Estimation of Winter Wheat Chlorophyll Content Based on Wavelet Transform and the Optimal Spectral Index

Hyperspectral remote sensing technology plays a vital role in advancing modern precision agriculture due to its non-destructive and efficient nature. To achieve accurate monitoring of winter wheat chlorophyll content, this study utilized 68 sets of chlorophyll content data and hyperspectral measurem...

Full description

Saved in:
Bibliographic Details
Published in:Agronomy (Basel) Vol. 14; no. 6; p. 1309
Main Authors: Liu, Xiaochi, Li, Zhijun, Xiang, Youzhen, Tang, Zijun, Huang, Xiangyang, Shi, Hongzhao, Sun, Tao, Yang, Wanli, Cui, Shihao, Chen, Guofu, Zhang, Fucang
Format: Journal Article
Language:English
Published: Basel MDPI AG 01-06-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Hyperspectral remote sensing technology plays a vital role in advancing modern precision agriculture due to its non-destructive and efficient nature. To achieve accurate monitoring of winter wheat chlorophyll content, this study utilized 68 sets of chlorophyll content data and hyperspectral measurements collected during the jointing stage of winter wheat over two consecutive years (2019–2020), under various fertilization types and nitrogen application levels. Continuous wavelet transform was applied to transform the original reflectance, ranging from 21 to 210, and the correlation matrix method was utilized to identify the spectral index at each scale, with the highest correlation to winter wheat chlorophyll content as the optimal spectral index combination input. Subsequently, winter wheat chlorophyll content prediction models were developed using three machine learning methods: random forest (RF), support vector machine (SVM), and a genetic algorithm-optimized backpropagation neural network (GA-BP). The results indicate that the spectral data processed through continuous wavelet transform at seven scales, from 21 to 27, show the highest correlation with winter wheat chlorophyll content at a scale of 26, with a correlation coefficient of 0.738, compared with the correlation of 0.611 of the original reflectance, and the accuracy is improved by 20.7%. The average highest correlation value between the spectral index at scale 26 and winter wheat chlorophyll content is 0.752. As the scale of wavelet transform increases, the correlation between the spectral index and winter wheat chlorophyll content and the accuracy of the predictive model show a trend of first increasing and then decreasing. The optimal input variables for predicting winter wheat chlorophyll content and the best machine learning method are the spectral data at a scale of 26 processing combined with the GA-BP model. The optimal predictive model has a validation set coefficient of determination (R2) of 0.859, root mean square error (RMSE) of 1.366, and mean relative error (MRE) of 2.920%. The results show that the prediction model can provide a technical basis for improving the hyperspectral inversion accuracy of winter wheat chlorophyll and modern precision agriculture.
AbstractList Hyperspectral remote sensing technology plays a vital role in advancing modern precision agriculture due to its non-destructive and efficient nature. To achieve accurate monitoring of winter wheat chlorophyll content, this study utilized 68 sets of chlorophyll content data and hyperspectral measurements collected during the jointing stage of winter wheat over two consecutive years (2019–2020), under various fertilization types and nitrogen application levels. Continuous wavelet transform was applied to transform the original reflectance, ranging from 21 to 210, and the correlation matrix method was utilized to identify the spectral index at each scale, with the highest correlation to winter wheat chlorophyll content as the optimal spectral index combination input. Subsequently, winter wheat chlorophyll content prediction models were developed using three machine learning methods: random forest (RF), support vector machine (SVM), and a genetic algorithm-optimized backpropagation neural network (GA-BP). The results indicate that the spectral data processed through continuous wavelet transform at seven scales, from 21 to 27, show the highest correlation with winter wheat chlorophyll content at a scale of 26, with a correlation coefficient of 0.738, compared with the correlation of 0.611 of the original reflectance, and the accuracy is improved by 20.7%. The average highest correlation value between the spectral index at scale 26 and winter wheat chlorophyll content is 0.752. As the scale of wavelet transform increases, the correlation between the spectral index and winter wheat chlorophyll content and the accuracy of the predictive model show a trend of first increasing and then decreasing. The optimal input variables for predicting winter wheat chlorophyll content and the best machine learning method are the spectral data at a scale of 26 processing combined with the GA-BP model. The optimal predictive model has a validation set coefficient of determination (R2) of 0.859, root mean square error (RMSE) of 1.366, and mean relative error (MRE) of 2.920%. The results show that the prediction model can provide a technical basis for improving the hyperspectral inversion accuracy of winter wheat chlorophyll and modern precision agriculture.
