Fast Dimension-based Partitioning and Merging clustering algorithm

•This research introduces extremely fast and scalable clustering algorithm.•The proposed algorithm detects automatically clusters number.•Furthermore, this algorithm uses three insensitive tuning parameters. Clustering multi-dense large scale high dimensional numeric datasets is a challenging task d...

Full description

Saved in:
Bibliographic Details
Published in:Applied soft computing Vol. 36; pp. 143 - 151
Main Authors: Ghanem, Tamer F., Elkilani, Wail S., Abdelkader, Hatem M., Hadhoud, Mohiy M.
Format: Journal Article
Language:English
Published: Elsevier B.V 01-11-2015
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •This research introduces extremely fast and scalable clustering algorithm.•The proposed algorithm detects automatically clusters number.•Furthermore, this algorithm uses three insensitive tuning parameters. Clustering multi-dense large scale high dimensional numeric datasets is a challenging task duo to high time complexity of most clustering algorithms. Nowadays, data collection tools produce a large amount of data. So, fast algorithms are vital requirement for clustering such data. In this paper, a fast clustering algorithm, called Dimension-based Partitioning and Merging (DPM), is proposed. In DPM, first, data is partitioned into small dense volumes during the successive processing of dataset dimensions. Then, noise is filtered out using dimensional densities of the generated partitions. Finally, merging process is invoked to construct clusters based on partition boundary data samples. DPM algorithm automatically detects the number of data clusters based on three insensitive tuning parameters which decrease the burden of its usage. Performance evaluation of the proposed algorithm using different datasets shows its fastness and accuracy compared to other clustering competitors.
AbstractList •This research introduces extremely fast and scalable clustering algorithm.•The proposed algorithm detects automatically clusters number.•Furthermore, this algorithm uses three insensitive tuning parameters. Clustering multi-dense large scale high dimensional numeric datasets is a challenging task duo to high time complexity of most clustering algorithms. Nowadays, data collection tools produce a large amount of data. So, fast algorithms are vital requirement for clustering such data. In this paper, a fast clustering algorithm, called Dimension-based Partitioning and Merging (DPM), is proposed. In DPM, first, data is partitioned into small dense volumes during the successive processing of dataset dimensions. Then, noise is filtered out using dimensional densities of the generated partitions. Finally, merging process is invoked to construct clusters based on partition boundary data samples. DPM algorithm automatically detects the number of data clusters based on three insensitive tuning parameters which decrease the burden of its usage. Performance evaluation of the proposed algorithm using different datasets shows its fastness and accuracy compared to other clustering competitors.
Author Ghanem, Tamer F.
Hadhoud, Mohiy M.
Abdelkader, Hatem M.
Elkilani, Wail S.
Author_xml – sequence: 1
  givenname: Tamer F.
  surname: Ghanem
  fullname: Ghanem, Tamer F.
  email: tamer.ghanem@ci.menofia.edu.eg
  organization: Department of Information Technology, Faculty of Computers and Information, Menofiya University, Shebin El Kom, Menofiya, Egypt
– sequence: 2
  givenname: Wail S.
  surname: Elkilani
  fullname: Elkilani, Wail S.
  email: wail.elkilani@gmail.com
  organization: Department of Computer Systems, Faculty of Computers and Information, Ain Shams University, Cairo, Egypt
– sequence: 3
  givenname: Hatem M.
  surname: Abdelkader
  fullname: Abdelkader, Hatem M.
  email: hatem6803@yahoo.com
  organization: Department of Information Systems, Faculty of Computers and Information, Menofiya University, Shebin El Kom, Menofiya, Egypt
– sequence: 4
  givenname: Mohiy M.
  surname: Hadhoud
  fullname: Hadhoud, Mohiy M.
