A systems approach for decoding mitochondrial retrograde signaling pathways

Mitochondrial dysfunctions activate retrograde signaling from mitochondria to the nucleus. To identify transcription factors and their associated pathways that underlie mitochondrial retrograde signaling, we performed gene expression profiling of the cells engineered to have varying amounts of mitoc...

Full description

Saved in:
Bibliographic Details
Published in:Science signaling Vol. 6; no. 264; p. rs4
Main Authors: Chae, Sehyun, Ahn, Byung Yong, Byun, Kyunghee, Cho, Young Min, Yu, Myeong-Hee, Lee, Bonghee, Hwang, Daehee, Park, Kyong Soo
Format: Journal Article
Language:English
Published: United States 26-02-2013
Subjects:
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Mitochondrial dysfunctions activate retrograde signaling from mitochondria to the nucleus. To identify transcription factors and their associated pathways that underlie mitochondrial retrograde signaling, we performed gene expression profiling of the cells engineered to have varying amounts of mitochondrial DNA with an A3243G mutation (mt3243) in the leucine transfer RNA (tRNA(Leu)), which reduces the abundance of proteins involved in oxidative phosphorylation that are encoded by the mitochondrial genome. The cells with the mutation exhibited reduced mitochondrial function, including compromised oxidative phosphorylation, which would activate diverse mitochondrial retrograde signaling pathways. By analyzing the gene expression profiles in cells with the mutant tRNA(Leu) and the transcription factors that recognize the differentially regulated genes, we identified 72 transcription factors that were potentially involved in mitochondrial retrograde signaling. We experimentally validated that the mt3243 mutation induced a retrograde signaling pathway involving RXRA (retinoid X receptor α), reactive oxygen species, kinase JNK (c-JUN N-terminal kinase), and transcriptional coactivator PGC1α (peroxisome proliferator-activated receptor γ, coactivator 1 α). This RXR pathway contributed to the decrease in mRNA abundances of oxidative phosphorylation enzymes encoded in the nuclear genome, thereby aggravating the dysfunction in oxidative phosphorylation caused by the reduced abundance of mitochondria-encoded enzymes of oxidative phosphorylation. Thus, matching transcription factors to differentially regulated gene expression profiles was an effective approach to understand mitochondrial retrograde signaling pathways and their roles in mitochondrial dysfunction.
AbstractList Mitochondrial dysfunctions activate retrograde signaling from mitochondria to the nucleus. To identify transcription factors and their associated pathways that underlie mitochondrial retrograde signaling, we performed gene expression profiling of the cells engineered to have varying amounts of mitochondrial DNA with an A3243G mutation (mt3243) in the leucine transfer RNA (tRNA(Leu)), which reduces the abundance of proteins involved in oxidative phosphorylation that are encoded by the mitochondrial genome. The cells with the mutation exhibited reduced mitochondrial function, including compromised oxidative phosphorylation, which would activate diverse mitochondrial retrograde signaling pathways. By analyzing the gene expression profiles in cells with the mutant tRNA(Leu) and the transcription factors that recognize the differentially regulated genes, we identified 72 transcription factors that were potentially involved in mitochondrial retrograde signaling. We experimentally validated that the mt3243 mutation induced a retrograde signaling pathway involving RXRA (retinoid X receptor α), reactive oxygen species, kinase JNK (c-JUN N-terminal kinase), and transcriptional coactivator PGC1α (peroxisome proliferator-activated receptor γ, coactivator 1 α). This RXR pathway contributed to the decrease in mRNA abundances of oxidative phosphorylation enzymes encoded in the nuclear genome, thereby aggravating the dysfunction in oxidative phosphorylation caused by the reduced abundance of mitochondria-encoded enzymes of oxidative phosphorylation. Thus, matching transcription factors to differentially regulated gene expression profiles was an effective approach to understand mitochondrial retrograde signaling pathways and their roles in mitochondrial dysfunction.