Hyperspectral remote sensing technology plays a vital role in advancing modern precision agriculture due to its non-destructive and efficient nature. To achieve accurate monitoring of winter wheat chlorophyll content, this study utilized 68 sets of chlorophyll content data and hyperspectral measurements collected during the jointing stage of winter wheat over two consecutive years (2019–2020), under various fertilization types and nitrogen application levels. Continuous wavelet transform was applied to transform the original reflectance, ranging from 2[sup.1] to 2[sup.10], and the correlation matrix method was utilized to identify the spectral index at each scale, with the highest correlation to winter wheat chlorophyll content as the optimal spectral index combination input. Subsequently, winter wheat chlorophyll content prediction models were developed using three machine learning methods: random forest (RF), support vector machine (SVM), and a genetic algorithm-optimized backpropagation neural network (GA-BP). The results indicate that the spectral data processed through continuous wavelet transform at seven scales, from 2[sup.1] to 2[sup.7], show the highest correlation with winter wheat chlorophyll content at a scale of 2[sup.6], with a correlation coefficient of 0.738, compared with the correlation of 0.611 of the original reflectance, and the accuracy is improved by 20.7%. The average highest correlation value between the spectral index at scale 2[sup.6] and winter wheat chlorophyll content is 0.752. As the scale of wavelet transform increases, the correlation between the spectral index and winter wheat chlorophyll content and the accuracy of the predictive model show a trend of first increasing and then decreasing. The optimal input variables for predicting winter wheat chlorophyll content and the best machine learning method are the spectral data at a scale of 2[sup.6] processing combined with the GA-BP model. The optimal predictive model has a validation set coefficient of determination (R[sup.2]) of 0.859, root mean square error (RMSE) of 1.366, and mean relative error (MRE) of 2.920%. The results show that the prediction model can provide a technical basis for improving the hyperspectral inversion accuracy of winter wheat chlorophyll and modern precision agriculture.
Audience Academic
Author Li, Zhijun
Chen, Guofu
Liu, Xiaochi
Shi, Hongzhao
Yang, Wanli
Tang, Zijun
Huang, Xiangyang
Cui, Shihao
Sun, Tao
Xiang, Youzhen
Zhang, Fucang
Author_xml – sequence: 1
  givenname: Xiaochi
  surname: Liu
  fullname: Liu, Xiaochi
– sequence: 2
  givenname: Zhijun
  surname: Li
  fullname: Li, Zhijun
– sequence: 3
  givenname: Youzhen
  orcidid: 0000-0002-8268-1609
  surname: Xiang
  fullname: Xiang, Youzhen
– sequence: 4
  givenname: Zijun
  orcidid: 0000-0003-4020-1184
  surname: Tang
  fullname: Tang, Zijun
– sequence: 5
  givenname: Xiangyang
  surname: Huang
  fullname: Huang, Xiangyang
– sequence: 6
  givenname: Hongzhao
  surname: Shi
  fullname: Shi, Hongzhao
– sequence: 7
  givenname: Tao
  surname: Sun
  fullname: Sun, Tao
– sequence: 8
  givenname: Wanli
  surname: Yang