  email: mmhadhoud@yahoo.com
  organization: Department of Information Technology, Faculty of Computers and Information, Menofiya University, Shebin El Kom, Menofiya, Egypt
BookMark eNp9kFFLwzAUhYNMcJv-AZ_6B1pv0jZNwRedToWJPuhzSJPbmrGlkkTBf7_U-SwcuOce-C6XsyAzNzok5JJCQYHyq22hwqgLBrQuIKlqT8icioblLRd0lnzNRV61FT8jixC2kKCWiTm5XasQszu7Rxfs6PJOBTTZq_LRxrRbN2TKmewZ_TB5vfsKEf1vvBtGb-PH_pyc9moX8OJvLsn7-v5t9ZhvXh6eVjebXJcAMUeBqNveMEDGa5ZCBIXQ1LSpTd1pqgXFntLeqI7xkvelNopxFFxAV3FVLgk73tV-DMFjLz-93Sv_IynIqQW5lVMLcmpBQlLVJuj6CGH67Nuil0FbdBqN9aijNKP9Dz8AnGtpCA
CitedBy_id crossref_primary_10_1021_acs_jpclett_0c01948
Cites_doi 10.1016/j.patrec.2008.02.019
10.1007/s10115-007-0090-6
10.1007/s10618-012-0258-x
10.1007/s10115-005-0233-6
10.4304/jcp.3.2.72-79
10.1145/1497577.1497578
10.1007/s10115-007-0121-3
10.1145/331499.331504
10.1109/TNN.2005.845141
10.1109/TKDE.2007.1037
10.1109/TPAMI.1979.4766909
10.1016/0377-0427(87)90125-7
10.1016/j.is.2012.09.001
10.1007/s10115-009-0226-y
10.1016/j.jss.2011.02.047
10.1145/304181.304188
ContentType Journal Article
Copyright 2015 Elsevier B.V.
Copyright_xml – notice: 2015 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2015.05.049
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
EndPage 151
ExternalDocumentID 10_1016_j_asoc_2015_05_049
S1568494615003981
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
ID FETCH-LOGICAL-c300t-e8eec9fd20e2652c30e0ae075175d5bc1c81ef11fdab2636f3cda26e8680b46a3
ISSN 1568-4946
IngestDate Thu Sep 26 18:20:15 EDT 2024
Fri Feb 23 02:23:08 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Subspace clustering
Clustering
Density-based clustering
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c300t-e8eec9fd20e2652c30e0ae075175d5bc1c81ef11fdab2636f3cda26e8680b46a3
PageCount 9
ParticipantIDs crossref_primary_10_1016_j_asoc_2015_05_049
elsevier_sciencedirect_doi_10_1016_j_asoc_2015_05_049
PublicationCentury 2000
PublicationDate 2015-11-01
PublicationDateYYYYMMDD 2015-11-01
PublicationDate_xml – month: 11
  year: 2015
  text: 2015-11-01
  day: 01
PublicationDecade 2010
PublicationTitle Applied soft computing
PublicationYear 2015
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Moise, Sander (bib0250) 2008
“Statlog (Shuttle) Data Set,” 2014. (Online). Available at
Moise, Zimek, Kröger, Kriegel, Sander (bib0215) 2009; 21
Beyer, Goldstein, Ramakrishnan, Shaft (bib0185) 1999
Rousseeuw (bib0320) 1987; 20
Hinneburg, Hinneburg, Keim (bib0270) 1998
Darong, Peng (bib0285) 2012
(accessed 30.03.14).
Sim, Gopalkrishnan, Zimek, Cong (bib0180) 2013; 26
Borah, Bhattacharyya (bib0280) 2008; 3
Davies, Bouldin (bib0325) 1979; PAMI-1
Kriegel, Kroger, Zimek (bib0175) 2009; 3
Zhao, Cao, Zhang, Zhang (bib0205) 2011; 84
Yanchang, Junde (bib0230) 2003; vol. 2637
Cassisi, Ferro, Giugno, Pigola, Pulvirenti (bib0265) 2013; 38
Bennett, Fayyad, Geiger (bib0190) 1999
Houle, Kriegel, Kroger, Schubert, Zimek (bib0200) 2010
(bib0310) 2014
Liu, Li, Xiong, Gao, Wu (bib0315) 2010
Tang, Chen, Fu, Cheung (bib0210) 2007; 11
(accessed 23.11.14).
