Estimation of Winter Wheat Chlorophyll Content Based on Wavelet Transform and the Optimal Spectral Index
Hyperspectral remote sensing technology plays a vital role in advancing modern precision agriculture due to its non-destructive and efficient nature. To achieve accurate monitoring of winter wheat chlorophyll content, this study utilized 68 sets of chlorophyll content data and hyperspectral measurem...
Saved in:
Published in: | Agronomy (Basel) Vol. 14; no. 6; p. 1309 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Basel
MDPI AG
01-06-2024
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Hyperspectral remote sensing technology plays a vital role in advancing modern precision agriculture due to its non-destructive and efficient nature. To achieve accurate monitoring of winter wheat chlorophyll content, this study utilized 68 sets of chlorophyll content data and hyperspectral measurements collected during the jointing stage of winter wheat over two consecutive years (2019–2020), under various fertilization types and nitrogen application levels. Continuous wavelet transform was applied to transform the original reflectance, ranging from 21 to 210, and the correlation matrix method was utilized to identify the spectral index at each scale, with the highest correlation to winter wheat chlorophyll content as the optimal spectral index combination input. Subsequently, winter wheat chlorophyll content prediction models were developed using three machine learning methods: random forest (RF), support vector machine (SVM), and a genetic algorithm-optimized backpropagation neural network (GA-BP). The results indicate that the spectral data processed through continuous wavelet transform at seven scales, from 21 to 27, show the highest correlation with winter wheat chlorophyll content at a scale of 26, with a correlation coefficient of 0.738, compared with the correlation of 0.611 of the original reflectance, and the accuracy is improved by 20.7%. The average highest correlation value between the spectral index at scale 26 and winter wheat chlorophyll content is 0.752. As the scale of wavelet transform increases, the correlation between the spectral index and winter wheat chlorophyll content and the accuracy of the predictive model show a trend of first increasing and then decreasing. The optimal input variables for predicting winter wheat chlorophyll content and the best machine learning method are the spectral data at a scale of 26 processing combined with the GA-BP model. The optimal predictive model has a validation set coefficient of determination (R2) of 0.859, root mean square error (RMSE) of 1.366, and mean relative error (MRE) of 2.920%. The results show that the prediction model can provide a technical basis for improving the hyperspectral inversion accuracy of winter wheat chlorophyll and modern precision agriculture. |
---|---|
AbstractList | Hyperspectral remote sensing technology plays a vital role in advancing modern precision agriculture due to its non-destructive and efficient nature. To achieve accurate monitoring of winter wheat chlorophyll content, this study utilized 68 sets of chlorophyll content data and hyperspectral measurements collected during the jointing stage of winter wheat over two consecutive years (2019–2020), under various fertilization types and nitrogen application levels. Continuous wavelet transform was applied to transform the original reflectance, ranging from 21 to 210, and the correlation matrix method was utilized to identify the spectral index at each scale, with the highest correlation to winter wheat chlorophyll content as the optimal spectral index combination input. Subsequently, winter wheat chlorophyll content prediction models were developed using three machine learning methods: random forest (RF), support vector machine (SVM), and a genetic algorithm-optimized backpropagation neural network (GA-BP). The results indicate that the spectral data processed through continuous wavelet transform at seven scales, from 21 to 27, show the highest correlation with winter wheat chlorophyll content at a scale of 26, with a correlation coefficient of 0.738, compared with the correlation of 0.611 of the original reflectance, and the accuracy is improved by 20.7%. The average highest correlation value between the spectral index at scale 26 and winter wheat chlorophyll content is 0.752. As the scale of wavelet transform increases, the correlation between the spectral index and winter wheat chlorophyll content and the accuracy of the predictive model show a trend of first increasing and then decreasing. The optimal input variables for predicting winter wheat chlorophyll content and the best machine learning method are the spectral data at a scale of 26 processing combined with the GA-BP model. The optimal predictive model has a validation set coefficient of determination (R2) of 0.859, root mean square error (RMSE) of 1.366, and mean relative error (MRE) of 2.920%. The results show that the prediction model can provide a technical basis for improving the hyperspectral inversion accuracy of winter wheat chlorophyll and modern precision agriculture. Hyperspectral remote sensing technology plays a vital role in advancing modern precision agriculture due to its non-destructive and efficient nature. To achieve accurate monitoring of winter wheat chlorophyll content, this study utilized 68 sets of chlorophyll content data and hyperspectral measurements collected during the jointing stage of winter wheat over two consecutive years (2019–2020), under various fertilization types and nitrogen application levels. Continuous wavelet transform was applied to transform the original reflectance, ranging from 2[sup.1] to 2[sup.10], and the correlation matrix method was utilized to identify the spectral index at each scale, with the highest correlation to winter wheat chlorophyll content as the optimal spectral index combination input. Subsequently, winter wheat chlorophyll content prediction models were developed using three machine learning methods: random forest (RF), support vector machine (SVM), and a genetic algorithm-optimized backpropagation neural network (GA-BP). The results indicate that the spectral data processed through continuous wavelet transform at seven scales, from 2[sup.1] to 2[sup.7], show the highest correlation with winter wheat chlorophyll content at a scale of 2[sup.6], with a correlation coefficient of 0.738, compared with the correlation of 0.611 of the original reflectance, and the accuracy is improved by 20.7%. The average highest correlation value between the spectral index at scale 2[sup.6] and winter wheat chlorophyll content is 0.752. As the scale of wavelet transform increases, the correlation between the spectral index and winter wheat chlorophyll content and the accuracy of the predictive model show a trend of first increasing and then decreasing. The optimal input variables for predicting winter wheat chlorophyll content and the best machine learning method are the spectral data at a scale of 2[sup.6] processing combined with the GA-BP model. The optimal predictive model has a validation set coefficient of determination (R[sup.2]) of 0.859, root mean square error (RMSE) of 1.366, and mean relative error (MRE) of 2.920%. The results show that the prediction model can provide a technical basis for improving the hyperspectral inversion accuracy of winter wheat chlorophyll and modern precision agriculture. |
Audience | Academic |
Author | Li, Zhijun Chen, Guofu Liu, Xiaochi Shi, Hongzhao Yang, Wanli Tang, Zijun Huang, Xiangyang Cui, Shihao Sun, Tao Xiang, Youzhen Zhang, Fucang |