  fullname: Yang, Wanli
– sequence: 9
  givenname: Shihao
  surname: Cui
  fullname: Cui, Shihao
– sequence: 10
  givenname: Guofu
  surname: Chen
  fullname: Chen, Guofu
– sequence: 11
  givenname: Fucang
  orcidid: 0000-0002-6659-3262
  surname: Zhang
  fullname: Zhang, Fucang
BookMark eNpdkc1vGyEQxVGUSknd3HtEytkpX4blmFppailSDk3lI2Jh8K61hg2Qqv7vQ-oqqgoHRsO8nx68j-g8pggIfabkhnNNvthdTjEdjlQQSTnRZ-iSEcWXguvV-T_1BboqZU_a0pR3RF2i4a7U8WDrmCJOAW_HWCHj7QC24vUwpZzm4ThNeJ3aRaz4qy3gcRve2l8wQcVP2cYSUj5gGz2uA-DH-Y044R8zuJpbsYkefn9CH4KdClz9PRfo57e7p_X35cPj_WZ9-7B0nNC6VJwL4YNnUgtFSNcp2zFFFet6y4OzUnmmGIWe9cpCr7XmQXlBwPc-aGB8gTYnrk92b-bcrOSjSXY0fxop74zNdXQTmJXrqaSk4YgVwtmOSElVR4nomJTSNdb1iTXn9PwCpZp9esmx2Te8yZhQov3jAt2cpna2QccYUnu1a9vDYXQtqDC2_q3Smq3oSsgmICeBy6mUDOHdJiXmLU_zf578FVj6lT8
Cites_doi 10.1016/j.enggeo.2011.09.006
10.3390/app14093940
10.3390/s16040437
10.3390/agronomy13030783
10.1016/j.fcr.2011.05.017
10.2134/agronj2007.0254N
10.1016/j.agsy.2004.12.003
10.1093/forestscience/49.3.381
10.1002/we.2261
10.3390/s19132949
10.7717/peerj-cs.623
10.1080/01431161.2020.1823038
10.1016/j.compag.2022.106728
10.1016/0034-4257(95)00135-N
10.3390/agronomy12071729
10.1088/1361-6501/ad45f4
10.1016/j.rse.2010.11.001
10.3390/rs12030508
10.1016/j.fcr.2008.12.004
10.1078/0176-1617-00887
10.1109/PROC.1985.13238
10.3390/rs6064927
10.1109/CDS52072.2021.00107
10.1016/j.agwat.2024.108875
10.1016/j.eja.2024.127098
10.1016/j.chemolab.2019.103873
10.1002/agj2.21533
10.1109/78.258098
10.3390/agronomy12030555
10.1080/01431161.2021.1931539
10.1109/TMECH.2024.3402116
10.1016/j.rse.2019.01.039
10.1109/TGRS.2007.904836
10.1137/1031129
10.1006/jmbi.1993.1258
10.3390/rs14194868
10.1016/j.rse.2022.113198
10.1007/s12355-020-00922-y
10.1016/j.fooweb.2023.e00303
10.1007/s42729-024-01626-y
10.1037/0033-2909.111.1.172
10.1109/BMEI.2011.6098517
10.3390/s19051088
10.1023/A:1009666805688
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SN
7SS
7ST
7T7
7TM
7X2
8FD
8FE
8FH
8FK
ABUWG
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
M0K
P64
PATMY
PIMPY
PQEST
PQQKQ
PQUKI
PYCSY
SOI
DOA
DOI 10.3390/agronomy14061309
DatabaseName CrossRef
ProQuest Central (Corporate)
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Agricultural Science Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
Agriculture Science Database
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
Environment Abstracts
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest Central
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest SciTech Collection
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest Central (Alumni)
DatabaseTitleList CrossRef


Agricultural Science Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2073-4395
ExternalDocumentID oai_doaj_org_article_5cb16107210a44ca806617810482666c
A799251546
10_3390_agronomy14061309
GeographicLocations China
United States--US
GeographicLocations_xml – name: China
– name: United States--US
GroupedDBID 2XV
5VS
7X2
7XC
8FE
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BHPHI
CCPQU
CITATION
ECGQY
GROUPED_DOAJ
HCIFZ
IAO
ITC
KQ8
M0K
MODMG
M~E
OK1
OZF
PATMY
PIMPY
PROAC
PYCSY
3V.