Aggarwal, Wolf, Yu, Procopiuc, Park (bib0255) 1999; 28
Procopiuc, Jones, Agarwal, Murali (bib0260) 2002
“Clustering datasets: DIM-sets,” (Online). Available at
Desgraupes (bib0330) 2013
Moise, Sander, Ester (bib0240) 2008; 14
“ELKI Data Set Generator,” (Online). Available at
Assent, Krieger, Glavic, Seidl (bib0245) 2008; 16
Yue, Wei, Wang, Wang (bib0225) 2008; 29
Fern, Brodley (bib0235) 2003
Jain, Murty, Flynn (bib0170) 1999; 31
Xu, Wunsch (bib0275) 2005; 16
Francois, Wertz, Verleysen (bib0195) 2007; 19
Guansheng (bib0220) 2012
“OpenSubspace: Weka Subspace-Clustering Integration,” (Online). Available at
Hinneburg (10.1016/j.asoc.2015.05.049_bib0270) 1998
Moise (10.1016/j.asoc.2015.05.049_bib0240) 2008; 14
Zhao (10.1016/j.asoc.2015.05.049_bib0205) 2011; 84
Moise (10.1016/j.asoc.2015.05.049_bib0250) 2008
Xu (10.1016/j.asoc.2015.05.049_bib0275) 2005; 16
Francois (10.1016/j.asoc.2015.05.049_bib0195) 2007; 19
Kriegel (10.1016/j.asoc.2015.05.049_bib0175) 2009; 3
Yue (10.1016/j.asoc.2015.05.049_bib0225) 2008; 29
Moise (10.1016/j.asoc.2015.05.049_bib0215) 2009; 21
10.1016/j.asoc.2015.05.049_bib0290
Jain (10.1016/j.asoc.2015.05.049_bib0170) 1999; 31
Davies (10.1016/j.asoc.2015.05.049_bib0325) 1979; PAMI-1
10.1016/j.asoc.2015.05.049_bib0295
Tang (10.1016/j.asoc.2015.05.049_bib0210) 2007; 11
Borah (10.1016/j.asoc.2015.05.049_bib0280) 2008; 3
Yanchang (10.1016/j.asoc.2015.05.049_bib0230) 2003; vol. 2637
Aggarwal (10.1016/j.asoc.2015.05.049_bib0255) 1999; 28
Guansheng (10.1016/j.asoc.2015.05.049_bib0220) 2012
Procopiuc (10.1016/j.asoc.2015.05.049_bib0260) 2002
10.1016/j.asoc.2015.05.049_bib0305
Beyer (10.1016/j.asoc.2015.05.049_bib0185) 1999
Houle (10.1016/j.asoc.2015.05.049_bib0200) 2010
Assent (10.1016/j.asoc.2015.05.049_bib0245) 2008; 16
Cassisi (10.1016/j.asoc.2015.05.049_bib0265) 2013; 38
Sim (10.1016/j.asoc.2015.05.049_bib0180) 2013; 26
Rousseeuw (10.1016/j.asoc.2015.05.049_bib0320) 1987; 20
Bennett (10.1016/j.asoc.2015.05.049_bib0190) 1999
Fern (10.1016/j.asoc.2015.05.049_bib0235) 2003
(10.1016/j.asoc.2015.05.049_bib0310) 2014
Desgraupes (10.1016/j.asoc.2015.05.049_bib0330) 2013
Liu (10.1016/j.asoc.2015.05.049_bib0315) 2010
Darong (10.1016/j.asoc.2015.05.049_bib0285) 2012
10.1016/j.asoc.2015.05.049_bib0300
References_xml – year: 1999
  ident: bib0185
  article-title: When is “nearest neighbor” meaningful?
  publication-title: Proceedings of the 7th International Conference on Database Theory
  contributor:
    fullname: Shaft
– volume: 3
  start-page: 1
  year: 2009
  end-page: 58
  ident: bib0175
  article-title: Clustering high-dimensional data: a survey on subspace clustering, pattern-based clustering, and correlation clustering
  publication-title: ACM Trans. Knowl. Discov. Data
  contributor:
    fullname: Zimek
– year: 1999
  ident: bib0190
  article-title: Density-based indexing for approximate nearest-neighbor queries
  publication-title: Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
  contributor:
    fullname: Geiger
– volume: 28
  start-page: 61
  year: 1999
  end-page: 72
  ident: bib0255
  article-title: Fast algorithms for projected clustering
  publication-title: SIGMOD Rec.