Author Park, Kyong Soo
Chae, Sehyun
Yu, Myeong-Hee
Byun, Kyunghee
Hwang, Daehee
Ahn, Byung Yong
Cho, Young Min
Lee, Bonghee
Author_xml – sequence: 1
  givenname: Sehyun
  surname: Chae
  fullname: Chae, Sehyun
  organization: School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
– sequence: 2
  givenname: Byung Yong
  surname: Ahn
  fullname: Ahn, Byung Yong
– sequence: 3
  givenname: Kyunghee
  surname: Byun
  fullname: Byun, Kyunghee
– sequence: 4
  givenname: Young Min
  surname: Cho
  fullname: Cho, Young Min
– sequence: 5
  givenname: Myeong-Hee
  surname: Yu
  fullname: Yu, Myeong-Hee
– sequence: 6
  givenname: Bonghee
  surname: Lee
  fullname: Lee, Bonghee
– sequence: 7
  givenname: Daehee
  surname: Hwang
  fullname: Hwang, Daehee
– sequence: 8
  givenname: Kyong Soo
  surname: Park
  fullname: Park, Kyong Soo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23443683$$D View this record in MEDLINE/PubMed
BookMark eNo1j8tKxDAYRoMozkUfwI3kBTr-yZ-mk-Uw6CgOuNH1kObSRtqmJBXp24uMrr7N4Ry-Fbkc4uAIuWOwYYzLh2xCDs2guw0HQC7lBVkyhVWhmCgXZJXzJ4BknKtrsuAoBMotLsnrjuY5T67PVI9jitq01MdErTPRhqGhfZiiaeNgU9AdTW5KsUnaOnqu_SKjntpvPecbcuV1l93t367Jx9Pj-_65OL4dXva7Y2EQ2FTU0uFWgETv9VYZdDWCFg69tV6CM7pUNQihAC03EkpZoWWKS2U8L00FfE3uz97xq-6dPY0p9DrNp_9X_AerhlHD
CitedBy_id crossref_primary_10_1186_s13059_021_02500_1
crossref_primary_10_3390_cancers12092632
crossref_primary_10_1371_journal_pone_0190457
crossref_primary_10_1186_s13041_020_0551_3
crossref_primary_10_1007_s10585_016_9786_x
crossref_primary_10_1016_j_bbadis_2023_166920
crossref_primary_10_1186_s13578_021_00696_0
crossref_primary_10_1152_ajpendo_00665_2013
crossref_primary_10_1016_j_biocel_2015_04_016
crossref_primary_10_1016_j_celrep_2022_110408
crossref_primary_10_1016_j_cmet_2014_01_011
crossref_primary_10_1038_s41598_017_06553_w
crossref_primary_10_1038_s41467_021_26746_2
crossref_primary_10_1242_dmm_019323
crossref_primary_10_1158_0008_5472_CAN_19_2481
crossref_primary_10_1074_mcp_M115_053181
crossref_primary_10_1021_acs_jproteome_2c00218
crossref_primary_10_1038_s42003_022_03658_5
crossref_primary_10_3390_antiox11010007
crossref_primary_10_1016_j_biocel_2014_02_012
crossref_primary_10_12688_f1000research_19950_1
crossref_primary_10_1038_s41598_021_81834_z
crossref_primary_10_1016_j_scib_2024_01_031
crossref_primary_10_7554_eLife_92376
crossref_primary_10_1016_j_freeradbiomed_2015_11_032
crossref_primary_10_1038_s41467_018_05721_4
crossref_primary_10_3389_fnins_2018_00682
crossref_primary_10_3389_fgene_2020_577795
crossref_primary_10_1093_molbev_msu321
crossref_primary_10_4174_astr_2024_106_4_195
crossref_primary_10_1038_s41389_020_0231_2
crossref_primary_10_1016_j_phrs_2020_105161
crossref_primary_10_3389_fcell_2020_00467
crossref_primary_10_1134_S0006297916040039
crossref_primary_10_1016_j_jdermsci_2022_05_002
crossref_primary_10_1002_bies_201500082
crossref_primary_10_37349_emed_2022_00110
crossref_primary_10_4161_15476286_2014_992269
crossref_primary_10_1093_database_bav022
crossref_primary_10_1161_CIRCULATIONAHA_117_031589
crossref_primary_10_1007_s00439_013_1402_4
crossref_primary_10_3390_ph16030436
crossref_primary_10_3389_fcell_2023_1270341
crossref_primary_10_1016_j_mito_2013_08_007
crossref_primary_10_1038_onc_2016_211
crossref_primary_10_1038_s41598_017_02842_6
crossref_primary_10_1101_gr_226324_117
crossref_primary_10_3390_life10090173
crossref_primary_10_1016_j_ymeth_2014_06_003
crossref_primary_10_1093_plphys_kiab180
