Extracellular matrix (ECM)-derived bioinks designed to foster vasculogenesis and neurite outgrowth: Characterization and bioprinting
The field of bioprinting has shown a tremendous development in recent years, focusing on the development of advanced in vitro models and on regeneration approaches. In this scope, the lack of suitable biomaterials that can be efficiently formulated as printable bioinks, while supporting specific cel...
Saved in:
Published in: | Bioprinting (Amsterdam, Netherlands) Vol. 22; p. e00134 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier B.V
01-06-2021
Whioce Publishing Pte. Ltd |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The field of bioprinting has shown a tremendous development in recent years, focusing on the development of advanced in vitro models and on regeneration approaches. In this scope, the lack of suitable biomaterials that can be efficiently formulated as printable bioinks, while supporting specific cellular events, is currently considered as one of the main limitations in the field. Indeed, extracellular matrix (ECM)-derived biomaterials formulated to enable printability and support cellular response, for instance via integrin binding, are eagerly awaited in the field of bioprinting. Several bioactive laminin sequences, including peptides such as YIGSR and IKVAV, have been identified to promote endothelial cell attachment and/or neurite outgrowth and guidance, respectively. Here, we show the development of two distinct bioinks, designed to foster vasculogenesis or neurogenesis, based on methacrylated collagen and hyaluronic acid (CollMA and HAMA, respectively), both relevant ECM-derived polymers, and on their combination with cysteine-flanked laminin-derived peptides. Using this strategy, it was possible to optimize the bioink printability, by tuning CollMA and HAMA concentration and ratio, and modulate their bioactivity, through adjustments in the cell-active peptide sequence spatial density, without compromising cell viability. We demonstrated that cell-specific bioinks could be customized for the bioprinting of both human umbilical vein cord endothelial cells (HUVECs) or adult rat sensory neurons from the dorsal root ganglia, and could stimulate both vasculogenesis and neurite outgrowth, respectively. This approach holds great potential as it can be tailored to other cellular models, due to its inherent capacity to accommodate different peptide compositions and to generate complex peptide mixtures and/or gradients.
[Display omitted] |
---|---|
AbstractList | The field of bioprinting has shown a tremendous development in recent years, focusing on the development of advanced in vitro models and on regeneration approaches. In this scope, the lack of suitable biomaterials that can be efficiently formulated as printable bioinks, while supporting specific cellular events, is currently considered as one of the main limitations in the field. Indeed, extracellular matrix (ECM)-derived biomaterials formulated to enable printability and support cellular response, for instance via integrin binding, are eagerly awaited in the field of bioprinting. Several bioactive laminin sequences, including peptides such as YIGSR and IKVAV, have been identified to promote endothelial cell attachment and/or neurite outgrowth and guidance, respectively. Here, we show the development of two distinct bioinks, designed to foster vasculogenesis or neurogenesis, based on methacrylated collagen and hyaluronic acid (CollMA and HAMA, respectively), both relevant ECM-derived polymers, and on their combination with cysteine-flanked laminin-derived peptides. Using this strategy, it was possible to optimize the bioink printability, by tuning CollMA and HAMA concentration and ratio, and modulate their bioactivity, through adjustments in the cell-active peptide sequence spatial density, without compromising cell viability. We demonstrated that cell-specific bioinks could be customized for the bioprinting of both human umbilical vein cord endothelial cells (HUVECs) or adult rat sensory neurons from the dorsal root ganglia, and could stimulate both vasculogenesis and neurite outgrowth, respectively. This approach holds great potential as it can be tailored to other cellular models, due to its inherent capacity to accommodate different peptide compositions and to generate complex peptide mixtures and/or gradients. The field of bioprinting has shown a tremendous development in recent years, focusing on the development of advanced in vitro models and on regeneration approaches. In this scope, the lack of suitable biomaterials that can be efficiently formulated as printable bioinks, while supporting specific cellular events, is currently considered as one of the main limitations in the field. Indeed, extracellular matrix (ECM)-derived biomaterials formulated to enable printability and support cellular response, for instance via integrin binding, are eagerly awaited in the field of bioprinting. Several bioactive laminin sequences, including peptides such as YIGSR and IKVAV, have been identified to promote endothelial cell attachment and/or neurite outgrowth and guidance, respectively. Here, we show the development of two distinct bioinks, designed to foster vasculogenesis or neurogenesis, based on methacrylated collagen and hyaluronic acid (CollMA and HAMA, respectively), both relevant ECM-derived polymers, and on their combination with cysteine-flanked laminin-derived peptides. Using this strategy, it was possible to optimize the bioink printability, by tuning CollMA and HAMA concentration and ratio, and modulate their bioactivity, through adjustments in the cell-active peptide sequence spatial density, without compromising cell viability. We demonstrated that cell-specific bioinks could be customized for the bioprinting of both human umbilical vein cord endothelial cells (HUVECs) or adult rat sensory neurons from the dorsal root ganglia, and could stimulate both vasculogenesis and neurite outgrowth, respectively. This approach holds great potential as it can be tailored to other cellular models, due to its inherent capacity to accommodate different peptide compositions and to generate complex peptide mixtures and/or gradients. [Display omitted] |
ArticleNumber | e00134 |
Author | Oliveira, Hugo Fricain, Jean-Christophe Stachowicz, Marie-Laure Chagot, Lise Médina, Chantal Paiva dos Santos, Bruno Dusserre, Nathalie |
