kiab180 crossref_primary_10_5483_BMBRep_2019_52_1_291 crossref_primary_10_2337_db17_0974 crossref_primary_10_1080_15287394_2021_1944940 crossref_primary_10_1038_s41598_021_81244_1 crossref_primary_10_1074_mcp_M115_053249 crossref_primary_10_1016_j_mehy_2015_10_004 crossref_primary_10_1016_j_stemcr_2018_01_037 crossref_primary_10_1073_pnas_1414028111 crossref_primary_10_1016_j_jcmgh_2020_11_015 crossref_primary_10_1371_journal_pone_0144273 crossref_primary_10_1016_j_redox_2020_101606 crossref_primary_10_1146_annurev_pharmtox_010716_104908 crossref_primary_10_3390_cells12172124 crossref_primary_10_1016_j_bbamcr_2013_10_001 crossref_primary_10_3390_ijms21041489 crossref_primary_10_3390_cancers13081904 crossref_primary_10_1155_2020_2583601 crossref_primary_10_1155_2017_1062314 crossref_primary_10_1038_s41418_020_00647_1 crossref_primary_10_1002_mgg3_1199 crossref_primary_10_1007_s00109_015_1312_0 crossref_primary_10_1038_celldisc_2016_45 crossref_primary_10_14348_molcells_2015_2280 crossref_primary_10_1038_nrd4023 crossref_primary_10_3390_ijms21186935 crossref_primary_10_1021_pr500813f crossref_primary_10_1186_s12964_014_0044_z crossref_primary_10_3349_ymj_2023_0131 crossref_primary_10_1038_s41401_022_00997_1 crossref_primary_10_1002_1878_0261_13209 crossref_primary_10_1038_nrm_2016_23 crossref_primary_10_1016_j_canlet_2021_09_043 crossref_primary_10_14348_molcells_2015_0146 crossref_primary_10_1111_mec_16917 crossref_primary_10_1098_rspb_2013_1521 crossref_primary_10_7554_eLife_07464 crossref_primary_10_3390_cells9102146 crossref_primary_10_1146_annurev_genet_021920_105545 crossref_primary_10_3389_fcell_2022_826981 crossref_primary_10_1016_j_bbadis_2020_165803 crossref_primary_10_1016_j_bbapap_2018_07_006 crossref_primary_10_1002_pmic_201700240 crossref_primary_10_1016_j_celrep_2017_06_059 crossref_primary_10_1007_s00204_020_02657_x crossref_primary_10_1016_j_arr_2019_100940 crossref_primary_10_1038_s12276_018_0154_6 crossref_primary_10_3390_ijms20092221 crossref_primary_10_1016_j_bbagen_2013_10_041 crossref_primary_10_1016_j_bbadis_2015_12_017 crossref_primary_10_1016_j_abb_2019_03_019 crossref_primary_10_3390_cimb45030115 crossref_primary_10_3390_ijms222111650 crossref_primary_10_1101_gr_178426_114 crossref_primary_10_1016_j_bbagen_2022_130171 crossref_primary_10_1038_srep30610 crossref_primary_10_1016_j_mito_2016_07_003 crossref_primary_10_1111_joim_13046 crossref_primary_10_1007_s00018_017_2462_8 crossref_primary_10_1007_s11033_020_05429_z crossref_primary_10_1042_EBC20170114 crossref_primary_10_1038_ncomms3147 crossref_primary_10_1074_jbc_RA118_004022 crossref_primary_10_1016_j_tig_2018_05_009 crossref_primary_10_1021_pr500467d crossref_primary_10_1177_1535370220920558 crossref_primary_10_1016_j_bbabio_2015_03_001 crossref_primary_10_1016_j_tins_2015_06_001 crossref_primary_10_3389_fcell_2015_00035 crossref_primary_10_1007_s12602_021_09870_9 crossref_primary_10_1038_cdd_2014_67 crossref_primary_10_1111_nph_14242 crossref_primary_10_1016_j_cophys_2022_100554 crossref_primary_10_1186_s13059_023_02952_7 crossref_primary_10_3390_ijms160818224 crossref_primary_10_1093_molbev_msw246 crossref_primary_10_1038_s41598_022_18203_x crossref_primary_10_3389_fgene_2022_851688 crossref_primary_10_1016_j_addr_2023_115025 crossref_primary_10_1016_j_biopha_2020_110094 crossref_primary_10_3389_fcell_2017_00090 crossref_primary_10_1111_jdi_14125 crossref_primary_10_1371_journal_pone_0096456 crossref_primary_10_1093_mp_sst173 crossref_primary_10_3390_ijms23010389 crossref_primary_10_3390_ijms21041201 crossref_primary_10_1016_j_yfrne_2018_01_001 crossref_primary_10_1038_nchembio_1416 crossref_primary_10_1038_srep07197 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM |
DOI | 10.1126/scisignal.2003266 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1937-9145 |
ExternalDocumentID | 23443683 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0R~ 123 18M 4.4 53G 7~K ABJNI ACGFO ACGFS ACIWK ACPRK AENEX AFQFN AFRAH AJGZS ALMA_UNASSIGNED_HOLDINGS BKF BYM CGR CS3 CUY CVF DU5 ECM EIF EJD EMOBN F5P HZ~ NPM O9- P2P RHF RHI SJN |
ID | FETCH-LOGICAL-c301t-b6e384063ffa89c3eb30a4e3fddf60eca59b044903d2c605673d19269cf25c702 |
IngestDate | Tue Aug 27 13:44:51 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 264 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c301t-b6e384063ffa89c3eb30a4e3fddf60eca59b044903d2c605673d19269cf25c702 |
PMID | 23443683 |
ParticipantIDs | pubmed_primary_23443683 |
PublicationCentury | 2000 |
PublicationDate | 2013-Feb-26 |
PublicationDateYYYYMMDD | 2013-02-26 |
PublicationDate_xml | – month: 02 year: 2013 text: 2013-Feb-26 day: 26 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Science signaling |
PublicationTitleAlternate | Sci Signal |
PublicationYear | 2013 |
SSID | ssj0061229 |
Score | 2.497998 |
Snippet | Mitochondrial dysfunctions activate retrograde signaling from mitochondria to the nucleus. To identify transcription factors and their associated pathways that... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | rs4 |
SubjectTerms | Blotting, Western Cell Nucleus - physiology Gene Expression Profiling Heat-Shock Proteins - metabolism Humans MAP Kinase Kinase 4 - metabolism Mitochondrial Diseases - physiopathology Oxidative Phosphorylation Oxygen Consumption - physiology Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha Point Mutation - genetics Reactive Oxygen Species - metabolism Real-Time Polymerase Chain Reaction Retinoid X Receptor alpha - metabolism RNA, Transfer, Leu - genetics Signal Transduction - physiology Systems Biology - methods Transcription Factors - genetics Transcription Factors - metabolism |
Title | A systems approach for decoding mitochondrial retrograde signaling pathways |
URI | https://www.ncbi.nlm.nih.gov/pubmed/23443683 |
Volume | 6 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwELZaWFgQ7zfygFiqSMF2nWSMoKgSgoUiwYQc26FLU9QWoS78ds6vNCAQMLBElZ1Eab7Plzv7_B1CJ7ZSXUEgTE1EErGiUFFanqWRIhkMr5SnTJipgf5tcnOfXvRYr9V6C1F_3favSEMbYG12zv4B7fqm0AC_AXM4Aupw_BXuuRdnntZy4TaTUEGYafevjGAIg8mrlC3XMdEzm6CldMdkcgi3OR28wlcxnzYd12AD6rMaeQFuFlsP5y810_KhKwMPTU-dh_HidNNijYvpGWq9uI2ds7XGp3Pt5cD9bISpDEEi4rWsnQUFfwcsqNOIDCaWN5hEOGsYzMmUfW3IQ-lJ97escCtx9VkaID6PLIqEMiOkT3_u_aStHbraqA2eknGmz6_DdxxcP5L5dXC_zerjsxgdaX_9p5jE-iaDNbTqgwqcOzaso5auNtBmXonZeDTHp9im-dr1k010lWNPEBwIgoEgOBAEfyAIXhAE19DjQJAtdHfZG5z3I19RI5JgyGdRwTWFiJ7TshRpJqkuaCyYpqVSJY-1FN2siBnLYqqIhECXJ1RBCMAzWZKuTGKyjZaqcaV3Eba6PyI5yyQrmZAQePM4M6va4FKmkvM9tONeyeOzk015DC9r_9ueA7Sy4NQhWi5hTOoj1J6ql2OLzTs1BVmh |
link.rule.ids | 782 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+systems+approach+for+decoding+mitochondrial+retrograde+signaling+pathways&rft.jtitle=Science+signaling&rft.au=Chae%2C+Sehyun&rft.au=Ahn%2C+Byung+Yong&rft.au=Byun%2C+Kyunghee&rft.au=Cho%2C+Young+Min&rft.date=2013-02-26&rft.eissn=1937-9145&rft.volume=6&rft.issue=264&rft.spage=rs4&rft_id=info:doi/10.1126%2Fscisignal.2003266&rft_id=info%3Apmid%2F23443683&rft_id=info%3Apmid%2F23443683&rft.externalDocID=23443683 |