  contributor:
    fullname: Park
– year: 1998
  ident: bib0270
  article-title: An efficient approach to clustering in large multimedia databases with noise
  publication-title: Proceeding of the 1998 International Conference on Knowledge Discovery and Data Mining (KDD’98)
  contributor:
    fullname: Keim
– volume: 19
  start-page: 873
  year: 2007
  end-page: 886
  ident: bib0195
  article-title: The concentration of fractional distances
  publication-title: IEEE Trans. Knowl. Data Eng.
  contributor:
    fullname: Verleysen
– volume: 11
  start-page: 45
  year: 2007
  end-page: 84
  ident: bib0210
  article-title: Capabilities of outlier detection schemes in large datasets, framework and methodologies
  publication-title: Knowl. Inf. Syst.
  contributor:
    fullname: Cheung
– volume: 20
  start-page: 53
  year: 1987
  end-page: 65
  ident: bib0320
  article-title: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis
  publication-title: J. Comput. Appl. Math.
  contributor:
    fullname: Rousseeuw
– year: 2003
  ident: bib0235
  article-title: Random projection for high dimensional data clustering: a cluster ensemble approach
  publication-title: Proceeding of the 20th International Conference On Machine Learning (ICML’03)
  contributor:
    fullname: Brodley
– year: 2010
  ident: bib0315
  article-title: Understanding of internal clustering validation measures
  publication-title: Proceeding Data Mining (ICDM), 2010 IEEE 10th International Conference
  contributor:
    fullname: Wu
– year: 2013
  ident: bib0330
  article-title: Clustering Indices, Paris
  contributor:
    fullname: Desgraupes
– year: 2014
  ident: bib0310
  article-title: Wearable Computing: Classification of Body Postures and Movements (PUC-Rio) Data Set
– volume: vol. 2637
  start-page: 271
  year: 2003
  end-page: 282
  ident: bib0230
  article-title: AGRID: an efficient algorithm for clustering large high-dimensional datasets
  publication-title: Advances in Knowledge Discovery and Data Mining
  contributor:
    fullname: Junde
– volume: 84
  start-page: 1524
  year: 2011
  end-page: 1539
  ident: bib0205
  article-title: Enhancing grid-density based clustering for high dimensional data
  publication-title: J. Syst. Softw.
  contributor:
    fullname: Zhang
– volume: 26
  start-page: 332
  year: 2013
  end-page: 397
  ident: bib0180
  article-title: A survey on enhanced subspace clustering
  publication-title: Data Min. Knowl. Discov.
  contributor:
    fullname: Cong
– year: 2012
  ident: bib0220
  article-title: A new elliptical grid clustering method
  publication-title: 2012 International Conference on Medical Physics and Biomedical Engineering (ICMPBE2012)
  contributor:
    fullname: Guansheng
– year: 2008
  ident: bib0250
  article-title: Finding non-redundant, statistically significant regions in high dimensional data: a novel approach to projected and subspace clustering
  publication-title: in Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
  contributor:
    fullname: Sander
– volume: 38
  start-page: 317
  year: 2013
  end-page: 330
  ident: bib0265
  article-title: Enhancing density-based clustering: parameter reduction and outlier detection
  publication-title: Inform. Syst.
  contributor:
    fullname: Pulvirenti
– volume: 29
  start-page: 1372
  year: 2008
  end-page: 1384
  ident: bib0225
  article-title: A general grid-clustering approach
  publication-title: Pattern Recogn. Lett.
  contributor:
    fullname: Wang
– year: 2010
  ident: bib0200
  article-title: Can shared-neighbor distances defeat the curse of dimensionality?