Author_xml | – sequence: 1 givenname: Hugo orcidid: 0000-0002-9715-8052 surname: Oliveira fullname: Oliveira, Hugo email: hugo.de-oliveira@inserm.fr organization: University of Bordeaux, Tissue Bioengineering, U1026, F-33076, Bordeaux, France – sequence: 2 givenname: Chantal surname: Médina fullname: Médina, Chantal organization: University of Bordeaux, Tissue Bioengineering, U1026, F-33076, Bordeaux, France – sequence: 3 givenname: Marie-Laure surname: Stachowicz fullname: Stachowicz, Marie-Laure organization: University of Bordeaux, Tissue Bioengineering, U1026, F-33076, Bordeaux, France – sequence: 4 givenname: Bruno surname: Paiva dos Santos fullname: Paiva dos Santos, Bruno organization: University of Bordeaux, Tissue Bioengineering, U1026, F-33076, Bordeaux, France – sequence: 5 givenname: Lise orcidid: 0000-0002-5651-6140 surname: Chagot fullname: Chagot, Lise organization: University of Bordeaux, Tissue Bioengineering, U1026, F-33076, Bordeaux, France – sequence: 6 givenname: Nathalie orcidid: 0000-0002-4699-3365 surname: Dusserre fullname: Dusserre, Nathalie organization: University of Bordeaux, Tissue Bioengineering, U1026, F-33076, Bordeaux, France – sequence: 7 givenname: Jean-Christophe surname: Fricain fullname: Fricain, Jean-Christophe organization: University of Bordeaux, Tissue Bioengineering, U1026, F-33076, Bordeaux, France |
BackLink | https://hal.science/hal-03479756$$DView record in HAL |
BookMark | eNp9ULtuGzEQJAIbiF9_kIJlXJyyPPJeLgIYghIbkOHGqQmKXEpUzqRBUoqTOh8eymcYqVzta2Z2d07JkQ8eCfnEYMaAtV-2s9VTdD7PaqjZDAEYFx_ISS2gqfq-bY_-yz-Si5S2AFAPDevYcEL-Lp5zVBrHcTeqSB9Vju6Zfl7M7y4rg9Ht0dCVC87_TNRgcmtfGjlQG1LGSPcq6d0Y1ujLLFHlDfW4iy4jDbu8juFX3lzR-UaVHQXv_qjsgn_BFdWXu51fn5Njq8aEF6_xjPz4tniY31TL---38-tlpTkwUXG0XSM6ZXrdC8PB9jgAWM0Gg6tWacvrQVgwmgs1rFTPLW8sWtuKBjpe6jNyOelu1CjL8kcVf8ugnLy5XspDD7johq5p96xgxYTVMaQU0b4RGMiD8XIrJ-PlwXg5GV9oXycalj_2DqNM2qHXaFxEnaUJ7n2Bf5m-kz4 |
CitedBy_id | crossref_primary_10_1016_j_eurpolymj_2024_112864 crossref_primary_10_1016_j_ijbiomac_2024_131720 crossref_primary_10_3390_ijms242417625 crossref_primary_10_1016_j_bprint_2023_e00274 crossref_primary_10_1002_adhm_202303370 crossref_primary_10_3390_jfb13040214 crossref_primary_10_1089_ten_teb_2024_0031 crossref_primary_10_18621_eurj_874472 crossref_primary_10_1016_j_bprint_2022_e00247 crossref_primary_10_1016_j_ijbiomac_2023_126194 crossref_primary_10_3389_fphys_2024_1429247 crossref_primary_10_1016_j_matdes_2024_112886 crossref_primary_10_1088_1748_605X_ac9b06 crossref_primary_10_3390_ijms241512314 |
Cites_doi | 10.1038/nbt.4226 10.3389/fbioe.2017.00087 10.1523/JNEUROSCI.14-07-04375.1994 10.1038/nbt.2958 10.1002/bip.23080 10.1038/nprot.2006.461 10.1089/wound.2014.0533 10.1083/jcb.88.3.473 10.1016/j.bprint.2017.03.001 10.1006/exmp.2002.2424 10.1186/s40824-018-0122-1 10.1021/acs.chemrev.5b00303 10.1016/j.biomaterials.2015.07.022 10.1002/adfm.201910250 10.1021/acs.chemrev.7b00522 10.1016/j.biomaterials.2017.11.030 10.1016/j.joca.2015.06.021 10.1039/C5TB02035B 10.1002/jbm.820271104 10.1007/s12195-014-0340-0 10.4161/org.4.4.6926 10.1016/j.biomaterials.2013.05.044 10.1016/j.molmed.2019.09.010 10.1016/j.neuron.2011.07.013 10.1371/journal.pone.0177628 10.1152/ajplung.1996.270.3.L459 10.1002/adma.201305506 10.1186/1471-2202-12-100 10.1088/1758-5090/8/1/013001 10.1016/j.actbio.2018.11.030 10.1088/1758-5090/aacd30 10.1002/adma.201003963 10.1016/j.biotechadv.2015.12.011 10.1146/annurev.bioeng.5.011303.120731 10.1039/C7BM00765E 10.1016/j.biotechadv.2016.12.006 10.7150/thno.44276 10.1016/j.msec.2017.09.002 10.1081/MA-100101578 10.1088/1758-5090/8/3/032002 10.1088/1758-5090/aae543 10.1016/j.biomaterials.2016.07.038 10.1073/pnas.1521342113 10.1088/1758-5090/aaec52 10.1002/adma.201302042 10.1046/j.1432-1327.2000.01606.x 10.1002/anie.200903924 10.1039/c3tb20218f 10.1016/j.biomaterials.2014.03.001 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. Attribution - NonCommercial |
Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Attribution - NonCommercial |
DBID | AAYXX CITATION 1XC VOOES |
DOI | 10.1016/j.bprint.2021.e00134 |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2405-8866 2424-8002 |
ExternalDocumentID | oai_HAL_hal_03479756v1 10_1016_j_bprint_2021_e00134 S2405886621000075 |
GroupedDBID | --M 0R~ AABXZ AACTN AAEDT AAEDW AAIAV AAKOC AALRI AAOAW AAXUO ABLVK ABMAC ABMZM ABYKQ ACDAQ ACGFS ACRLP ADBBV AEBSH AEZYN AFKWA AFRZQ AFTJW AFXIZ AGUBO AHJVU AIEXJ AIKHN AITUG AJBFU ALMA_UNASSIGNED_HOLDINGS ALXNB AMFUW AMRAJ ANZVX AXJTR BJAXD BKOJK BNPGV EBS EFJIC EFLBG EJD FDB FIRID FYGXN KOM O9- ROL SPC SPCBC SSH SSM SST SSZ T5K ~G- AAQFI AAXKI AAYXX AFJKZ CITATION 1XC ABJCF AFKRA BBNVY BENPR BGLVJ BHPHI CCPQU HCIFZ KB. M7P OK1 PDBOC PGMZT PIMPY RPM VOOES |
ID | FETCH-LOGICAL-c3014-3ef7547ad8c84d30f8e900fc19deb6acf3294f0dc34a9ba83f35feff645073a83 |
ISSN | 2405-8866 2424-7723 |
IngestDate | Thu Oct 31 07:23:43 EDT 2024 Thu Sep 26 15:58:38 EDT 2024 Fri Feb 23 02:46:21 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Extracellular matrix-based Vasculogenesis Bioink Neurite outgrowth |
Language | English |
License | Attribution - NonCommercial: http://creativecommons.org/licenses/by-nc |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3014-3ef7547ad8c84d30f8e900fc19deb6acf3294f0dc34a9ba83f35feff645073a83 |
ORCID | 0000-0002-9715-8052 0000-0002-4699-3365 0000-0002-5651-6140 0000-0002-5545-6561 0000-0002-5038-073X |
OpenAccessLink | https://hal.science/hal-03479756 |
ParticipantIDs | hal_primary_oai_HAL_hal_03479756v1 crossref_primary_10_1016_j_bprint_2021_e00134 elsevier_sciencedirect_doi_10_1016_j_bprint_2021_e00134 |
PublicationCentury | 2000 |
PublicationDate | June 2021 2021-06-00 2021-06-01 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: June 2021 |
PublicationDecade | 2020 |
PublicationTitle | Bioprinting (Amsterdam, Netherlands) |
PublicationYear | 2021 |
Publisher | Elsevier B.V Whioce Publishing Pte. Ltd |
Publisher_xml | – name: Elsevier B.V – name: Whioce Publishing Pte. Ltd |
References | Jungst, Smolan, Schacht, Scheibel, Groll (bib42) 2016; 116 Lee, Lanzi, Haygan, Yoo, Vincent, Dai (bib52) 2014; 7 Farkas, Monaghan (bib26) 2017; vol. 4 Toole (bib22) 2004; 4 Jia, Gungor-Ozkerim, Zhang, Yue, Zhu, Liu, Pi, Byambaa, Dokmeci, Shin, Khademhosseini (bib48) 2016; 106 Balikov, Neal, Lippmann (bib69) 2020; 26 Groll, Boland, Blunk, Burdick, Cho, Dalton, Derby, Forgacs, Li, Mironov, Moroni, Nakamura, Shu, Takeuchi, Vozzi, Woodfield, Xu, Yoo, Malda (bib40) 2016; 8 Hölzl, Lin, Tytgat, Van Vlierberghe, Gu, Ovsianikov (bib3) 2016; 8 Donderwinkel, van Hest, Cameron (bib5) 2017; 8 Qiu, Bessler, Figler, Buchholz, Rios, Malda, Levato, Caiazzo (bib65) 2020; 30 Pepelanova, Kruppa, Scheper, Lavrentieva (bib9) 2018 Hoyle, Bowman (bib46) 2010; 49 Mandrycky, Wang, Kim, Kim (bib1) 2016; 34 Groll, Burdick, Cho, Derby, Gelinsky, Heilshorn, Jüngst, Malda, Mironov, Nakayama, Ovsianikov, Sun, Takeuchi, Yoo, Woodfield (bib41) 2018; 11 Bordenave, Baquey, Bareille, Lefebvre, Lauroua, Guerin, Rouais, More, Vergnes, Anderson (bib31) 1993; 27 Park, Wang, Lee, Park, Zhang, Noh (bib11) 2016; 20 8 Burdick, Prestwich (bib44) 2011; 23 Jang, Park, Gao, Cho (bib14) 2018; 156 Kolesky, Homan, Skylar-Scott, Lewis (bib49) 2016; 113 Carpentier (bib35) 2012 Kleinman, Klebe, Martin (bib15) 1981; 88 Yamada, Hozumi, Katagiri, Kikkawa, Nomizu (bib62) 2013; 34 Jiang, Chen, Deng, Suuronen, Zhong (bib45) 2014; 35 Ravichandran, Islam, Alarcon, Samanta, Wang, Lundström, Hilborn, Griffith, Phopase (bib29) 2016; 4 Schmidt, Leach (bib56) 2003; 5 Caniggia, Liu, Han, Wang, Tanswell, Laurie, Post (bib53) 1996; 270 Lee, Polio, Lee, Dai, Menon, Carroll, Yoo (bib16) 2010; 223 Gungor-Ozkerim, Inci, Zhang, Khademhosseini, Dokmeci (bib7) 2018; 6 Bang S, Lee S-R, Ko J, Son K, Tahk D, Ahn J, Im C and Li Jeon N A Low Permeability Microfluidic Blood-Brain Barrier Platform with Direct Contact between Perfusable Vascular Network and Astrocytes. Silva Garcia, Panitch, Calve (bib61) 2019; 84 Tronci, Doyle, Russell, Wood (bib30) 2013; 1 Poldervaart, Goversen, de Ruijter, Abbadessa, Melchels, Oner, Dhert, Vermonden, Alblas (bib24) 2017; 12 Sakai, Ohi, Hotta, Kamei, Taya (bib25) 2018; 109 Patel, Santhosh, Dash, Karpoormath, Jha, Kwak, Patel, Kim (bib28) 2019 Yang, Wang, Zhu, Lu, Li, Chen, Lu, Zhang, Yan, Zhao, Sun, Zhao, Liang, Wang, Peng, Wang (bib63) 2020; 10 Adriani, Ma, Pavesi, Kamm, Goh (bib67) 2014; 17 Kolesky, Truby, Gladman, Busbee, Homan, Lewis (bib50) 2014; 26 Miller, Stevens, Yang, Baker, Nguyen, Cohen, Toro, Chen, Galie, Yu, Chaturvedi, Bhatia, Chen (bib51) 2012; 11 Dehmelt, Poplawski, Hwang, Halpain (bib36) 2011; 12 Fraser, Laurent, Laurent (bib18) 1997; 242 Iorio, Troughton, Hamill (bib60) 2015; 4 Keriquel, Oliveira, Rémy, Ziane, Delmond, Rousseau, Rey, Catros, Amédée, Guillemot, Fricain (bib12) 2017; 7 Germain, Guignard, Rouabhia, Auger (bib32) 1995; 21 Malin, Davis, Molliver (bib33) 2007; 2 Müller, Hermanns, Skrzynski, Nesslinger, Müller, Kirkpatrick (bib38) 2002; 72 Ambrosio, Borzacchiello, Netti, Nicolais (bib37) 1999; 36 Hamley (bib71) 2017; 117 Yan, Lewis, Shah (bib59) 2018 Bosworth, Faley, Bellan, Lippmann (bib70) 2018; 5 O’Brien, Wilson, Orton, Pognan (bib34) 2000; 267 Chong, Reynolds, Irwin, Coggeshall, Emson, Benowitz, Woolf (bib39) 1994; 14 Ning, Sun, Lelong, Guilloteau, Zhu, Schreyer, Chen (bib58) 2018; 10 Yang, Lu, Wu, Li, Zheng, Zhao (bib13) 2018; 83 Murakami, Otsuki, Okamoto, Nakagawa, Wakama, Okuno, Neo (bib21) 2019; 60 Grant, Tashiro, Segui-Real, Yamada, Martin, Kleinman (bib27) 1989; 58 Mazzocchi, Devarasetty, Huntwork, Soker, Skardal (bib17) 2018; 11 Li, Xue, Jia, Bai, Zuo, Wang, Zhao, Yang, Tang (bib19) 2018 Pardue, Ibrahim, Ramamurthi (bib23) 2008; 4 Gopinathan, Noh (bib8) 2018; 22 Chan D D, Xiao W F, Li J, de la Motte C A, Sandy J D and Plaas A 2015 Deficiency of hyaluronan synthase 1 (Has1) results in chronic joint inflammation and widespread intra-articular fibrosis in a murine model of knee joint cartilage damage Osteoarthr. Cartil. 23 1879–1889. Hospodiuk, Dey, Sosnoski, Ozbolat (bib6) 2017; 35 Beachley, Wolf, Sadtler, Manda, Jacobs, Blatchley, Bader, Pandey, Pardoll, Elisseeff (bib55) 2015; 12 Maoz, Herland, Fitzgerald, Grevesse, Vidoudez, Pacheco, Sheehy, Park, Dauth, Mannix, Budnik, Shores, Cho, Nawroth, Segrè, Budnik, Ingber, Parker (bib68) 2018; 36 Murphy, Atala (bib2) 2014; 32 Malda, Visser, Melchels, Jüngst, Hennink, Dhert, Groll, Hutmacher (bib4) 2013; 25 Ashammakhi, Ahadian, Xu, Montazerian, Ko, Nasiri, Barros, Khademhosseini (bib43) 2019; 1 Stupack, Cheresh (bib54) 2004; vol. 64 Quaegebeur, Lange, Carmeliet (bib64) 2011; 71 Lozano, Stevens, Thompson, Gilmore, Gorkin, Stewart, Romero-Ortega, Wallace (bib57) 2015; 67 Knowlton, Yenilmez, Anand, Tasoglu (bib10) 2017; 5 Sasmal, Datta, Wu, Ozbolat (bib47) 2018; 2018 Ashammakhi (10.1016/j.bprint.2021.e00134_bib43) 2019; 1 Sakai (10.1016/j.bprint.2021.e00134_bib25) 2018; 109 Hoyle (10.1016/j.bprint.2021.e00134_bib46) 2010; 49 Jiang (10.1016/j.bprint.2021.e00134_bib45) 2014; 35 Mandrycky (10.1016/j.bprint.2021.e00134_bib1) 2016; 34 Lee (10.1016/j.bprint.2021.e00134_bib52) 2014; 7 Malda (10.1016/j.bprint.2021.e00134_bib4) 2013; 25 Carpentier (10.1016/j.bprint.2021.e00134_bib35) 2012 Farkas (10.1016/j.bprint.2021.e00134_bib26) 2017; vol. 4 Ambrosio (10.1016/j.bprint.2021.e00134_bib37) 1999; 36 Kolesky (10.1016/j.bprint.2021.e00134_bib49) 2016; 113 Iorio (10.1016/j.bprint.2021.e00134_bib60) 2015; 4 Toole (10.1016/j.bprint.2021.e00134_bib22) 2004; 4 Pardue (10.1016/j.bprint.2021.e00134_bib23) 2008; 4 Patel (10.1016/j.bprint.2021.e00134_bib28) 2019 Kolesky (10.1016/j.bprint.2021.e00134_bib50) 2014; 26 Bosworth (10.1016/j.bprint.2021.e00134_bib70) 2018; 5 Knowlton (10.1016/j.bprint.2021.e00134_bib10) 2017; 5 Jungst (10.1016/j.bprint.2021.e00134_bib42) 2016; 116 Yang (10.1016/j.bprint.2021.e00134_bib63) 2020; 10 Li (10.1016/j.bprint.2021.e00134_bib19) 2018 Silva Garcia (10.1016/j.bprint.2021.e00134_bib61) 2019; 84 Ravichandran (10.1016/j.bprint.2021.e00134_bib29) 2016; 4 Ning (10.1016/j.bprint.2021.e00134_bib58) 2018; 10 Pepelanova (10.1016/j.bprint.2021.e00134_bib9) 2018 Fraser (10.1016/j.bprint.2021.e00134_bib18) 1997; 242 Park (10.1016/j.bprint.2021.e00134_bib11) 2016; 20 8 Germain (10.1016/j.bprint.2021.e00134_bib32) 1995; 21 Kleinman (10.1016/j.bprint.2021.e00134_bib15) 1981; 88 Gungor-Ozkerim (10.1016/j.bprint.2021.e00134_bib7) 2018; 6 Donderwinkel (10.1016/j.bprint.2021.e00134_bib5) 2017; 8 Mazzocchi (10.1016/j.bprint.2021.e00134_bib17) 2018; 11 Groll (10.1016/j.bprint.2021.e00134_bib41) 2018; 11 Lozano (10.1016/j.bprint.2021.e00134_bib57) 2015; 67 Poldervaart (10.1016/j.bprint.2021.e00134_bib24) 2017; 12 10.1016/j.bprint.2021.e00134_bib20 Tronci (10.1016/j.bprint.2021.e00134_bib30) 2013; 1 Caniggia (10.1016/j.bprint.2021.e00134_bib53) 1996; 270 10.1016/j.bprint.2021.e00134_bib66 Murphy (10.1016/j.bprint.2021.e00134_bib2) 2014; 32 Gopinathan (10.1016/j.bprint.2021.e00134_bib8) 2018; 22 Sasmal (10.1016/j.bprint.2021.e00134_bib47) 2018; 2018 Jia (10.1016/j.bprint.2021.e00134_bib48) 2016; 106 Qiu (10.1016/j.bprint.2021.e00134_bib65) 2020; 30 Yamada (10.1016/j.bprint.2021.e00134_bib62) 2013; 34 Schmidt (10.1016/j.bprint.2021.e00134_bib56) 2003; 5 Müller (10.1016/j.bprint.2021.e00134_bib38) 2002; 72 Bordenave (10.1016/j.bprint.2021.e00134_bib31) 1993; 27 Dehmelt (10.1016/j.bprint.2021.e00134_bib36) 2011; 12 Quaegebeur (10.1016/j.bprint.2021.e00134_bib64) 2011; 71 Yan (10.1016/j.bprint.2021.e00134_bib59) 2018 Lee (10.1016/j.bprint.2021.e00134_bib16) 2010; 223 Jang (10.1016/j.bprint.2021.e00134_bib14) 2018; 156 Malin (10.1016/j.bprint.2021.e00134_bib33) 2007; 2 Miller (10.1016/j.bprint.2021.e00134_bib51) 2012; 11 Adriani (10.1016/j.bprint.2021.e00134_bib67) 2014; 17 Maoz (10.1016/j.bprint.2021.e00134_bib68) 2018; 36 Hölzl (10.1016/j.bprint.2021.e00134_bib3) 2016; 8 Beachley (10.1016/j.bprint.2021.e00134_bib55) 2015; 12 Chong (10.1016/j.bprint.2021.e00134_bib39) 1994; 14 O’Brien (10.1016/j.bprint.2021.e00134_bib34) 2000; 267 Balikov (10.1016/j.bprint.2021.e00134_bib69) 2020; 26 Hospodiuk (10.1016/j.bprint.2021.e00134_bib6) 2017; 35 Keriquel (10.1016/j.bprint.2021.e00134_bib12) 2017; 7 Hamley (10.1016/j.bprint.2021.e00134_bib71) 2017; 117 Grant (10.1016/j.bprint.2021.e00134_bib27) 1989; 58 Groll (10.1016/j.bprint.2021.e00134_bib40) 2016; 8 Yang (10.1016/j.bprint.2021.e00134_bib13) 2018; 83 Burdick (10.1016/j.bprint.2021.e00134_bib44) 2011; 23 Murakami (10.1016/j.bprint.2021.e00134_bib21) 2019; 60 Stupack (10.1016/j.bprint.2021.e00134_bib54) 2004; vol. 64 |