7SN
7SS
7ST
7T7
7TM
8FD
8FK
ABUWG
AZQEC
C1K
DWQXO
FR3
GNUQQ
P64
PQEST
PQQKQ
PQUKI
SOI
ID FETCH-LOGICAL-c301t-73344dfd2694700887a8271728ba3fca67d2721eb2b7aeb9993f7d40edbdf9e23
IEDL.DBID DOA
ISSN 2073-4395
IngestDate Tue Oct 22 15:16:09 EDT 2024
Mon Nov 04 15:18:07 EST 2024
Tue Jul 02 03:50:38 EDT 2024
Fri Nov 22 03:17:17 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c301t-73344dfd2694700887a8271728ba3fca67d2721eb2b7aeb9993f7d40edbdf9e23
ORCID 0000-0002-8268-1609
0000-0003-4020-1184
0000-0002-6659-3262
OpenAccessLink https://doaj.org/article/5cb16107210a44ca806617810482666c
PQID 3072247491
PQPubID 2032440
ParticipantIDs doaj_primary_oai_doaj_org_article_5cb16107210a44ca806617810482666c
proquest_journals_3072247491
gale_infotracacademiconefile_A799251546
crossref_primary_10_3390_agronomy14061309
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Agronomy (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Heil (ref_27) 1989; 31
Tang (ref_4) 2024; 298
Meng (ref_37) 1992; 111
Liu (ref_20) 2019; 36
Lawton (ref_26) 1993; 41
Rivera (ref_28) 2014; 6
Chicco (ref_36) 2021; 7
Zeng (ref_34) 2011; Volume 3
Steele (ref_9) 2008; 100
Xavier (ref_6) 2021; 23
Shi (ref_45) 2022; 50
ref_24
Wang (ref_2) 2009; 111
Saberioon (ref_16) 2014; 32
Liu (ref_30) 2021; 42
ref_29
Berger (ref_40) 2022; 280
Reda (ref_50) 2019; 195
Wang (ref_43) 2022; 193
Sampson (ref_13) 2003; 49
Tang (ref_12) 2024; 116
Li (ref_42) 2021; 52
ref_31
Unger (ref_35) 1993; 231
ref_38
Higdon (ref_25) 1998; 5
Fountas (ref_10) 2006; 87
Haboudane (ref_39) 2008; 46
Shu (ref_41) 2021; 42
Tang (ref_7) 2024; 154
Cheng (ref_21) 2010; 115
Briggs (ref_18) 2000; 120
Lan (ref_48) 2023; 36
Nie (ref_19) 2024; 35
ref_47
ref_46
Coventry (ref_3) 2011; 123
ref_44
ref_1
Shi (ref_32) 2018; 21
Xu (ref_23) 2019; 224
Gitelson (ref_14) 2003; 160
Yang (ref_17) 2010; 26
Bauer (ref_22) 1985; 73
ref_49
Tang (ref_11) 2024; 24
ref_8
Bajat (ref_33) 2011; 123
ref_5
Yoder (ref_15) 1995; 53
References_xml – volume: 123
  start-page: 225
  year: 2011
  ident: ref_33
  article-title: Landslide susceptibility assessment using SVM machine learning algorithm
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2011.09.006
  contributor:
    fullname: Bajat
– volume: 26
  start-page: 237
  year: 2010
  ident: ref_17
  article-title: Hyperspectral data estimated rice and wheat leaf area index and chlorophyll density
  publication-title: Trans. Chin. Soc. Agric. Eng.
  contributor:
    fullname: Yang
– ident: ref_1
  doi: 10.3390/app14093940
– ident: ref_8
  doi: 10.3390/s16040437
– ident: ref_44
  doi: 10.3390/agronomy13030783
– volume: 123
  start-page: 214
  year: 2011
  ident: ref_3
  article-title: Wheat quality and productivity as affected by varieties and sowing time in Haryana, India
  publication-title: Field Crop. Res.
  doi: 10.1016/j.fcr.2011.05.017
  contributor:
    fullname: Coventry
– volume: 100
  start-page: 779
  year: 2008
  ident: ref_9
  article-title: A comparison of two techniques for nondestructive measurement of chlorophyll content in grapevine leaves
  publication-title: Agron. J.
  doi: 10.2134/agronj2007.0254N
  contributor:
    fullname: Steele
– volume: 32
  start-page: 35
  year: 2014
  ident: ref_16
  article-title: Assessment of rice leaf chlorophyll content using visible bands at different growth stages at both the leaf and canopy scale
  publication-title: Int. J. Appl. Earth Obs.
  contributor:
    fullname: Saberioon
– volume: 87
  start-page: 192
  year: 2006
  ident: ref_10
  article-title: A model of decision-making and information flows for information-intensive agriculture
  publication-title: Agr Syst.
  doi: 10.1016/j.agsy.2004.12.003
  contributor:
    fullname: Fountas
– volume: 49
  start-page: 381
  year: 2003
  ident: ref_13
  article-title: Hyperspectral remote sensing of forest condition: Estimating chlorophyll content in tolerant hardwoods
  publication-title: Forest Sci.