  publication-title: Proceedings of the 22Nd International Conference on Scientific and Statistical Database Management
  contributor:
    fullname: Zimek
– year: 2002
  ident: bib0260
  article-title: A Monte Carlo algorithm for fast projective clustering
  publication-title: Proceedings of the 2002 ACM SIGMOD International Conference on Management of Data
  contributor:
    fullname: Murali
– volume: 16
  start-page: 645
  year: 2005
  end-page: 678
  ident: bib0275
  article-title: Survey of clustering algorithms
  publication-title: IEEE Trans. Neural Netw.
  contributor:
    fullname: Wunsch
– volume: 21
  start-page: 299
  year: 2009
  end-page: 326
  ident: bib0215
  article-title: Subspace and projected clustering: experimental evaluation and analysis
  publication-title: Knowl. Inf. Syst.
  contributor:
    fullname: Sander
– volume: 31
  start-page: 264
  year: 1999
  end-page: 323
  ident: bib0170
  article-title: Data clustering: a review
  publication-title: ACM Comput. Surv.
  contributor:
    fullname: Flynn
– volume: 3
  start-page: 72
  year: 2008
  end-page: 79
  ident: bib0280
  article-title: DDSC: a density differentiated spatial clustering technique
  publication-title: J. Comput.
  contributor:
    fullname: Bhattacharyya
– volume: PAMI-1
  start-page: 224
  year: 1979
  end-page: 227
  ident: bib0325
  article-title: A cluster separation measure
  publication-title: IEEE Trans. Pattern Anal.
  contributor:
    fullname: Bouldin
– volume: 14
  start-page: 273
  year: 2008
  end-page: 298
  ident: bib0240
  article-title: Robust projected clustering
  publication-title: Knowl. Inf. Syst.
  contributor:
    fullname: Ester
– start-page: 2012
  year: 2012
  ident: bib0285
  article-title: Grid-based DBSCAN algorithm with referential parameters
  publication-title: International Conference on Applied Physics and Industrial Engineering
  contributor:
    fullname: Peng
– volume: 16
  start-page: 29
  year: 2008
  end-page: 51
  ident: bib0245
  article-title: Clustering multidimensional sequences in spatial and temporal databases
  publication-title: Knowl. Inf. Syst.
  contributor:
    fullname: Seidl
– volume: 29
  start-page: 1372
  issue: 9
  year: 2008
  ident: 10.1016/j.asoc.2015.05.049_bib0225
  article-title: A general grid-clustering approach
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2008.02.019
  contributor:
    fullname: Yue
– volume: vol. 2637
  start-page: 271
  year: 2003
  ident: 10.1016/j.asoc.2015.05.049_bib0230
  article-title: AGRID: an efficient algorithm for clustering large high-dimensional datasets
  contributor:
    fullname: Yanchang
– year: 2013
  ident: 10.1016/j.asoc.2015.05.049_bib0330
  contributor:
    fullname: Desgraupes
– year: 1998
  ident: 10.1016/j.asoc.2015.05.049_bib0270
  article-title: An efficient approach to clustering in large multimedia databases with noise
  contributor:
    fullname: Hinneburg
– volume: 14
  start-page: 273
  issue: 3
  year: 2008
  ident: 10.1016/j.asoc.2015.05.049_bib0240
  article-title: Robust projected clustering
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-007-0090-6
  contributor:
    fullname: Moise
– volume: 26
  start-page: 332
  issue: March (2)
  year: 2013
  ident: 10.1016/j.asoc.2015.05.049_bib0180
  article-title: A survey on enhanced subspace clustering
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1007/s10618-012-0258-x
  contributor:
    fullname: Sim
– start-page: 2012
  year: 2012
  ident: 10.1016/j.asoc.2015.05.049_bib0285
  article-title: Grid-based DBSCAN algorithm with referential parameters
  contributor:
    fullname: Darong
– volume: 11
  start-page: 45
  issue: 1
  year: 2007
  ident: 10.1016/j.asoc.2015.05.049_bib0210
  article-title: Capabilities of outlier detection schemes in large datasets, framework and methodologies
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-005-0233-6
  contributor:
    fullname: Tang
– ident: 10.1016/j.asoc.2015.05.049_bib0300
– volume: 3
  start-page: 72
  issue: 2
  year: 2008
  ident: 10.1016/j.asoc.2015.05.049_bib0280
  article-title: DDSC: a density differentiated spatial clustering technique
  publication-title: J. Comput.