crossref_primary_10_5483_BMBRep_2019_52_1_291
crossref_primary_10_2337_db17_0974
crossref_primary_10_1080_15287394_2021_1944940
crossref_primary_10_1038_s41598_021_81244_1
crossref_primary_10_1074_mcp_M115_053249
crossref_primary_10_1016_j_mehy_2015_10_004
crossref_primary_10_1016_j_stemcr_2018_01_037
crossref_primary_10_1073_pnas_1414028111
crossref_primary_10_1016_j_jcmgh_2020_11_015
crossref_primary_10_1371_journal_pone_0144273
crossref_primary_10_1016_j_redox_2020_101606
crossref_primary_10_1146_annurev_pharmtox_010716_104908
crossref_primary_10_3390_cells12172124
crossref_primary_10_1016_j_bbamcr_2013_10_001
crossref_primary_10_3390_ijms21041489
crossref_primary_10_3390_cancers13081904
crossref_primary_10_1155_2020_2583601
crossref_primary_10_1155_2017_1062314
crossref_primary_10_1038_s41418_020_00647_1
crossref_primary_10_1002_mgg3_1199
crossref_primary_10_1007_s00109_015_1312_0
crossref_primary_10_1038_celldisc_2016_45
crossref_primary_10_14348_molcells_2015_2280
crossref_primary_10_1038_nrd4023
crossref_primary_10_3390_ijms21186935
crossref_primary_10_1021_pr500813f
crossref_primary_10_1186_s12964_014_0044_z
crossref_primary_10_3349_ymj_2023_0131
crossref_primary_10_1038_s41401_022_00997_1
crossref_primary_10_1002_1878_0261_13209
crossref_primary_10_1038_nrm_2016_23
crossref_primary_10_1016_j_canlet_2021_09_043
crossref_primary_10_14348_molcells_2015_0146
crossref_primary_10_1111_mec_16917
crossref_primary_10_1098_rspb_2013_1521
crossref_primary_10_7554_eLife_07464
crossref_primary_10_3390_cells9102146
crossref_primary_10_1146_annurev_genet_021920_105545
crossref_primary_10_3389_fcell_2022_826981
crossref_primary_10_1016_j_bbadis_2020_165803
crossref_primary_10_1016_j_bbapap_2018_07_006
crossref_primary_10_1002_pmic_201700240
crossref_primary_10_1016_j_celrep_2017_06_059
crossref_primary_10_1007_s00204_020_02657_x
crossref_primary_10_1016_j_arr_2019_100940
crossref_primary_10_1038_s12276_018_0154_6
crossref_primary_10_3390_ijms20092221
crossref_primary_10_1016_j_bbagen_2013_10_041
crossref_primary_10_1016_j_bbadis_2015_12_017
crossref_primary_10_1016_j_abb_2019_03_019
crossref_primary_10_3390_cimb45030115
crossref_primary_10_3390_ijms222111650
crossref_primary_10_1101_gr_178426_114
crossref_primary_10_1016_j_bbagen_2022_130171
crossref_primary_10_1038_srep30610
crossref_primary_10_1016_j_mito_2016_07_003
crossref_primary_10_1111_joim_13046
crossref_primary_10_1007_s00018_017_2462_8
crossref_primary_10_1007_s11033_020_05429_z
crossref_primary_10_1042_EBC20170114
crossref_primary_10_1038_ncomms3147
crossref_primary_10_1074_jbc_RA118_004022
crossref_primary_10_1016_j_tig_2018_05_009
crossref_primary_10_1021_pr500467d
crossref_primary_10_1177_1535370220920558
crossref_primary_10_1016_j_bbabio_2015_03_001
crossref_primary_10_1016_j_tins_2015_06_001
crossref_primary_10_3389_fcell_2015_00035
crossref_primary_10_1007_s12602_021_09870_9
crossref_primary_10_1038_cdd_2014_67
crossref_primary_10_1111_nph_14242
crossref_primary_10_1016_j_cophys_2022_100554
crossref_primary_10_1186_s13059_023_02952_7
crossref_primary_10_3390_ijms160818224
crossref_primary_10_1093_molbev_msw246
crossref_primary_10_1038_s41598_022_18203_x
crossref_primary_10_3389_fgene_2022_851688
crossref_primary_10_1016_j_addr_2023_115025
crossref_primary_10_1016_j_biopha_2020_110094
crossref_primary_10_3389_fcell_2017_00090
crossref_primary_10_1111_jdi_14125
crossref_primary_10_1371_journal_pone_0096456
crossref_primary_10_1093_mp_sst173