Author_xml | – sequence: 1 givenname: Xiaochi surname: Liu fullname: Liu, Xiaochi – sequence: 2 givenname: Zhijun surname: Li fullname: Li, Zhijun – sequence: 3 givenname: Youzhen orcidid: 0000-0002-8268-1609 surname: Xiang fullname: Xiang, Youzhen – sequence: 4 givenname: Zijun orcidid: 0000-0003-4020-1184 surname: Tang fullname: Tang, Zijun – sequence: 5 givenname: Xiangyang surname: Huang fullname: Huang, Xiangyang – sequence: 6 givenname: Hongzhao surname: Shi fullname: Shi, Hongzhao – sequence: 7 givenname: Tao surname: Sun fullname: Sun, Tao – sequence: 8 givenname: Wanli surname: Yang fullname: Yang, Wanli – sequence: 9 givenname: Shihao surname: Cui fullname: Cui, Shihao – sequence: 10 givenname: Guofu surname: Chen fullname: Chen, Guofu – sequence: 11 givenname: Fucang orcidid: 0000-0002-6659-3262 surname: Zhang fullname: Zhang, Fucang |
BookMark | eNpdkc1vGyEQxVGUSknd3HtEytkpX4blmFppailSDk3lI2Jh8K61hg2Qqv7vQ-oqqgoHRsO8nx68j-g8pggIfabkhnNNvthdTjEdjlQQSTnRZ-iSEcWXguvV-T_1BboqZU_a0pR3RF2i4a7U8WDrmCJOAW_HWCHj7QC24vUwpZzm4ThNeJ3aRaz4qy3gcRve2l8wQcVP2cYSUj5gGz2uA-DH-Y044R8zuJpbsYkefn9CH4KdClz9PRfo57e7p_X35cPj_WZ9-7B0nNC6VJwL4YNnUgtFSNcp2zFFFet6y4OzUnmmGIWe9cpCr7XmQXlBwPc-aGB8gTYnrk92b-bcrOSjSXY0fxop74zNdXQTmJXrqaSk4YgVwtmOSElVR4nomJTSNdb1iTXn9PwCpZp9esmx2Te8yZhQov3jAt2cpna2QccYUnu1a9vDYXQtqDC2_q3Smq3oSsgmICeBy6mUDOHdJiXmLU_zf578FVj6lT8 |
Cites_doi | 10.1016/j.enggeo.2011.09.006 10.3390/app14093940 10.3390/s16040437 10.3390/agronomy13030783 10.1016/j.fcr.2011.05.017 10.2134/agronj2007.0254N 10.1016/j.agsy.2004.12.003 10.1093/forestscience/49.3.381 10.1002/we.2261 10.3390/s19132949 10.7717/peerj-cs.623 10.1080/01431161.2020.1823038 10.1016/j.compag.2022.106728 10.1016/0034-4257(95)00135-N 10.3390/agronomy12071729 10.1088/1361-6501/ad45f4 10.1016/j.rse.2010.11.001 10.3390/rs12030508 10.1016/j.fcr.2008.12.004 10.1078/0176-1617-00887 10.1109/PROC.1985.13238 10.3390/rs6064927 10.1109/CDS52072.2021.00107 10.1016/j.agwat.2024.108875 10.1016/j.eja.2024.127098 10.1016/j.chemolab.2019.103873 10.1002/agj2.21533 10.1109/78.258098 10.3390/agronomy12030555 10.1080/01431161.2021.1931539 10.1109/TMECH.2024.3402116 10.1016/j.rse.2019.01.039 10.1109/TGRS.2007.904836 10.1137/1031129 10.1006/jmbi.1993.1258 10.3390/rs14194868 10.1016/j.rse.2022.113198 10.1007/s12355-020-00922-y 10.1016/j.fooweb.2023.e00303 10.1007/s42729-024-01626-y 10.1037/0033-2909.111.1.172 10.1109/BMEI.2011.6098517 10.3390/s19051088 10.1023/A:1009666805688 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SN 7SS 7ST 7T7 7TM 7X2 8FD 8FE 8FH 8FK ABUWG AFKRA ATCPS AZQEC BENPR BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ M0K P64 PATMY PIMPY PQEST PQQKQ PQUKI PYCSY SOI DOA |
DOI | 10.3390/agronomy14061309 |
DatabaseName | CrossRef ProQuest Central (Corporate) Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Agricultural Science Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection Agriculture Science Database Biotechnology and BioEngineering Abstracts Environmental Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection Environment Abstracts DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest Central Essentials Nucleic Acids Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Environmental Sciences and Pollution Management ProQuest Central Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest SciTech Collection Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Agricultural Science Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 2073-4395 |
ExternalDocumentID | oai_doaj_org_article_5cb16107210a44ca806617810482666c A799251546 10_3390_agronomy14061309 |
GeographicLocations | China United States--US |
GeographicLocations_xml | – name: China – name: United States--US |
GroupedDBID | 2XV 5VS 7X2 7XC 8FE 8FH AADQD AAFWJ AAHBH AAYXX ABDBF ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BHPHI CCPQU CITATION ECGQY GROUPED_DOAJ HCIFZ IAO ITC KQ8 M0K MODMG M~E OK1 OZF PATMY PIMPY PROAC PYCSY 3V. 7SN 7SS 7ST 7T7 7TM 8FD 8FK ABUWG AZQEC C1K DWQXO FR3 GNUQQ P64 PQEST PQQKQ PQUKI SOI |
ID | FETCH-LOGICAL-c301t-73344dfd2694700887a8271728ba3fca67d2721eb2b7aeb9993f7d40edbdf9e23 |
IEDL.DBID | DOA |
ISSN | 2073-4395 |
IngestDate | Tue Oct 22 15:16:09 EDT 2024 Mon Nov 04 15:18:07 EST 2024 Tue Jul 02 03:50:38 EDT 2024 Fri Nov 22 03:17:17 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c301t-73344dfd2694700887a8271728ba3fca67d2721eb2b7aeb9993f7d40edbdf9e23 |
ORCID | 0000-0002-8268-1609 0000-0003-4020-1184 0000-0002-6659-3262 |
OpenAccessLink | https://doaj.org/article/5cb16107210a44ca806617810482666c |
PQID | 3072247491 |
PQPubID | 2032440 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5cb16107210a44ca806617810482666c proquest_journals_3072247491 gale_infotracacademiconefile_A799251546 crossref_primary_10_3390_agronomy14061309 |
PublicationCentury | 2000 |
PublicationDate | 2024-06-01 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Agronomy (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Heil (ref_27) 1989; 31 Tang (ref_4) 2024; 298 Meng (ref_37) 1992; 111 Liu (ref_20) 2019; 36 Lawton (ref_26) 1993; 41 Rivera (ref_28) 2014; 6 Chicco (ref_36) 2021; 7 Zeng (ref_34) 2011; Volume 3 Steele (ref_9) 2008; 100 Xavier (ref_6) 2021; 23 Shi (ref_45) 2022; 50 ref_24 Wang (ref_2) 2009; 111 Saberioon (ref_16) 2014; 32 Liu (ref_30) 2021; 42 ref_29 Berger (ref_40) 2022; 280 Reda (ref_50) 2019; 195 Wang (ref_43) 2022; 193 Sampson (ref_13) 2003; 49 Tang (ref_12) 2024; 116 Li (ref_42) 2021; 52 ref_31 Unger (ref_35) 1993; 231 ref_38 Higdon (ref_25) 1998; 5 Fountas (ref_10) 2006; 87 Haboudane (ref_39) 2008; 46 Shu (ref_41) 2021; 42 Tang (ref_7) 2024; 154 Cheng (ref_21) 2010; 115 Briggs (ref_18) 2000; 120 Lan (ref_48) 2023; 36 Nie (ref_19) 2024; 35 ref_47 ref_46 Coventry (ref_3) 2011; 123 ref_44 ref_1 Shi (ref_32) 2018; 21 Xu (ref_23) 2019; 224 Gitelson (ref_14) 2003; 160 Yang (ref_17) 2010; 26 Bauer (ref_22) 1985; 73 ref_49 Tang (ref_11) 2024; 24 ref_8 Bajat (ref_33) 2011; 123 ref_5 Yoder (ref_15) 1995; 53 |
References_xml | – volume: 123 start-page: 225 year: 2011 ident: ref_33 article-title: Landslide susceptibility assessment using SVM machine learning algorithm publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2011.09.006 contributor: fullname: Bajat – volume: 26 start-page: 237 year: 2010 ident: ref_17 article-title: Hyperspectral data estimated rice and wheat leaf area index and chlorophyll density publication-title: Trans. Chin. Soc. Agric. Eng. contributor: fullname: Yang – ident: ref_1 doi: 10.3390/app14093940 – ident: ref_8 doi: 10.3390/s16040437 – ident: ref_44 doi: 10.3390/agronomy13030783 – volume: 123 start-page: 214 year: 2011 ident: ref_3 article-title: Wheat quality and productivity as affected by varieties and sowing time in Haryana, India publication-title: Field Crop. Res. doi: 10.1016/j.fcr.2011.05.017 contributor: fullname: Coventry – volume: 100 start-page: 779 year: 2008 ident: ref_9 article-title: A comparison of two techniques for nondestructive measurement of chlorophyll content in grapevine leaves publication-title: Agron. J. doi: 10.2134/agronj2007.0254N contributor: fullname: Steele – volume: 32 start-page: 35 year: 2014 ident: ref_16 article-title: Assessment of rice leaf chlorophyll content using visible bands at different growth stages at both the leaf and canopy scale publication-title: Int. J. Appl. Earth Obs. contributor: fullname: Saberioon – volume: 87 start-page: 192 year: 2006 ident: ref_10 article-title: A model of decision-making and information flows for information-intensive agriculture publication-title: Agr Syst. doi: 10.1016/j.agsy.2004.12.003 contributor: fullname: Fountas – volume: 49 start-page: 381 year: 2003 ident: ref_13 article-title: Hyperspectral remote sensing of forest condition: Estimating chlorophyll content in tolerant hardwoods publication-title: Forest Sci. doi: 10.1093/forestscience/49.3.381 contributor: fullname: Sampson – volume: 52 start-page: 172 year: 2021 ident: ref_42 article-title: Estimation of winter wheat chlorophyll content based on wavelet transform and fractional differential publication-title: Trans. Chin. Soc. Agric. Mach. contributor: fullname: Li – volume: 21 start-page: 1383 year: 2018 ident: ref_32 article-title: An improved random forest model of short-term wind-power forecasting to enhance accuracy, efficiency, and robustness publication-title: Wind Energy doi: 10.1002/we.2261 contributor: fullname: Shi – ident: ref_5 doi: 10.3390/s19132949 – volume: 7 start-page: e623 year: 2021 ident: ref_36 article-title: The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation publication-title: Peerj Comput. Sci. doi: 10.7717/peerj-cs.623 contributor: fullname: Chicco – volume: 42 start-page: 1035 year: 2021 ident: ref_30 article-title: Hyperspectral characteristics and inversion model estimation of winter wheat under different elevated CO2 concentrations publication-title: Int J. Remote Sens. doi: 10.1080/01431161.2020.1823038 contributor: fullname: Liu – volume: 193 start-page: 106728 year: 2022 ident: ref_43 article-title: Winter wheat chlorophyll content retrieval based on machine learning using in situ hyperspectral data publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2022.106728 contributor: fullname: Wang – volume: 53 start-page: 199 year: 1995 ident: ref_15 article-title: Predicting nitrogen and chlorophyll content and concentrations from reflectance spectra (400–2500 nm) at leaf and canopy scales publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(95)00135-N contributor: fullname: Yoder – ident: ref_24 doi: 10.3390/agronomy12071729 – volume: 50 start-page: 56 year: 2022 ident: ref_45 article-title: Inversion of winter wheat chlorophyll content based on hyperspectral and GA-BP neural network model publication-title: Jiangsu J. Agric. Sci. contributor: fullname: Shi – volume: 35 start-page: 086117 year: 2024 ident: ref_19 article-title: Tool wear monitoring based on scSE-ResNet-50-TSCNN model integrating machine vision and force signals publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/ad45f4 contributor: fullname: Nie – volume: 115 start-page: 659 year: 2010 ident: ref_21 article-title: Spectroscopic determination of leaf water content using continuous wavelet analysis publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.11.001 contributor: fullname: Cheng – ident: ref_46 doi: 10.3390/rs12030508 – volume: 111 start-page: 181 year: 2009 ident: ref_2 article-title: Wheat cropping systems and technologies in China publication-title: Field Crop. Red. doi: 10.1016/j.fcr.2008.12.004 contributor: fullname: Wang – volume: 160 start-page: 271 year: 2003 ident: ref_14 article-title: Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves publication-title: J. Plant Physiol. doi: 10.1078/0176-1617-00887 contributor: fullname: Gitelson – volume: 73 start-page: 1071 year: 1985 ident: ref_22 article-title: Spectral inputs to crop identification and condition assessment publication-title: Proc. IEEE doi: 10.1109/PROC.1985.13238 contributor: fullname: Bauer – volume: 6 start-page: 4927 year: 2014 ident: ref_28 article-title: On the Semi-Automatic Retrieval of Biophysical Parameters Based on Spectral Index Optimization publication-title: Remote Sens. doi: 10.3390/rs6064927 contributor: fullname: Rivera – ident: ref_47 doi: 10.1109/CDS52072.2021.00107 – volume: 298 start-page: 108875 year: 2024 ident: ref_4 article-title: Farmland mulching and optimized irrigation increase water productivity