References_xml | – volume: 83 start-page: 195 year: 2018 end-page: 201 ident: bib13 article-title: Collagen-alginate as bioink for three-dimensional (3D) cell printing based cartilage tissue engineering Mater publication-title: Sci. Eng. C contributor: fullname: Zhao – volume: 34 start-page: 422 year: 2016 end-page: 434 ident: bib1 article-title: 3D bioprinting for engineering complex tissues publication-title: Biotechnol. Adv. contributor: fullname: Kim – volume: 11 start-page: 13001 year: 2018 ident: bib41 article-title: A definition of bioinks and their distinction from biomaterial inks publication-title: Biofabrication contributor: fullname: Woodfield – volume: 20 8 year: 2016 ident: bib11 article-title: Research trends in biomimetic medical materials for tissue engineering: commentary Biomater publication-title: Res. contributor: fullname: Noh – volume: 25 start-page: 5011 year: 2013 end-page: 5028 ident: bib4 article-title: 25th anniversary article: engineering hydrogels for biofabrication publication-title: Adv. Mater. contributor: fullname: Hutmacher – volume: 113 start-page: 3179 year: 2016 ident: bib49 article-title: Three-dimensional bioprinting of thick vascularized tissues publication-title: Proc. Natl. Acad. Sci. Unit. States Am. contributor: fullname: Lewis – volume: 71 start-page: 406 year: 2011 end-page: 424 ident: bib64 article-title: The neurovascular link in health and disease: molecular mechanisms and therapeutic implications publication-title: Neuron contributor: fullname: Carmeliet – volume: 5 start-page: 87 year: 2018 ident: bib70 article-title: Modeling neurovascular disorders and therapeutic outcomes with human-induced pluripotent stem cells publication-title: Bioeng. Biotechnol. contributor: fullname: Lippmann – volume: 2018 year: 2018 ident: bib47 article-title: 3D bioprinting for modelling vasculature publication-title: Microphysiological Syst. Novemb. contributor: fullname: Ozbolat – volume: 4 start-page: 203 year: 2008 ident: bib23 article-title: Role of hyaluronan in angiogenesis and its utility to angiogenic tissue engineering publication-title: Organogenesis contributor: fullname: Ramamurthi – volume: 14 start-page: 4375 year: 1994 end-page: 4384 ident: bib39 article-title: GAP-43 expression in primary sensory neurons following central axotomy publication-title: J. Neurosci. contributor: fullname: Woolf – volume: 23 start-page: H41 year: 2011 end-page: H56 ident: bib44 article-title: Hyaluronic acid hydrogels for biomedical applications publication-title: Adv. Mater. contributor: fullname: Prestwich – volume: 109 year: 2018 ident: bib25 article-title: Differentiation potential of human adipose stem cells bioprinted with hyaluronic acid/gelatin-based bioink through microextrusion and visible light-initiated crosslinking publication-title: Biopolymers contributor: fullname: Taya – volume: 270 start-page: L459 year: 1996 end-page: L468 ident: bib53 article-title: Identification of receptors binding fibronectin and laminin on fetal rat lung cells publication-title: Am. J. Physiol. Cell. Mol. Physiol. contributor: fullname: Post – volume: 12 year: 2017 ident: bib24 article-title: 3D bioprinting of methacrylated hyaluronic acid (MeHA) hydrogel with intrinsic osteogenicity publication-title: PloS One contributor: fullname: Alblas – year: 2012 ident: bib35 article-title: ImageJ Contribution: Angiogenesis Analyzer contributor: fullname: Carpentier – volume: 6 start-page: 915 year: 2018 end-page: 946 ident: bib7 article-title: Bioinks for 3D bioprinting: an overview publication-title: Biomater. Sci contributor: fullname: Dokmeci – volume: 27 start-page: 1367 year: 1993 end-page: 1381 ident: bib31 article-title: Endothelial cell compatibility testing of three different publication-title: Pellethanes J Biomed Mater Res contributor: fullname: Anderson – volume: 117 start-page: 14015 year: 2017 end-page: 14041 ident: bib71 article-title: Small bioactive peptides for biomaterials design and therapeutics publication-title: Chem. Rev. contributor: fullname: Hamley – volume: 30 start-page: 1910250 year: 2020 ident: bib65 article-title: Bioprinting neural systems to model central nervous system diseases publication-title: Adv. Funct. Mater. contributor: fullname: Caiazzo – volume: 17 start-page: 448 year: 2014 ident: bib67 article-title: Lab on a Chip A 3D neurovascular microfluidic model consisting of neurons, astrocytes and cerebral endothelial cells as a blood-brain barrier contributor: fullname: Goh – volume: 2 start-page: 152 year: 2007 end-page: 160 ident: bib33 article-title: Production of dissociated sensory neuron cultures and considerations for their use in studying neuronal function and plasticity publication-title: Nat. Protoc. contributor: fullname: Molliver – volume: 88 start-page: 473 year: 1981 end-page: 485 ident: bib15 article-title: Role of collagenous matrices in the adhesion and growth of cells publication-title: J. Cell Biol. contributor: fullname: Martin – volume: 4 start-page: 250 year: 2015 end-page: 263 ident: bib60 article-title: Laminins: roles and utility in wound repair publication-title: Adv. Wound Care contributor: fullname: Hamill – volume: 7 year: 2017 ident: bib12 article-title: In situ printing of mesenchymal stromal cells, by laser-assisted bioprinting, for in vivo bone regeneration applications Sci publication-title: For. Rep. contributor: fullname: Fricain – volume: 7 start-page: 460 year: 2014 end-page: 472 ident: bib52 article-title: Generation of multi-scale vascular network system within 3D hydrogel using 3D bio-printing technology publication-title: Cell. Mol. Bioeng. contributor: fullname: Dai – start-page: 30 4 year: 2019 end-page: 3012 ident: bib28 article-title: Ile-Lys-Val-ala-Val (IKVAV) peptide for neuronal tissue engineering Polym publication-title: Adv. Met. Technol. contributor: fullname: Kim – volume: 49 start-page: 1540 year: 2010 end-page: 1573 ident: bib46 article-title: Thiol-ene click chemistry publication-title: Angew Chem. Int. Ed. Engl. contributor: fullname: Bowman – volume: 36 start-page: 991 year: 1999 end-page: 1000 ident: bib37 article-title: Properties of new materials: Rheological study on hyaluronic acid and its derivative solutions publication-title: J. Macromol. Sci., Pure Appl. Chem. contributor: fullname: Nicolais – volume: 267 start-page: 5421 year: 2000 ident: bib34 article-title: Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity publication-title: Eur. J. Biochem. contributor: fullname: Pognan – volume: 8 start-page: 32002 year: 2016 ident: bib3 article-title: Bioink properties before, during and after 3D bioprinting publication-title: Biofabrication contributor: fullname: Ovsianikov – volume: 11 start-page: 768 year: 2012 ident: bib51 article-title: Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues publication-title: Mater contributor: fullname: Chen – volume: 106 start-page: 58 year: 2016 end-page: 68 ident: bib48 article-title: Direct 3D bioprinting of perfusable vascular constructs using a blend bioink publication-title: Biomaterials contributor: fullname: Khademhosseini – volume: 67 start-page: 264 year: 2015 ident: bib57 article-title: 3D printing of layered brain-like structures using peptide modified gellan gum substrates publication-title: Biomaterials contributor: fullname: Wallace – start-page: 188 92 year: 2018 end-page: 188100 ident: bib19 article-title: The preparation of hyaluronic acid grafted pullulan polymers and their use in the formation of novel biocompatible wound healing film Carbohydr publication-title: Polym contributor: fullname: Tang – volume: 5 start-page: 10 year: 2017 ident: bib10 article-title: Photocrosslinking-based bioprinting: examining crosslinking schemes publication-title: Bioprinting contributor: fullname: Tasoglu – volume: 12 start-page: 1197 year: 2015 ident: bib55 article-title: Tissue matrix arrays for high-throughput screening and systems analysis of cell function publication-title: Methods contributor: fullname: Elisseeff – volume: 11 start-page: 15003 year: 2018 ident: bib17 article-title: Optimization of collagen type I-hyaluronan hybrid bioink for 3D bioprinted liver microenvironments publication-title: Biofabrication contributor: fullname: Skardal – volume: 5 start-page: 293 year: 2003 end-page: 347 ident: bib56 article-title: Neural tissue engineering: strategies for repair and regeneration publication-title: Annu. Rev. Biomed. Eng. contributor: fullname: Leach – volume: 156 start-page: 88 year: 2018 end-page: 106 ident: bib14 article-title: Biomaterials-based 3D cell printing for next-generation therapeutics and diagnostics publication-title: Biomaterials contributor: fullname: Cho – volume: 1 start-page: 5478 year: 2013 ident: bib30 article-title: Triple-helical collagen hydrogels via covalent aromatic functionalisation with 1,3-phenylenediacetic acid J publication-title: Mater. Chem. B contributor: fullname: Wood – volume: 34 start-page: 6539 year: 2013 ident: bib62 article-title: Laminin-111-derived peptide-hyaluronate hydrogels as a synthetic basement membrane publication-title: Biomaterials contributor: fullname: Nomizu – volume: 10 start-page: 8227 year: 2020 ident: bib63 article-title: Self-assembling peptide hydrogels functionalized with LN- and BDNF- mimicking epitopes synergistically enhance peripheral nerve regeneration publication-title: Theranostics contributor: fullname: Wang – volume: 4 start-page: 318 year: 2016 end-page: 326 ident: bib29 article-title: Functionalised type-I collagen as a hydrogel building block for bio-orthogonal tissue engineering applications J publication-title: Mater. Chem. B contributor: fullname: Phopase – volume: 21 start-page: 175 year: 1995 ident: bib32 article-title: Early basement membrane formation following the grafting of cultured epidermal sheets detached with thermolysin or Dispase Burns contributor: fullname: Auger – volume: 116 start-page: 1496 year: 2016 end-page: 1539 ident: bib42 article-title: Strategies and molecular design criteria for 3D printable hydrogels publication-title: Chem. Rev. contributor: fullname: Groll – volume: vol. 4 year: 2017 ident: bib26 publication-title: A Brief History of the Study of Nerve Dependent Regeneration Neurogenes contributor: fullname: Monaghan – volume: 35 start-page: 4969 year: 2014 ident: bib45 article-title: Click hydrogels, microgels and nanogels: emerging platforms for drug delivery and tissue engineering publication-title: Biomaterials contributor: fullname: Zhong – volume: 32 start-page: 773 year: 2014 end-page: 785 ident: bib2 article-title: 3D bioprinting of tissues and organs publication-title: Nat. Biotechnol. contributor: fullname: Atala – volume: 26 start-page: 3124 year: 2014 end-page: 3130 ident: bib50 article-title: 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs publication-title: Adv. Mater. contributor: fullname: Lewis – volume: 8 start-page: 13001 year: 2016 ident: bib40 article-title: Biofabrication: reappraising the definition of an evolving field publication-title: Biofabrication contributor: fullname: Malda – volume: 60 start-page: 117 year: 2019 end-page: 127 ident: bib21 publication-title: Hyaluronic acid promotes proliferation and migration of human meniscus cells via a CD44-dependent mechanism Connect Tissue Res contributor: fullname: Neo – year: 2018 ident: bib9 article-title: Gelatin-methacryloyl (GelMA) hydrogels with defined degree of functionalization as a versatile toolkit for 3D cell culture and extrusion bioprinting Bioengineering 5 contributor: fullname: Lavrentieva – year: 2018 ident: bib59 article-title: Tailoring nanostructure and bioactivity of 3D-printable hydrogels with self-assemble peptides amphiphile (PA) for promoting bile duct formation contributor: fullname: Shah – volume: 242 start-page: 27 year: 1997 end-page: 33 ident: bib18 article-title: Hyaluronan: its nature, distribution, functions and turnover J publication-title: Intern. Med. contributor: fullname: Laurent – volume: 26 start-page: 273 year: 2020 end-page: 284 ident: bib69 article-title: Organotypic neurovascular models: past results and future directions publication-title: Trends Mol. Med. contributor: fullname: Lippmann – volume: 4 start-page: 528 year: 2004 end-page: 539 ident: bib22 publication-title: Hyaluronan: from extracellular glue to pericellular cue Nat Rev Cancer contributor: fullname: Toole – volume: 58 start-page: 933 year: 1989 end-page: 943 ident: bib27 publication-title: Two different laminin domains mediate the differentiation of human endothelial cells into capillary-like structures in vitro Cell contributor: fullname: Kleinman – volume: 36 start-page: 865 year: 2018 end-page: 877 ident: bib68 article-title: A linked organ-on-chip model of the human neurovascular unit reveals the metabolic coupling of endothelial and neuronal cells publication-title: Nat. Biotechnol. contributor: fullname: Parker – volume: 84 start-page: 169 year: 2019 end-page: 179 ident: bib61 article-title: Functionalization of hyaluronic acid hydrogels with ECM-derived peptides to control myoblast behavior publication-title: Acta Biomater. contributor: fullname: Calve – volume: 12 start-page: 100 year: 2011 ident: bib36 article-title: NeuriteQuant: an open source toolkit for high content screens of neuronal morphogenesis publication-title: BMC Neurosci. contributor: fullname: Halpain – volume: 1 start-page: 100008 year: 2019 ident: bib43 article-title: Bioinks and bioprinting technologies to make heterogeneous and biomimetic tissue constructs publication-title: Today Bio contributor: fullname: Khademhosseini – volume: 22 start-page: 11 year: 2018 ident: bib8 article-title: Recent trends in bioinks for 3D printing publication-title: Biomater. Res. contributor: fullname: Noh – volume: 72 start-page: 221 year: 2002 ident: bib38 article-title: Expression of the endothelial markers PECAM-1, vWF, and CD34 in vivo and in vitro publication-title: Mol. Pathol. contributor: fullname: Kirkpatrick – volume: 10 start-page: 35014 year: 2018 ident: bib58 article-title: 3D bioprinting of scaffolds with living Schwann cells for potential nerve tissue engineering applications publication-title: Biofabrication contributor: fullname: Chen – volume: 223 start-page: 645 year: 2010 end-page: 652 ident: bib16 publication-title: Bio-printing of collagen and VEGF-releasing fibrin gel scaffolds for neural stem cell culture Exp Neurol contributor: fullname: Yoo – volume: 8 start-page: 4451 year: 2017 end-page: 4471 ident: bib5 article-title: Bio-inks for 3D bioprinting: recent advances and future prospects Polym publication-title: Inside Chem. contributor: fullname: Cameron – volume: vol. 64 start-page: 207 year: 2004 end-page: 238 ident: bib54 publication-title: Integrins and Angiogenesis contributor: fullname: Cheresh – volume: 35 start-page: 217 year: 2017 end-page: 239 ident: bib6 article-title: The bioink: a comprehensive review on bioprintable materials publication-title: Biotechnol. Adv. contributor: fullname: Ozbolat – volume: 36 start-page: 865 year: 2018 ident: 10.1016/j.bprint.2021.e00134_bib68 article-title: A linked organ-on-chip model of the human neurovascular unit reveals the metabolic coupling of endothelial and neuronal cells publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4226 contributor: fullname: Maoz – volume: 5 start-page: 87 year: 2018 ident: 10.1016/j.bprint.2021.e00134_bib70 article-title: Modeling neurovascular disorders and therapeutic outcomes with human-induced pluripotent stem cells Front publication-title: Bioeng. Biotechnol. doi: 10.3389/fbioe.2017.00087 contributor: fullname: Bosworth – volume: 14 start-page: 4375 year: 1994 ident: 10.1016/j.bprint.2021.e00134_bib39 article-title: GAP-43 expression in primary sensory neurons following central axotomy publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.14-07-04375.1994 contributor: fullname: Chong – volume: 32 start-page: 773 year: 2014 ident: 10.1016/j.bprint.2021.e00134_bib2 article-title: 3D bioprinting of tissues and organs publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2958 contributor: fullname: Murphy – volume: 20 8 year: 2016 ident: 10.1016/j.bprint.2021.e00134_bib11 article-title: Research trends in biomimetic medical materials for tissue engineering: commentary Biomater publication-title: Res. contributor: fullname: Park – volume: 11 start-page: 768 year: 2012 ident: 10.1016/j.bprint.2021.e00134_bib51 article-title: Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues Nat publication-title: Mater contributor: fullname: Miller – volume: 109 year: 2018 ident: 10.1016/j.bprint.2021.e00134_bib25 article-title: Differentiation potential of human adipose stem cells bioprinted with hyaluronic acid/gelatin-based bioink through microextrusion and visible light-initiated crosslinking publication-title: Biopolymers doi: 10.1002/bip.23080 contributor: fullname: Sakai – volume: 2 start-page: 152 year: 2007 ident: 10.1016/j.bprint.2021.e00134_bib33 article-title: Production of dissociated sensory neuron cultures and considerations for their use in studying neuronal function and plasticity publication-title: Nat. Protoc. doi: 10.1038/nprot.2006.461 contributor: fullname: Malin – volume: 4 start-page: 250 year: 2015 ident: 10.1016/j.bprint.2021.e00134_bib60 article-title: Laminins: roles and utility in wound repair publication-title: Adv. Wound Care doi: 10.1089/wound.2014.0533 contributor: fullname: Iorio – volume: 58 start-page: 933 year: 1989 ident: 10.1016/j.bprint.2021.e00134_bib27 publication-title: Two different laminin domains mediate the differentiation of human endothelial cells into capillary-like structures in vitro Cell contributor: fullname: Grant – year: 2018 ident: 10.1016/j.bprint.2021.e00134_bib59 contributor: fullname: Yan – volume: 88 start-page: 473 year: 1981 ident: 10.1016/j.bprint.2021.e00134_bib15 article-title: Role of collagenous matrices in the adhesion and growth of cells publication-title: J. Cell Biol. doi: 10.1083/jcb.88.3.473 contributor: fullname: Kleinman – volume: vol. 4 year: 2017 ident: 10.1016/j.bprint.2021.e00134_bib26 contributor: fullname: Farkas – volume: 5 start-page: 10 year: 2017 ident: 10.1016/j.bprint.2021.e00134_bib10 article-title: Photocrosslinking-based bioprinting: examining crosslinking schemes publication-title: Bioprinting doi: 10.1016/j.bprint.2017.03.001 contributor: fullname: Knowlton – volume: 72 start-page: 221 year: 2002 ident: 10.1016/j.bprint.2021.e00134_bib38 article-title: Expression of the endothelial markers PECAM-1, vWF, and CD34 in vivo and in vitro exp publication-title: Mol. Pathol. doi: 10.1006/exmp.2002.2424 contributor: fullname: Müller – volume: 22 start-page: 11 year: 2018 ident: 10.1016/j.bprint.2021.e00134_bib8 article-title: Recent trends in bioinks for 3D printing publication-title: Biomater. Res. doi: 10.1186/s40824-018-0122-1 contributor: fullname: Gopinathan – volume: 4 start-page: 528 year: 2004 ident: 10.1016/j.bprint.2021.e00134_bib22 publication-title: Hyaluronan: from extracellular glue to pericellular cue Nat Rev Cancer contributor: fullname: Toole – volume: 116 start-page: 1496 year: 2016 ident: 10.1016/j.bprint.2021.e00134_bib42 article-title: Strategies and molecular design criteria for 3D printable hydrogels publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00303 contributor: fullname: Jungst – volume: 67 start-page: 264 year: 2015 ident: 10.1016/j.bprint.2021.e00134_bib57 article-title: 3D printing of layered brain-like structures using peptide modified gellan gum substrates publication-title: Biomaterials doi: 10.1016/j.biomaterials.2015.07.022 contributor: fullname: Lozano – volume: 30 start-page: 1910250 year: 2020 ident: 10.1016/j.bprint.2021.e00134_bib65 article-title: Bioprinting neural systems to model central nervous system diseases publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201910250 contributor: fullname: Qiu – volume: 117 start-page: 14015 year: 2017 ident: 10.1016/j.bprint.2021.e00134_bib71 article-title: Small bioactive peptides for biomaterials design and therapeutics publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00522 contributor: fullname: Hamley – volume: 156 start-page: 88 year: 2018 ident: 10.1016/j.bprint.2021.e00134_bib14 article-title: Biomaterials-based 3D cell printing for next-generation therapeutics and diagnostics publication-title: Biomaterials doi: 10.1016/j.biomaterials.2017.11.030 contributor: fullname: Jang – ident: 10.1016/j.bprint.2021.e00134_bib20 doi: 10.1016/j.joca.2015.06.021 – volume: vol. 64 start-page: 207 year: 2004 ident: 10.1016/j.bprint.2021.e00134_bib54 contributor: fullname: Stupack – volume: 4 start-page: 318 year: 2016 ident: 10.1016/j.bprint.2021.e00134_bib29 article-title: Functionalised type-I collagen as a hydrogel building block for bio-orthogonal tissue engineering applications J publication-title: Mater. Chem. B doi: 10.1039/C5TB02035B contributor: fullname: Ravichandran – volume: 27 start-page: 1367 year: 1993 ident: 10.1016/j.bprint.2021.e00134_bib31 