  doi: 10.4304/jcp.3.2.72-79
  contributor:
    fullname: Borah
– volume: 3
  start-page: 1
  issue: March (1)
  year: 2009
  ident: 10.1016/j.asoc.2015.05.049_bib0175
  article-title: Clustering high-dimensional data: a survey on subspace clustering, pattern-based clustering, and correlation clustering
  publication-title: ACM Trans. Knowl. Discov. Data
  doi: 10.1145/1497577.1497578
  contributor:
    fullname: Kriegel
– volume: 16
  start-page: 29
  issue: 1
  year: 2008
  ident: 10.1016/j.asoc.2015.05.049_bib0245
  article-title: Clustering multidimensional sequences in spatial and temporal databases
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-007-0121-3
  contributor:
    fullname: Assent
– ident: 10.1016/j.asoc.2015.05.049_bib0290
– volume: 31
  start-page: 264
  issue: September (3)
  year: 1999
  ident: 10.1016/j.asoc.2015.05.049_bib0170
  article-title: Data clustering: a review
  publication-title: ACM Comput. Surv.
  doi: 10.1145/331499.331504
  contributor:
    fullname: Jain
– volume: 16
  start-page: 645
  issue: May (3)
  year: 2005
  ident: 10.1016/j.asoc.2015.05.049_bib0275
  article-title: Survey of clustering algorithms
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2005.845141
  contributor:
    fullname: Xu
– volume: 19
  start-page: 873
  issue: July (7)
  year: 2007
  ident: 10.1016/j.asoc.2015.05.049_bib0195
  article-title: The concentration of fractional distances
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2007.1037
  contributor:
    fullname: Francois
– year: 2008
  ident: 10.1016/j.asoc.2015.05.049_bib0250
  article-title: Finding non-redundant, statistically significant regions in high dimensional data: a novel approach to projected and subspace clustering
  contributor:
    fullname: Moise
– volume: PAMI-1
  start-page: 224
  issue: April (2)
  year: 1979
  ident: 10.1016/j.asoc.2015.05.049_bib0325
  article-title: A cluster separation measure
  publication-title: IEEE Trans. Pattern Anal.
  doi: 10.1109/TPAMI.1979.4766909
  contributor:
    fullname: Davies
– year: 1999
  ident: 10.1016/j.asoc.2015.05.049_bib0185
  article-title: When is “nearest neighbor” meaningful?
  contributor:
    fullname: Beyer
– year: 2010
  ident: 10.1016/j.asoc.2015.05.049_bib0200
  article-title: Can shared-neighbor distances defeat the curse of dimensionality?
  contributor:
    fullname: Houle
– volume: 20
  start-page: 53
  issue: 0
  year: 1987
  ident: 10.1016/j.asoc.2015.05.049_bib0320
  article-title: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/0377-0427(87)90125-7
  contributor:
    fullname: Rousseeuw
– year: 1999
  ident: 10.1016/j.asoc.2015.05.049_bib0190
  article-title: Density-based indexing for approximate nearest-neighbor queries
  contributor:
    fullname: Bennett
– volume: 38
  start-page: 317
  issue: 3
  year: 2013
  ident: 10.1016/j.asoc.2015.05.049_bib0265
  article-title: Enhancing density-based clustering: parameter reduction and outlier detection
  publication-title: Inform. Syst.
  doi: 10.1016/j.is.2012.09.001
  contributor:
    fullname: Cassisi
– year: 2010
  ident: 10.1016/j.asoc.2015.05.049_bib0315
  article-title: Understanding of internal clustering validation measures
  contributor:
    fullname: Liu
– volume: 21
  start-page: 299
  issue: 3
  year: 2009
  ident: 10.1016/j.asoc.2015.05.049_bib0215
  article-title: Subspace and projected clustering: experimental evaluation and analysis
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-009-0226-y
  contributor:
    fullname: Moise
– year: 2002
  ident: 10.1016/j.asoc.2015.05.049_bib0260
  article-title: A Monte Carlo algorithm for fast projective clustering
  contributor:
    fullname: Procopiuc
– volume: 84
  start-page: 1524
  issue: 9
  year: 2011
  ident: 10.1016/j.asoc.2015.05.049_bib0205
  article-title: Enhancing grid-density based clustering for high dimensional data
  publication-title: J. Syst. Softw.