  doi: 10.1093/forestscience/49.3.381
  contributor:
    fullname: Sampson
– volume: 52
  start-page: 172
  year: 2021
  ident: ref_42
  article-title: Estimation of winter wheat chlorophyll content based on wavelet transform and fractional differential
  publication-title: Trans. Chin. Soc. Agric. Mach.
  contributor:
    fullname: Li
– volume: 21
  start-page: 1383
  year: 2018
  ident: ref_32
  article-title: An improved random forest model of short-term wind-power forecasting to enhance accuracy, efficiency, and robustness
  publication-title: Wind Energy
  doi: 10.1002/we.2261
  contributor:
    fullname: Shi
– ident: ref_5
  doi: 10.3390/s19132949
– volume: 7
  start-page: e623
  year: 2021
  ident: ref_36
  article-title: The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation
  publication-title: Peerj Comput. Sci.
  doi: 10.7717/peerj-cs.623
  contributor:
    fullname: Chicco
– volume: 42
  start-page: 1035
  year: 2021
  ident: ref_30
  article-title: Hyperspectral characteristics and inversion model estimation of winter wheat under different elevated CO2 concentrations
  publication-title: Int J. Remote Sens.
  doi: 10.1080/01431161.2020.1823038
  contributor:
    fullname: Liu
– volume: 193
  start-page: 106728
  year: 2022
  ident: ref_43
  article-title: Winter wheat chlorophyll content retrieval based on machine learning using in situ hyperspectral data
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2022.106728
  contributor:
    fullname: Wang
– volume: 53
  start-page: 199
  year: 1995
  ident: ref_15
  article-title: Predicting nitrogen and chlorophyll content and concentrations from reflectance spectra (400–2500 nm) at leaf and canopy scales
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(95)00135-N
  contributor:
    fullname: Yoder
– ident: ref_24
  doi: 10.3390/agronomy12071729
– volume: 50
  start-page: 56
  year: 2022
  ident: ref_45
  article-title: Inversion of winter wheat chlorophyll content based on hyperspectral and GA-BP neural network model
  publication-title: Jiangsu J. Agric. Sci.
  contributor:
    fullname: Shi
– volume: 35
  start-page: 086117
  year: 2024
  ident: ref_19
  article-title: Tool wear monitoring based on scSE-ResNet-50-TSCNN model integrating machine vision and force signals
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/ad45f4
  contributor:
    fullname: Nie
– volume: 115
  start-page: 659
  year: 2010
  ident: ref_21
  article-title: Spectroscopic determination of leaf water content using continuous wavelet analysis
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.11.001
  contributor:
    fullname: Cheng
– ident: ref_46
  doi: 10.3390/rs12030508
– volume: 111
  start-page: 181
  year: 2009
  ident: ref_2
  article-title: Wheat cropping systems and technologies in China
  publication-title: Field Crop. Red.
  doi: 10.1016/j.fcr.2008.12.004
  contributor:
    fullname: Wang
– volume: 160
  start-page: 271
  year: 2003
  ident: ref_14
  article-title: Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves
  publication-title: J. Plant Physiol.
  doi: 10.1078/0176-1617-00887
  contributor:
    fullname: Gitelson
– volume: 73
  start-page: 1071
  year: 1985
  ident: ref_22
  article-title: Spectral inputs to crop identification and condition assessment
  publication-title: Proc. IEEE
  doi: 10.1109/PROC.1985.13238
  contributor:
    fullname: Bauer
– volume: 6
  start-page: 4927
  year: 2014
  ident: ref_28
  article-title: On the Semi-Automatic Retrieval of Biophysical Parameters Based on Spectral Index Optimization
  publication-title: Remote Sens.
  doi: 10.3390/rs6064927
  contributor:
    fullname: Rivera
– ident: ref_47
  doi: 10.1109/CDS52072.2021.00107
– volume: 298
  start-page: 108875
  year: 2024
  ident: ref_4
  article-title: Farmland mulching and optimized irrigation increase water productivity and seed yield by regulating functional parameters of soybean (Glycine max L.) leaves
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2024.108875
  contributor:
    fullname: Tang
– volume: 154
  start-page: 127098
  year: 2024
  ident: ref_7
  article-title: Application of hyperspectral technology for leaf function monitoring and nitrogen nutrient diagnosis in soybean (Glycine max L.) production systems on the Loess Plateau of China
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2024.127098
  contributor:
    fullname: Tang
– volume: 195
  start-page: 103873
  year: 2019
  ident: ref_50
  article-title: A comparative study between a new method and other machine learning algorithms for soil organic carbon and total nitrogen prediction using near infrared spectroscopy
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2019.103873
  contributor:
    fullname: Reda
– volume: 116
  start-page: 531
  year: 2024
  ident: ref_12
  article-title: Research on potato (Solanum tuberosum L.) nitrogen nutrition diagnosis based on hyperspectral data
  publication-title: Agron. J.
  doi: 10.1002/agj2.21533
  contributor:
    fullname: Tang
– volume: 41
  start-page: 3566
  year: 1993
  ident: ref_26
  article-title: Applications of complex valued wavelet transforms to subband decomposition
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.258098
  contributor:
    fullname: Lawton
– ident: ref_38
  doi: 10.3390/agronomy12030555
– volume: 42
  start-page: 5862
  year: 2021
  ident: ref_41
  article-title: Improving the estimation accuracy of SPAD values for maize leaves by removing UAV hyperspectral image backgrounds
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2021.1931539
  contributor:
    fullname: Shu
– ident: ref_49
  doi: 10.1109/TMECH.2024.3402116
– volume: 36
  start-page: 42
  year: 2019
  ident: ref_20
  article-title: Nitrogen estimation model for summer maize based on continuous wavelet transform and RF algorithm
  publication-title: Barley Cereal Sci.
  contributor:
    fullname: Liu
– volume: 224
  start-page: 60
  year: 2019
  ident: ref_23
  article-title: Retrieving leaf chlorophyll content using a matrix-based vegetation index combination approach
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.01.039
  contributor:
    fullname: Xu
– volume: 46
  start-page: 423
  year: 2008
  ident: ref_39
  article-title: Remote estimation of crop chlorophyll content using spectral indices derived from hyperspectral data
  publication-title: IEEE Trans. Geosci. Remote.
  doi: 10.1109/TGRS.2007.904836
  contributor:
    fullname: Haboudane
– volume: 31
  start-page: 628
  year: 1989
  ident: ref_27
  article-title: Continuous and discrete wavelet transforms
  publication-title: Siam Rev.
  doi: 10.1137/1031129
  contributor:
    fullname: Heil
– volume: 231
  start-page: 75
  year: 1993
  ident: ref_35
  article-title: Genetic algorithms for protein folding simulations
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1993.1258
  contributor:
    fullname: Unger
– ident: ref_29
  doi: 10.3390/rs14194868
– volume: 280
  start-page: 113198
  year: 2022
  ident: ref_40
  article-title: Multi-sensor spectral synergies for crop stress detection and monitoring in the optical domain: A review
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2022.113198
  contributor:
    fullname: Berger
– volume: 23
  start-page: 560
  year: 2021
  ident: ref_6
  article-title: Portable Chlorophyll Meter for Indirect Evaluation of Photosynthetic Pigments and Nitrogen Content in Sweet Sorghum
  publication-title: Sugar Tech.
  doi: 10.1007/s12355-020-00922-y
  contributor:
    fullname: Xavier
– volume: 36
  start-page: e00303
  year: 2023
  ident: ref_48
  article-title: Spectral radius is a better metric than weighted NODF to detect network nestedness: Linking species coexistence to network structure using a plant–larval sawfly bipartite
  publication-title: Food Webs
  doi: 10.1016/j.fooweb.2023.e00303
  contributor:
    fullname: Lan
– volume: 24
  start-page: 1250
  year: 2024
  ident: ref_11
  article-title: Monitoring of Soil Moisture Content of Winter Oilseed Rape (Brassica napus L.) Based on Hyperspectral and Machine Learning Models
  publication-title: J. Soil Sci. Plant Nutr.
  doi: 10.1007/s42729-024-01626-y
  contributor:
    fullname: Tang
– volume: 111
  start-page: 172
  year: 1992
  ident: ref_37
  article-title: Comparing correlated correlation coefficients
  publication-title: Phychol Bull.