article-title: Endothelial cell compatibility testing of three different publication-title: Pellethanes J Biomed Mater Res doi: 10.1002/jbm.820271104 contributor: fullname: Bordenave – volume: 242 start-page: 27 year: 1997 ident: 10.1016/j.bprint.2021.e00134_bib18 article-title: Hyaluronan: its nature, distribution, functions and turnover J publication-title: Intern. Med. contributor: fullname: Fraser – volume: 7 start-page: 460 year: 2014 ident: 10.1016/j.bprint.2021.e00134_bib52 article-title: Generation of multi-scale vascular network system within 3D hydrogel using 3D bio-printing technology publication-title: Cell. Mol. Bioeng. doi: 10.1007/s12195-014-0340-0 contributor: fullname: Lee – volume: 4 start-page: 203 year: 2008 ident: 10.1016/j.bprint.2021.e00134_bib23 article-title: Role of hyaluronan in angiogenesis and its utility to angiogenic tissue engineering publication-title: Organogenesis doi: 10.4161/org.4.4.6926 contributor: fullname: Pardue – volume: 34 start-page: 6539 year: 2013 ident: 10.1016/j.bprint.2021.e00134_bib62 article-title: Laminin-111-derived peptide-hyaluronate hydrogels as a synthetic basement membrane publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.05.044 contributor: fullname: Yamada – year: 2012 ident: 10.1016/j.bprint.2021.e00134_bib35 contributor: fullname: Carpentier – volume: 26 start-page: 273 year: 2020 ident: 10.1016/j.bprint.2021.e00134_bib69 article-title: Organotypic neurovascular models: past results and future directions publication-title: Trends Mol. Med. doi: 10.1016/j.molmed.2019.09.010 contributor: fullname: Balikov – volume: 71 start-page: 406 year: 2011 ident: 10.1016/j.bprint.2021.e00134_bib64 article-title: The neurovascular link in health and disease: molecular mechanisms and therapeutic implications publication-title: Neuron doi: 10.1016/j.neuron.2011.07.013 contributor: fullname: Quaegebeur – volume: 12 year: 2017 ident: 10.1016/j.bprint.2021.e00134_bib24 article-title: 3D bioprinting of methacrylated hyaluronic acid (MeHA) hydrogel with intrinsic osteogenicity publication-title: PloS One doi: 10.1371/journal.pone.0177628 contributor: fullname: Poldervaart – volume: 21 start-page: 175 year: 1995 ident: 10.1016/j.bprint.2021.e00134_bib32 article-title: Early basement membrane formation following the grafting of cultured epidermal sheets detached with thermolysin or Dispase Burns contributor: fullname: Germain – volume: 270 start-page: L459 year: 1996 ident: 10.1016/j.bprint.2021.e00134_bib53 article-title: Identification of receptors binding fibronectin and laminin on fetal rat lung cells publication-title: Am. J. Physiol. Cell. Mol. Physiol. doi: 10.1152/ajplung.1996.270.3.L459 contributor: fullname: Caniggia – volume: 26 start-page: 3124 year: 2014 ident: 10.1016/j.bprint.2021.e00134_bib50 article-title: 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs publication-title: Adv. Mater. doi: 10.1002/adma.201305506 contributor: fullname: Kolesky – volume: 12 start-page: 100 year: 2011 ident: 10.1016/j.bprint.2021.e00134_bib36 article-title: NeuriteQuant: an open source toolkit for high content screens of neuronal morphogenesis publication-title: BMC Neurosci. doi: 10.1186/1471-2202-12-100 contributor: fullname: Dehmelt – volume: 12 start-page: 1197 year: 2015 ident: 10.1016/j.bprint.2021.e00134_bib55 article-title: Tissue matrix arrays for high-throughput screening and systems analysis of cell function Nat publication-title: Methods contributor: fullname: Beachley – volume: 8 start-page: 13001 year: 2016 ident: 10.1016/j.bprint.2021.e00134_bib40 article-title: Biofabrication: reappraising the definition of an evolving field publication-title: Biofabrication doi: 10.1088/1758-5090/8/1/013001 contributor: fullname: Groll – volume: 84 start-page: 169 year: 2019 ident: 10.1016/j.bprint.2021.e00134_bib61 article-title: Functionalization of hyaluronic acid hydrogels with ECM-derived peptides to control myoblast behavior publication-title: Acta Biomater. doi: 10.1016/j.actbio.2018.11.030 contributor: fullname: Silva Garcia – volume: 60 start-page: 117 year: 2019 ident: 10.1016/j.bprint.2021.e00134_bib21 publication-title: Hyaluronic acid promotes proliferation and migration of human meniscus cells via a CD44-dependent mechanism Connect Tissue Res contributor: fullname: Murakami – volume: 17 start-page: 448 year: 2014 ident: 10.1016/j.bprint.2021.e00134_bib67 article-title: Lab on a Chip A 3D neurovascular microfluidic model consisting of neurons, astrocytes and cerebral endothelial cells as a blood-brain barrier contributor: fullname: Adriani – volume: 10 start-page: 35014 year: 2018 ident: 10.1016/j.bprint.2021.e00134_bib58 article-title: 3D bioprinting of scaffolds with living Schwann cells for potential nerve tissue engineering applications publication-title: Biofabrication doi: 10.1088/1758-5090/aacd30 contributor: fullname: Ning – volume: 23 start-page: H41 year: 2011 ident: 10.1016/j.bprint.2021.e00134_bib44 article-title: Hyaluronic acid hydrogels for biomedical applications publication-title: Adv. Mater. doi: 10.1002/adma.201003963 contributor: fullname: Burdick – ident: 10.1016/j.bprint.2021.e00134_bib66 – volume: 34 start-page: 422 year: 2016 ident: 10.1016/j.bprint.2021.e00134_bib1 article-title: 3D bioprinting for engineering complex tissues publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2015.12.011 contributor: fullname: Mandrycky – volume: 5 start-page: 293 year: 2003 ident: 10.1016/j.bprint.2021.e00134_bib56 article-title: Neural tissue engineering: strategies for repair and regeneration publication-title: Annu. Rev. Biomed. Eng. doi: 10.1146/annurev.bioeng.5.011303.120731 contributor: fullname: Schmidt – volume: 6 start-page: 915 year: 2018 ident: 10.1016/j.bprint.2021.e00134_bib7 article-title: Bioinks for 3D bioprinting: an overview publication-title: Biomater. Sci doi: 10.1039/C7BM00765E contributor: fullname: Gungor-Ozkerim – volume: 1 start-page: 100008 year: 2019 ident: 10.1016/j.bprint.2021.e00134_bib43 article-title: Bioinks and bioprinting technologies to make heterogeneous and biomimetic tissue constructs Mater publication-title: Today Bio contributor: fullname: Ashammakhi – volume: 2018 year: 2018 ident: 10.1016/j.bprint.2021.e00134_bib47 article-title: 3D bioprinting for modelling vasculature publication-title: Microphysiological Syst. Novemb. contributor: fullname: Sasmal – volume: 35 start-page: 217 year: 2017 ident: 10.1016/j.bprint.2021.e00134_bib6 article-title: The bioink: a comprehensive review on bioprintable materials publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2016.12.006 contributor: fullname: Hospodiuk – year: 2018 ident: 10.1016/j.bprint.2021.e00134_bib9 contributor: fullname: Pepelanova – volume: 10 start-page: 8227 year: 2020 ident: 10.1016/j.bprint.2021.e00134_bib63 article-title: Self-assembling peptide hydrogels functionalized with LN- and BDNF- mimicking epitopes synergistically enhance peripheral nerve regeneration publication-title: Theranostics doi: 10.7150/thno.44276 contributor: fullname: Yang – volume: 8 start-page: 4451 year: 2017 ident: 10.1016/j.bprint.2021.e00134_bib5 article-title: Bio-inks for 3D bioprinting: recent advances and future prospects Polym publication-title: Inside Chem. contributor: fullname: Donderwinkel – volume: 223 start-page: 645 year: 2010 ident: 10.1016/j.bprint.2021.e00134_bib16 publication-title: Bio-printing of collagen and VEGF-releasing fibrin gel scaffolds for neural stem cell culture Exp Neurol contributor: fullname: Lee – volume: 83 start-page: 195 year: 2018 ident: 10.1016/j.bprint.2021.e00134_bib13 article-title: Collagen-alginate as bioink for three-dimensional (3D) cell printing based cartilage tissue engineering Mater publication-title: Sci. Eng. C doi: 10.1016/j.msec.2017.09.002 contributor: fullname: Yang – volume: 36 start-page: 991 year: 1999 ident: 10.1016/j.bprint.2021.e00134_bib37 article-title: Properties of new materials: Rheological study on hyaluronic acid and its derivative solutions publication-title: J. Macromol. Sci., Pure Appl. Chem. doi: 10.1081/MA-100101578 contributor: fullname: Ambrosio – volume: 8 start-page: 32002 year: 2016 ident: 10.1016/j.bprint.2021.e00134_bib3 article-title: Bioink properties before, during and after 3D bioprinting publication-title: Biofabrication doi: 10.1088/1758-5090/8/3/032002 contributor: fullname: Hölzl – volume: 7 year: 2017 ident: 10.1016/j.bprint.2021.e00134_bib12 article-title: In situ printing of mesenchymal stromal cells, by laser-assisted bioprinting, for in vivo bone regeneration applications Sci publication-title: For. Rep. contributor: fullname: Keriquel – start-page: 30 4 year: 2019 ident: 10.1016/j.bprint.2021.e00134_bib28 article-title: Ile-Lys-Val-ala-Val (IKVAV) peptide for neuronal tissue engineering Polym publication-title: Adv. Met. Technol. contributor: fullname: Patel – volume: 11 start-page: 15003 year: 2018 ident: 10.1016/j.bprint.2021.e00134_bib17 article-title: Optimization of collagen type I-hyaluronan hybrid bioink for 3D bioprinted liver microenvironments publication-title: Biofabrication doi: 10.1088/1758-5090/aae543 contributor: fullname: Mazzocchi – volume: 106 start-page: 58 year: 2016 ident: 10.1016/j.bprint.2021.e00134_bib48 article-title: Direct 3D bioprinting of perfusable vascular constructs using a blend bioink publication-title: Biomaterials doi: 10.1016/j.biomaterials.2016.07.038 contributor: fullname: Jia – volume: 113 start-page: 3179 year: 2016 ident: 10.1016/j.bprint.2021.e00134_bib49 article-title: Three-dimensional bioprinting of thick vascularized tissues publication-title: Proc. Natl. Acad. Sci. Unit. States Am. doi: 10.1073/pnas.1521342113 contributor: fullname: Kolesky – volume: 11 start-page: 13001 year: 2018 ident: 10.1016/j.bprint.2021.e00134_bib41 article-title: A definition of bioinks and their distinction from biomaterial inks publication-title: Biofabrication doi: 10.1088/1758-5090/aaec52 contributor: fullname: Groll – start-page: 188 92 year: 2018 ident: 10.1016/j.bprint.2021.e00134_bib19 article-title: The preparation of hyaluronic acid grafted pullulan polymers and their use in the formation of novel biocompatible wound healing film Carbohydr publication-title: Polym contributor: fullname: Li – volume: 25 start-page: 5011 year: 2013 ident: 10.1016/j.bprint.2021.e00134_bib4 article-title: 25th anniversary article: engineering hydrogels for biofabrication publication-title: Adv. Mater. doi: 10.1002/adma.201302042 contributor: fullname: Malda – volume: 267 start-page: 5421 year: 2000 ident: 10.1016/j.bprint.2021.e00134_bib34 article-title: Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity publication-title: Eur. J. Biochem. doi: 10.1046/j.1432-1327.2000.01606.x contributor: fullname: O’Brien – volume: 49 start-page: 1540 year: 2010 ident: 10.1016/j.bprint.2021.e00134_bib46 article-title: Thiol-ene click chemistry publication-title: Angew Chem. Int. Ed. Engl. doi: 10.1002/anie.200903924 contributor: fullname: Hoyle – volume: 1 start-page: 5478 year: 2013 ident: 10.1016/j.bprint.2021.e00134_bib30 article-title: Triple-helical collagen hydrogels via covalent aromatic functionalisation with 1,3-phenylenediacetic acid J publication-title: Mater. Chem. B doi: 10.1039/c3tb20218f contributor: fullname: Tronci – volume: 35 start-page: 4969 year: 2014 ident: 10.1016/j.bprint.2021.e00134_bib45 article-title: Click hydrogels, microgels and nanogels: emerging platforms for drug delivery and tissue engineering publication-title: Biomaterials doi: 10.1016/j.biomaterials.2014.03.001 contributor: fullname: Jiang |
SSID | ssj0002951719 ssj0002810138 |
Score | 2.291016 |
Snippet | The field of bioprinting has shown a tremendous development in recent years, focusing on the development of advanced in vitro models and on regeneration... |
SourceID | hal crossref elsevier |
SourceType | Open Access Repository Aggregation Database Publisher |
StartPage | e00134 |
SubjectTerms | Bioink Biotechnology Extracellular matrix-based Life Sciences Neurite outgrowth Vasculogenesis |
Title | Extracellular matrix (ECM)-derived bioinks designed to foster vasculogenesis and neurite outgrowth: Characterization and bioprinting |
URI | https://dx.doi.org/10.1016/j.bprint.2021.e00134 https://hal.science/hal-03479756 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fi9QwEA67dy--iKLieXoE8UEpXbpt2qa-LWtlFRVhT7i3kjbNXg9uK7vd9fDZP9yZJG13XcUf4EtphzYJma_JZDLfhJBnTBYiUX7p5gGTLsuTEO4Egx8vyDnOELJANvJsHn-44K9Slg4GbYLHXvZfNQ0y0DUyZ_9C212hIIB70DlcQetw_SO9pzfNSqA7XseXXmMG_hs0I9Ppe1j1uxLasEWrs6px69aROoIDBGCDKiR8rBwTnFovcBSsTApnzHpZYUDBplnAur25REfCtMv1bKic-k0oF12FTTsjtvvFvRgbM7nGmqQFY8853vP6QjsrfQqSM9ss6g4ZZmsfplxhwwWQz9k5iho8_eVLVXy1RKSqdJH63cH3o6i2wpH12pnj8clri-9lvev-8HfCtIxP7oCXg0MnmCmhy3lkk2z_RGbHfsOJPphGjEfjapTrrhlhvaMSrWXWT5tdMOMcS8aC_bHZGB6SYx-GPRh1jydv0ou3nc_PB3M21mfNdI1p2Zw65PCwul9ZS8PL1u-v7aDzO-S2XcDQiUHeXTIol_fItz3UUYM6-hww96JFHLWIoy3iaFNTgzi6jzgKSKAWcbRD3Ev6I970ezt4u08-vU7PpzPXnu_hFriQd4NSxSGLheQFZzLwFC8Tz1PFOJFlHolCBX7ClCeLgIkkFzxQQahKpSIGi5gAnh-Qo2W9LB8SGvteAZ9EMWaMyxkXYGeLPI8U5j4ac--EuG0_Zp9NGpesjW-8yky_Z9jvmen3ExK3nZ1ZU9SYmBlA5DdfPgXddJVg9vbZ5F2GMg9Z23EYbceP_rn4U3Kr_wsek6NmtSmfkOFabs4s2s60x_I7gvPAGg |
link.rule.ids | 230,315,782,786,887,27933,27934 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extracellular+matrix+%28ECM%29-derived+bioinks+designed+to+foster+vasculogenesis+and+neurite+outgrowth%3A+Characterization+and+bioprinting&rft.jtitle=Bioprinting+%28Amsterdam%2C+Netherlands%29&rft.au=Oliveira%2C+Hugo&rft.au=M%C3%A9dina%2C+Chantal&rft.au=Stachowicz%2C+Marie-Laure&rft.au=Paiva+dos+Santos%2C+Bruno&rft.date=2021-06-01&rft.pub=Elsevier+B.V&rft.issn=2405-8866&rft.eissn=2405-8866&rft.volume=22&rft_id=info:doi/10.1016%2Fj.bprint.2021.e00134&rft.externalDocID=S2405886621000075 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2405-8866&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2405-8866&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2405-8866&client=summon |