and seed yield by regulating functional parameters of soybean (Glycine max L.) leaves publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2024.108875 contributor: fullname: Tang – volume: 154 start-page: 127098 year: 2024 ident: ref_7 article-title: Application of hyperspectral technology for leaf function monitoring and nitrogen nutrient diagnosis in soybean (Glycine max L.) production systems on the Loess Plateau of China publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2024.127098 contributor: fullname: Tang – volume: 195 start-page: 103873 year: 2019 ident: ref_50 article-title: A comparative study between a new method and other machine learning algorithms for soil organic carbon and total nitrogen prediction using near infrared spectroscopy publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2019.103873 contributor: fullname: Reda – volume: 116 start-page: 531 year: 2024 ident: ref_12 article-title: Research on potato (Solanum tuberosum L.) nitrogen nutrition diagnosis based on hyperspectral data publication-title: Agron. J. doi: 10.1002/agj2.21533 contributor: fullname: Tang – volume: 41 start-page: 3566 year: 1993 ident: ref_26 article-title: Applications of complex valued wavelet transforms to subband decomposition publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.258098 contributor: fullname: Lawton – ident: ref_38 doi: 10.3390/agronomy12030555 – volume: 42 start-page: 5862 year: 2021 ident: ref_41 article-title: Improving the estimation accuracy of SPAD values for maize leaves by removing UAV hyperspectral image backgrounds publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2021.1931539 contributor: fullname: Shu – ident: ref_49 doi: 10.1109/TMECH.2024.3402116 – volume: 36 start-page: 42 year: 2019 ident: ref_20 article-title: Nitrogen estimation model for summer maize based on continuous wavelet transform and RF algorithm publication-title: Barley Cereal Sci. contributor: fullname: Liu – volume: 224 start-page: 60 year: 2019 ident: ref_23 article-title: Retrieving leaf chlorophyll content using a matrix-based vegetation index combination approach publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.01.039 contributor: fullname: Xu – volume: 46 start-page: 423 year: 2008 ident: ref_39 article-title: Remote estimation of crop chlorophyll content using spectral indices derived from hyperspectral data publication-title: IEEE Trans. Geosci. Remote. doi: 10.1109/TGRS.2007.904836 contributor: fullname: Haboudane – volume: 31 start-page: 628 year: 1989 ident: ref_27 article-title: Continuous and discrete wavelet transforms publication-title: Siam Rev. doi: 10.1137/1031129 contributor: fullname: Heil – volume: 231 start-page: 75 year: 1993 ident: ref_35 article-title: Genetic algorithms for protein folding simulations publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1993.1258 contributor: fullname: Unger – ident: ref_29 doi: 10.3390/rs14194868 – volume: 280 start-page: 113198 year: 2022 ident: ref_40 article-title: Multi-sensor spectral synergies for crop stress detection and monitoring in the optical domain: A review publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2022.113198 contributor: fullname: Berger – volume: 23 start-page: 560 year: 2021 ident: ref_6 article-title: Portable Chlorophyll Meter for Indirect Evaluation of Photosynthetic Pigments and Nitrogen Content in Sweet Sorghum publication-title: Sugar Tech. doi: 10.1007/s12355-020-00922-y contributor: fullname: Xavier – volume: 36 start-page: e00303 year: 2023 ident: ref_48 article-title: Spectral radius is a better metric than weighted NODF to detect network nestedness: Linking species coexistence to network structure using a plant–larval sawfly bipartite publication-title: Food Webs doi: 10.1016/j.fooweb.2023.e00303 contributor: fullname: Lan – volume: 24 start-page: 1250 year: 2024 ident: ref_11 article-title: Monitoring of Soil Moisture Content of Winter Oilseed Rape (Brassica napus L.) Based on Hyperspectral and Machine Learning Models publication-title: J. Soil Sci. Plant Nutr. doi: 10.1007/s42729-024-01626-y contributor: fullname: Tang – volume: 111 start-page: 172 year: 1992 ident: ref_37 article-title: Comparing correlated correlation coefficients publication-title: Phychol Bull. doi: 10.1037/0033-2909.111.1.172 contributor: fullname: Meng – volume: Volume 3 start-page: 1621 year: 2011 ident: ref_34 article-title: A comparison study: Support vector machines for binary classification in machine learning publication-title: Proceedings of the 2011 4th International Conference on Biomedical Engineering and Informatics (BMEI) doi: 10.1109/BMEI.2011.6098517 contributor: fullname: Zeng – ident: ref_31 doi: 10.3390/s19051088 – volume: 5 start-page: 173 year: 1998 ident: ref_25 article-title: A process-convolution approach to modelling temperatures in the North Atlantic Ocean publication-title: Envioron. Ecol. Stat. doi: 10.1023/A:1009666805688 contributor: fullname: Higdon – volume: 120 start-page: 3351 year: 2000 ident: ref_18 article-title: Removing radio interference from contaminated astronomical spectra using an independent reference signal and closure relations publication-title: J. Korean Astron. Soc. contributor: fullname: Briggs |
SSID | ssj0000913807 |
Score | 2.3209667 |
Snippet | Hyperspectral remote sensing technology plays a vital role in advancing modern precision agriculture due to its non-destructive and efficient nature. To... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database |
StartPage | 1309 |
SubjectTerms | Accuracy Agricultural production Agriculture Back propagation networks Chlorophyll chlorophyll content Continuous wavelet transform Correlation analysis Correlation coefficient Correlation coefficients Data collection Fertilization Fertilizers Genetic algorithms hyperspectral Learning algorithms Machine learning Matrix methods Neural networks Nitrogen optimal spectral index Potassium Precision farming Prediction models Reflectance Remote sensing Root-mean-square errors Support vector machines Triticum aestivum Vegetation wavelet transform Wavelet transforms Wheat Winter wheat |
Title | Estimation of Winter Wheat Chlorophyll Content Based on Wavelet Transform and the Optimal Spectral Index |
URI | https://www.proquest.com/docview/3072247491 https://doaj.org/article/5cb16107210a44ca806617810482666c |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF20Jz2In1itsgdBPAST7CabPbbaUi96UKm3ZT_1UNJS4_93ZpOKCOLFawhheZOZeZPMvCHkglUhyDR32D1lEy7LKjGQ5hKpi1IEEyQrcN55-ijuX6rbMcrkfK36wp6wVh64Be66sAZICap4pZpzqyvIkZmooIoAYlyWNkbftPxWTMUYLDNUUm__SzKo66_16ypOCWQxg2H_4bc8FOX6fwvKMdNMdslORxHpsD3aHtnw9T7ZHr6uOpkMf0DexuCZ7dAhXQQ6Q9GHFY2Bld68QQm-APTmcxq1p-qGjiBXOQo3zzQummjo05qvUl07CiSQPizxiXOKC-nx6we9Qx3FQ_I8GT_dTJNuZ0JiwVWbRDDGuQsOB1RFiiFEV7nAJVRGs2B1KVwOWEI9bYT2BughC8Lx1DvjgvQ5OyK9elH7Y0Ir401hmfTGSp77TGep89akPNg84yHtk6s1gmrZSmMoKCkQbfUT7T4ZIcRf96GodbwApladqdVfpu6TSzSQQtcDIKzuJgjguChipYZCSqBrBS_7ZLC2oep88l1BNAO-IrjMTv7jNKdkKweC07aNDUivWX34M7L57j7O47v4CV_Q4YA |
link.rule.ids | 315,782,786,866,2106,27933,27934 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+of+Winter+Wheat+Chlorophyll+Content+Based+on+Wavelet+Transform+and+the+Optimal+Spectral+Index&rft.jtitle=Agronomy+%28Basel%29&rft.au=Liu%2C+Xiaochi&rft.au=Li%2C+Zhijun&rft.au=Youzhen+Xiang&rft.au=Tang%2C+Zijun&rft.date=2024-06-01&rft.pub=MDPI+AG&rft.eissn=2073-4395&rft.volume=14&rft.issue=6&rft.spage=1309&rft_id=info:doi/10.3390%2Fagronomy14061309&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4395&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4395&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4395&client=summon |