  doi: 10.1037/0033-2909.111.1.172
  contributor:
    fullname: Meng
– volume: Volume 3
  start-page: 1621
  year: 2011
  ident: ref_34
  article-title: A comparison study: Support vector machines for binary classification in machine learning
  publication-title: Proceedings of the 2011 4th International Conference on Biomedical Engineering and Informatics (BMEI)
  doi: 10.1109/BMEI.2011.6098517
  contributor:
    fullname: Zeng
– ident: ref_31
  doi: 10.3390/s19051088
– volume: 5
  start-page: 173
  year: 1998
  ident: ref_25
  article-title: A process-convolution approach to modelling temperatures in the North Atlantic Ocean
  publication-title: Envioron. Ecol. Stat.
  doi: 10.1023/A:1009666805688
  contributor:
    fullname: Higdon
– volume: 120
  start-page: 3351
  year: 2000
  ident: ref_18
  article-title: Removing radio interference from contaminated astronomical spectra using an independent reference signal and closure relations
  publication-title: J. Korean Astron. Soc.
  contributor:
    fullname: Briggs
SSID ssj0000913807
Score 2.3209667
Snippet Hyperspectral remote sensing technology plays a vital role in advancing modern precision agriculture due to its non-destructive and efficient nature. To...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
StartPage 1309
SubjectTerms Accuracy
Agricultural production
Agriculture
Back propagation networks
Chlorophyll
chlorophyll content
Continuous wavelet transform
Correlation analysis
Correlation coefficient
Correlation coefficients
Data collection
Fertilization
Fertilizers
Genetic algorithms
hyperspectral
Learning algorithms
Machine learning
Matrix methods
Neural networks
Nitrogen
optimal spectral index
Potassium
Precision farming
Prediction models
Reflectance
Remote sensing
Root-mean-square errors
Support vector machines
Triticum aestivum
Vegetation
wavelet transform
Wavelet transforms
Wheat
Winter wheat
Title Estimation of Winter Wheat Chlorophyll Content Based on Wavelet Transform and the Optimal Spectral Index
URI https://www.proquest.com/docview/3072247491
https://doaj.org/article/5cb16107210a44ca806617810482666c
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF20Jz2In1itsgdBPAST7CabPbbaUi96UKm3ZT_1UNJS4_93ZpOKCOLFawhheZOZeZPMvCHkglUhyDR32D1lEy7LKjGQ5hKpi1IEEyQrcN55-ijuX6rbMcrkfK36wp6wVh64Be66sAZICap4pZpzqyvIkZmooIoAYlyWNkbftPxWTMUYLDNUUm__SzKo66_16ypOCWQxg2H_4bc8FOX6fwvKMdNMdslORxHpsD3aHtnw9T7ZHr6uOpkMf0DexuCZ7dAhXQQ6Q9GHFY2Bld68QQm-APTmcxq1p-qGjiBXOQo3zzQummjo05qvUl07CiSQPizxiXOKC-nx6we9Qx3FQ_I8GT_dTJNuZ0JiwVWbRDDGuQsOB1RFiiFEV7nAJVRGs2B1KVwOWEI9bYT2BughC8Lx1DvjgvQ5OyK9elH7Y0Ir401hmfTGSp77TGep89akPNg84yHtk6s1gmrZSmMoKCkQbfUT7T4ZIcRf96GodbwApladqdVfpu6TSzSQQtcDIKzuJgjguChipYZCSqBrBS_7ZLC2oep88l1BNAO-IrjMTv7jNKdkKweC07aNDUivWX34M7L57j7O47v4CV_Q4YA
link.rule.ids 315,782,786,866,2106,27933,27934
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+of+Winter+Wheat+Chlorophyll+Content+Based+on+Wavelet+Transform+and+the+Optimal+Spectral+Index&rft.jtitle=Agronomy+%28Basel%29&rft.au=Liu%2C+Xiaochi&rft.au=Li%2C+Zhijun&rft.au=Youzhen+Xiang&rft.au=Tang%2C+Zijun&rft.date=2024-06-01&rft.pub=MDPI+AG&rft.eissn=2073-4395&rft.volume=14&rft.issue=6&rft.spage=1309&rft_id=info:doi/10.3390%2Fagronomy14061309&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4395&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4395&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4395&client=summon