crossref_primary_10_3390_ijms23010389
crossref_primary_10_3390_ijms21041201
crossref_primary_10_1016_j_yfrne_2018_01_001
crossref_primary_10_1038_nchembio_1416
crossref_primary_10_1038_srep07197
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1126/scisignal.2003266
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1937-9145
ExternalDocumentID 23443683
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
123
18M
4.4
53G
7~K
ABJNI
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AFQFN
AFRAH
AJGZS
ALMA_UNASSIGNED_HOLDINGS
BKF
BYM
CGR
CS3
CUY
CVF
DU5
ECM
EIF
EJD
EMOBN
F5P
HZ~
NPM
O9-
P2P
RHF
RHI
SJN
ID FETCH-LOGICAL-c301t-b6e384063ffa89c3eb30a4e3fddf60eca59b044903d2c605673d19269cf25c702
IngestDate Tue Aug 27 13:44:51 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 264
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c301t-b6e384063ffa89c3eb30a4e3fddf60eca59b044903d2c605673d19269cf25c702
PMID 23443683
ParticipantIDs pubmed_primary_23443683
PublicationCentury 2000
PublicationDate 2013-Feb-26
PublicationDateYYYYMMDD 2013-02-26
PublicationDate_xml – month: 02
  year: 2013
  text: 2013-Feb-26
  day: 26
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Science signaling
PublicationTitleAlternate Sci Signal
PublicationYear 2013
SSID ssj0061229
Score 2.497998
Snippet Mitochondrial dysfunctions activate retrograde signaling from mitochondria to the nucleus. To identify transcription factors and their associated pathways that...
SourceID pubmed
SourceType Index Database
StartPage rs4
SubjectTerms Blotting, Western
Cell Nucleus - physiology
Gene Expression Profiling
Heat-Shock Proteins - metabolism
Humans
MAP Kinase Kinase 4 - metabolism
Mitochondrial Diseases - physiopathology
Oxidative Phosphorylation
Oxygen Consumption - physiology
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
Point Mutation - genetics
Reactive Oxygen Species - metabolism
Real-Time Polymerase Chain Reaction
Retinoid X Receptor alpha - metabolism
RNA, Transfer, Leu - genetics
Signal Transduction - physiology
Systems Biology - methods
Transcription Factors - genetics
Transcription Factors - metabolism
Title A systems approach for decoding mitochondrial retrograde signaling pathways
URI https://www.ncbi.nlm.nih.gov/pubmed/23443683
Volume 6
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwELZaWFgQ7zfygFiqSMF2nWSMoKgSgoUiwYQc26FLU9QWoS78ds6vNCAQMLBElZ1Eab7Plzv7_B1CJ7ZSXUEgTE1EErGiUFFanqWRIhkMr5SnTJipgf5tcnOfXvRYr9V6C1F_3favSEMbYG12zv4B7fqm0AC_AXM4Aupw_BXuuRdnntZy4TaTUEGYafevjGAIg8mrlC3XMdEzm6CldMdkcgi3OR28wlcxnzYd12AD6rMaeQFuFlsP5y810_KhKwMPTU-dh_HidNNijYvpGWq9uI2ds7XGp3Pt5cD9bISpDEEi4rWsnQUFfwcsqNOIDCaWN5hEOGsYzMmUfW3IQ-lJ97escCtx9VkaID6PLIqEMiOkT3_u_aStHbraqA2eknGmz6_DdxxcP5L5dXC_zerjsxgdaX_9p5jE-iaDNbTqgwqcOzaso5auNtBmXonZeDTHp9im-dr1k010lWNPEBwIgoEgOBAEfyAIXhAE19DjQJAtdHfZG5z3I19RI5JgyGdRwTWFiJ7TshRpJqkuaCyYpqVSJY-1FN2siBnLYqqIhECXJ1RBCMAzWZKuTGKyjZaqcaV3Eba6PyI5yyQrmZAQePM4M6va4FKmkvM9tONeyeOzk015DC9r_9ueA7Sy4NQhWi5hTOoj1J6ql2OLzTs1BVmh
link.rule.ids 782
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+systems+approach+for+decoding+mitochondrial+retrograde+signaling+pathways&rft.jtitle=Science+signaling&rft.au=Chae%2C+Sehyun&rft.au=Ahn%2C+Byung+Yong&rft.au=Byun%2C+Kyunghee&rft.au=Cho%2C+Young+Min&rft.date=2013-02-26&rft.eissn=1937-9145&rft.volume=6&rft.issue=264&rft.spage=rs4&rft_id=info:doi/10.1126%2Fscisignal.2003266&rft_id=info%3Apmid%2F23443683&rft_id=info%3Apmid%2F23443683&rft.externalDocID=23443683