  doi: 10.1016/j.jss.2011.02.047
  contributor:
    fullname: Zhao
– ident: 10.1016/j.asoc.2015.05.049_bib0305
– volume: 28
  start-page: 61
  issue: June (2)
  year: 1999
  ident: 10.1016/j.asoc.2015.05.049_bib0255
  article-title: Fast algorithms for projected clustering
  publication-title: SIGMOD Rec.
  doi: 10.1145/304181.304188
  contributor:
    fullname: Aggarwal
– year: 2014
  ident: 10.1016/j.asoc.2015.05.049_bib0310
– year: 2003
  ident: 10.1016/j.asoc.2015.05.049_bib0235
  article-title: Random projection for high dimensional data clustering: a cluster ensemble approach
  contributor:
    fullname: Fern
– ident: 10.1016/j.asoc.2015.05.049_bib0295
– year: 2012
  ident: 10.1016/j.asoc.2015.05.049_bib0220
  article-title: A new elliptical grid clustering method
  contributor:
    fullname: Guansheng
SSID ssj0016928
Score 2.1734695
Snippet •This research introduces extremely fast and scalable clustering algorithm.•The proposed algorithm detects automatically clusters number.•Furthermore, this...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 143
SubjectTerms Clustering
Density-based clustering
Subspace clustering
Title Fast Dimension-based Partitioning and Merging clustering algorithm
URI https://dx.doi.org/10.1016/j.asoc.2015.05.049
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LjpswFLXSmU03fVedvsSiO-QIY0PsZdomSitNN0nV2SEDpskMgRGBRf--19gmKFNVbaVKCKGLSCzfo-ODuQ-E3vEZ4EBFCqcBKzCTEcGcpwLzLJBcfwfifRHX1Xr25Yp_XLDFZOLCu462_-ppsIGvdebsX3h7-FEwwDX4HM7gdTj_kd-X8tACke11YHpdYb1K5aATG1OUyKUkXqqm706UlZ2ulNCby-91s2u3-7FedSL1AGzdh593rVvrdNDOVlaqB9RG7lXjL6fHUJCbXWnaRfnf5K7018OteZqr8kbmBisr0Lp7_3I6YsJt3ZlOx_V298PdshsTJLIZesNu2Z2MGUOwMcdM2G1HZWwAGCxi07rFsTId0yoxpZzsCk1Mido75G_2Ia6nEnCtg_aiviarqYh6UlR7rcehhwF6OKBC5-6fh0BVwJTn80-Lq8_Dl6hY9P15h3HbxCsTI3j6T78WNyPBsnmEHtg3DW9uIPIYTVT1BD10XTw8S-pP0XuNGO8EMd4YMR4gxrOI8Y6I8QbEPENfl4vNhxW2nTVwRoOgxYorlYkiDwMVxlEIRhVIBeoRxGQepRnJOFEFIUUu0zCmcUGzXIax4jEPUhZL-hydVXWlXiAPXi9YwVJGKY1YnhWpoLB8zohQRApQYBfId1OS3JoCKomLLLxO9AQmegKTAA4mLlDkZi2xEtBIuwSc_JvnXv7jc6_Q_SN0X6OztunUG3TvkHdvLRB-AknUfH8
link.rule.ids 315,782,786,27933,27934
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+Dimension-based+Partitioning+and+Merging+clustering+algorithm&rft.jtitle=Applied+soft+computing&rft.au=Ghanem%2C+Tamer+F.&rft.au=Elkilani%2C+Wail+S.&rft.au=Abdelkader%2C+Hatem+M.&rft.au=Hadhoud%2C+Mohiy+M.&rft.date=2015-11-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=36&rft.spage=143&rft.epage=151&rft_id=info:doi/10.1016%2Fj.asoc.2015.05.049&rft.externalDocID=S1568494615003981
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon