Fast Dimension-based Partitioning and Merging clustering algorithm
•This research introduces extremely fast and scalable clustering algorithm.•The proposed algorithm detects automatically clusters number.•Furthermore, this algorithm uses three insensitive tuning parameters. Clustering multi-dense large scale high dimensional numeric datasets is a challenging task d...
Saved in:
Published in: | Applied soft computing Vol. 36; pp. 143 - 151 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier B.V
01-11-2015
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | •This research introduces extremely fast and scalable clustering algorithm.•The proposed algorithm detects automatically clusters number.•Furthermore, this algorithm uses three insensitive tuning parameters.
Clustering multi-dense large scale high dimensional numeric datasets is a challenging task duo to high time complexity of most clustering algorithms. Nowadays, data collection tools produce a large amount of data. So, fast algorithms are vital requirement for clustering such data. In this paper, a fast clustering algorithm, called Dimension-based Partitioning and Merging (DPM), is proposed. In DPM, first, data is partitioned into small dense volumes during the successive processing of dataset dimensions. Then, noise is filtered out using dimensional densities of the generated partitions. Finally, merging process is invoked to construct clusters based on partition boundary data samples. DPM algorithm automatically detects the number of data clusters based on three insensitive tuning parameters which decrease the burden of its usage. Performance evaluation of the proposed algorithm using different datasets shows its fastness and accuracy compared to other clustering competitors. |
---|---|
AbstractList | •This research introduces extremely fast and scalable clustering algorithm.•The proposed algorithm detects automatically clusters number.•Furthermore, this algorithm uses three insensitive tuning parameters.
Clustering multi-dense large scale high dimensional numeric datasets is a challenging task duo to high time complexity of most clustering algorithms. Nowadays, data collection tools produce a large amount of data. So, fast algorithms are vital requirement for clustering such data. In this paper, a fast clustering algorithm, called Dimension-based Partitioning and Merging (DPM), is proposed. In DPM, first, data is partitioned into small dense volumes during the successive processing of dataset dimensions. Then, noise is filtered out using dimensional densities of the generated partitions. Finally, merging process is invoked to construct clusters based on partition boundary data samples. DPM algorithm automatically detects the number of data clusters based on three insensitive tuning parameters which decrease the burden of its usage. Performance evaluation of the proposed algorithm using different datasets shows its fastness and accuracy compared to other clustering competitors. |
Author | Ghanem, Tamer F. Hadhoud, Mohiy M. Abdelkader, Hatem M. Elkilani, Wail S. |
Author_xml | – sequence: 1 givenname: Tamer F. surname: Ghanem fullname: Ghanem, Tamer F. email: tamer.ghanem@ci.menofia.edu.eg organization: Department of Information Technology, Faculty of Computers and Information, Menofiya University, Shebin El Kom, Menofiya, Egypt – sequence: 2 givenname: Wail S. surname: Elkilani fullname: Elkilani, Wail S. email: wail.elkilani@gmail.com organization: Department of Computer Systems, Faculty of Computers and Information, Ain Shams University, Cairo, Egypt – sequence: 3 givenname: Hatem M. surname: Abdelkader fullname: Abdelkader, Hatem M. email: hatem6803@yahoo.com organization: Department of Information Systems, Faculty of Computers and Information, Menofiya University, Shebin El Kom, Menofiya, Egypt – sequence: 4 givenname: Mohiy M. surname: Hadhoud fullname: Hadhoud, Mohiy M. email: mmhadhoud@yahoo.com organization: Department of Information Technology, Faculty of Computers and Information, Menofiya University, Shebin El Kom, Menofiya, Egypt |
BookMark | eNp9kFFLwzAUhYNMcJv-AZ_6B1pv0jZNwRedToWJPuhzSJPbmrGlkkTBf7_U-SwcuOce-C6XsyAzNzok5JJCQYHyq22hwqgLBrQuIKlqT8icioblLRd0lnzNRV61FT8jixC2kKCWiTm5XasQszu7Rxfs6PJOBTTZq_LRxrRbN2TKmewZ_TB5vfsKEf1vvBtGb-PH_pyc9moX8OJvLsn7-v5t9ZhvXh6eVjebXJcAMUeBqNveMEDGa5ZCBIXQ1LSpTd1pqgXFntLeqI7xkvelNopxFFxAV3FVLgk73tV-DMFjLz-93Sv_IynIqQW5lVMLcmpBQlLVJuj6CGH67Nuil0FbdBqN9aijNKP9Dz8AnGtpCA |
CitedBy_id | crossref_primary_10_1021_acs_jpclett_0c01948 |
Cites_doi | 10.1016/j.patrec.2008.02.019 10.1007/s10115-007-0090-6 10.1007/s10618-012-0258-x 10.1007/s10115-005-0233-6 10.4304/jcp.3.2.72-79 10.1145/1497577.1497578 10.1007/s10115-007-0121-3 10.1145/331499.331504 10.1109/TNN.2005.845141 10.1109/TKDE.2007.1037 10.1109/TPAMI.1979.4766909 10.1016/0377-0427(87)90125-7 10.1016/j.is.2012.09.001 10.1007/s10115-009-0226-y 10.1016/j.jss.2011.02.047 10.1145/304181.304188 |
ContentType | Journal Article |
Copyright | 2015 Elsevier B.V. |
Copyright_xml | – notice: 2015 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.asoc.2015.05.049 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-9681 |
EndPage | 151 |
ExternalDocumentID | 10_1016_j_asoc_2015_05_049 S1568494615003981 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AAXKI AAYXX AFJKZ AKRWK CITATION |
ID | FETCH-LOGICAL-c300t-e8eec9fd20e2652c30e0ae075175d5bc1c81ef11fdab2636f3cda26e8680b46a3 |
ISSN | 1568-4946 |
IngestDate | Thu Sep 26 18:20:15 EDT 2024 Fri Feb 23 02:23:08 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Subspace clustering Clustering Density-based clustering |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c300t-e8eec9fd20e2652c30e0ae075175d5bc1c81ef11fdab2636f3cda26e8680b46a3 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1016_j_asoc_2015_05_049 elsevier_sciencedirect_doi_10_1016_j_asoc_2015_05_049 |
PublicationCentury | 2000 |
PublicationDate | 2015-11-01 |
PublicationDateYYYYMMDD | 2015-11-01 |
PublicationDate_xml | – month: 11 year: 2015 text: 2015-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Applied soft computing |
PublicationYear | 2015 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Moise, Sander (bib0250) 2008 “Statlog (Shuttle) Data Set,” 2014. (Online). Available at Moise, Zimek, Kröger, Kriegel, Sander (bib0215) 2009; 21 Beyer, Goldstein, Ramakrishnan, Shaft (bib0185) 1999 Rousseeuw (bib0320) 1987; 20 Hinneburg, Hinneburg, Keim (bib0270) 1998 Darong, Peng (bib0285) 2012 (accessed 30.03.14). Sim, Gopalkrishnan, Zimek, Cong (bib0180) 2013; 26 Borah, Bhattacharyya (bib0280) 2008; 3 Davies, Bouldin (bib0325) 1979; PAMI-1 Kriegel, Kroger, Zimek (bib0175) 2009; 3 Zhao, Cao, Zhang, Zhang (bib0205) 2011; 84 Yanchang, Junde (bib0230) 2003; vol. 2637 Cassisi, Ferro, Giugno, Pigola, Pulvirenti (bib0265) 2013; 38 Bennett, Fayyad, Geiger (bib0190) 1999 Houle, Kriegel, Kroger, Schubert, Zimek (bib0200) 2010 (bib0310) 2014 Liu, Li, Xiong, Gao, Wu (bib0315) 2010 Tang, Chen, Fu, Cheung (bib0210) 2007; 11 (accessed 23.11.14). Aggarwal, Wolf, Yu, Procopiuc, Park (bib0255) 1999; 28 Procopiuc, Jones, Agarwal, Murali (bib0260) 2002 “Clustering datasets: DIM-sets,” (Online). Available at Desgraupes (bib0330) 2013 Moise, Sander, Ester (bib0240) 2008; 14 “ELKI Data Set Generator,” (Online). Available at Assent, Krieger, Glavic, Seidl (bib0245) 2008; 16 Yue, Wei, Wang, Wang (bib0225) 2008; 29 Fern, Brodley (bib0235) 2003 Jain, Murty, Flynn (bib0170) 1999; 31 Xu, Wunsch (bib0275) 2005; 16 Francois, Wertz, Verleysen (bib0195) 2007; 19 Guansheng (bib0220) 2012 “OpenSubspace: Weka Subspace-Clustering Integration,” (Online). Available at Hinneburg (10.1016/j.asoc.2015.05.049_bib0270) 1998 Moise (10.1016/j.asoc.2015.05.049_bib0240) 2008; 14 Zhao (10.1016/j.asoc.2015.05.049_bib0205) 2011; 84 Moise (10.1016/j.asoc.2015.05.049_bib0250) 2008 Xu (10.1016/j.asoc.2015.05.049_bib0275) 2005; 16 Francois (10.1016/j.asoc.2015.05.049_bib0195) 2007; 19 Kriegel (10.1016/j.asoc.2015.05.049_bib0175) 2009; 3 Yue (10.1016/j.asoc.2015.05.049_bib0225) 2008; 29 Moise (10.1016/j.asoc.2015.05.049_bib0215) 2009; 21 10.1016/j.asoc.2015.05.049_bib0290 Jain (10.1016/j.asoc.2015.05.049_bib0170) 1999; 31 Davies (10.1016/j.asoc.2015.05.049_bib0325) 1979; PAMI-1 10.1016/j.asoc.2015.05.049_bib0295 Tang (10.1016/j.asoc.2015.05.049_bib0210) 2007; 11 Borah (10.1016/j.asoc.2015.05.049_bib0280) 2008; 3 Yanchang (10.1016/j.asoc.2015.05.049_bib0230) 2003; vol. 2637 Aggarwal (10.1016/j.asoc.2015.05.049_bib0255) 1999; 28 Guansheng (10.1016/j.asoc.2015.05.049_bib0220) 2012 Procopiuc (10.1016/j.asoc.2015.05.049_bib0260) 2002 10.1016/j.asoc.2015.05.049_bib0305 Beyer (10.1016/j.asoc.2015.05.049_bib0185) 1999 Houle (10.1016/j.asoc.2015.05.049_bib0200) 2010 Assent (10.1016/j.asoc.2015.05.049_bib0245) 2008; 16 Cassisi (10.1016/j.asoc.2015.05.049_bib0265) 2013; 38 Sim (10.1016/j.asoc.2015.05.049_bib0180) 2013; 26 Rousseeuw (10.1016/j.asoc.2015.05.049_bib0320) 1987; 20 Bennett (10.1016/j.asoc.2015.05.049_bib0190) 1999 Fern (10.1016/j.asoc.2015.05.049_bib0235) 2003 (10.1016/j.asoc.2015.05.049_bib0310) 2014 Desgraupes (10.1016/j.asoc.2015.05.049_bib0330) 2013 Liu (10.1016/j.asoc.2015.05.049_bib0315) 2010 Darong (10.1016/j.asoc.2015.05.049_bib0285) 2012 10.1016/j.asoc.2015.05.049_bib0300 |
References_xml | – year: 1999 ident: bib0185 article-title: When is “nearest neighbor” meaningful? publication-title: Proceedings of the 7th International Conference on Database Theory contributor: fullname: Shaft – volume: 3 start-page: 1 year: 2009 end-page: 58 ident: bib0175 article-title: Clustering high-dimensional data: a survey on subspace clustering, pattern-based clustering, and correlation clustering publication-title: ACM Trans. Knowl. Discov. Data contributor: fullname: Zimek – year: 1999 ident: bib0190 article-title: Density-based indexing for approximate nearest-neighbor queries publication-title: Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining contributor: fullname: Geiger – volume: 28 start-page: 61 year: 1999 end-page: 72 ident: bib0255 article-title: Fast algorithms for projected clustering publication-title: SIGMOD Rec. contributor: fullname: Park – year: 1998 ident: bib0270 article-title: An efficient approach to clustering in large multimedia databases with noise publication-title: Proceeding of the 1998 International Conference on Knowledge Discovery and Data Mining (KDD’98) contributor: fullname: Keim – volume: 19 start-page: 873 year: 2007 end-page: 886 ident: bib0195 article-title: The concentration of fractional distances publication-title: IEEE Trans. Knowl. Data Eng. contributor: fullname: Verleysen – volume: 11 start-page: 45 year: 2007 end-page: 84 ident: bib0210 article-title: Capabilities of outlier detection schemes in large datasets, framework and methodologies publication-title: Knowl. Inf. Syst. contributor: fullname: Cheung – volume: 20 start-page: 53 year: 1987 end-page: 65 ident: bib0320 article-title: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis publication-title: J. Comput. Appl. Math. contributor: fullname: Rousseeuw – year: 2003 ident: bib0235 article-title: Random projection for high dimensional data clustering: a cluster ensemble approach publication-title: Proceeding of the 20th International Conference On Machine Learning (ICML’03) contributor: fullname: Brodley – year: 2010 ident: bib0315 article-title: Understanding of internal clustering validation measures publication-title: Proceeding Data Mining (ICDM), 2010 IEEE 10th International Conference contributor: fullname: Wu – year: 2013 ident: bib0330 article-title: Clustering Indices, Paris contributor: fullname: Desgraupes – year: 2014 ident: bib0310 article-title: Wearable Computing: Classification of Body Postures and Movements (PUC-Rio) Data Set – volume: vol. 2637 start-page: 271 year: 2003 end-page: 282 ident: bib0230 article-title: AGRID: an efficient algorithm for clustering large high-dimensional datasets publication-title: Advances in Knowledge Discovery and Data Mining contributor: fullname: Junde – volume: 84 start-page: 1524 year: 2011 end-page: 1539 ident: bib0205 article-title: Enhancing grid-density based clustering for high dimensional data publication-title: J. Syst. Softw. contributor: fullname: Zhang – volume: 26 start-page: 332 year: 2013 end-page: 397 ident: bib0180 article-title: A survey on enhanced subspace clustering publication-title: Data Min. Knowl. Discov. contributor: fullname: Cong – year: 2012 ident: bib0220 article-title: A new elliptical grid clustering method publication-title: 2012 International Conference on Medical Physics and Biomedical Engineering (ICMPBE2012) contributor: fullname: Guansheng – year: 2008 ident: bib0250 article-title: Finding non-redundant, statistically significant regions in high dimensional data: a novel approach to projected and subspace clustering publication-title: in Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining contributor: fullname: Sander – volume: 38 start-page: 317 year: 2013 end-page: 330 ident: bib0265 article-title: Enhancing density-based clustering: parameter reduction and outlier detection publication-title: Inform. Syst. contributor: fullname: Pulvirenti – volume: 29 start-page: 1372 year: 2008 end-page: 1384 ident: bib0225 article-title: A general grid-clustering approach publication-title: Pattern Recogn. Lett. contributor: fullname: Wang – year: 2010 ident: bib0200 article-title: Can shared-neighbor distances defeat the curse of dimensionality? publication-title: Proceedings of the 22Nd International Conference on Scientific and Statistical Database Management contributor: fullname: Zimek – year: 2002 ident: bib0260 article-title: A Monte Carlo algorithm for fast projective clustering publication-title: Proceedings of the 2002 ACM SIGMOD International Conference on Management of Data contributor: fullname: Murali – volume: 16 start-page: 645 year: 2005 end-page: 678 ident: bib0275 article-title: Survey of clustering algorithms publication-title: IEEE Trans. Neural Netw. contributor: fullname: Wunsch – volume: 21 start-page: 299 year: 2009 end-page: 326 ident: bib0215 article-title: Subspace and projected clustering: experimental evaluation and analysis publication-title: Knowl. Inf. Syst. contributor: fullname: Sander – volume: 31 start-page: 264 year: 1999 end-page: 323 ident: bib0170 article-title: Data clustering: a review publication-title: ACM Comput. Surv. contributor: fullname: Flynn – volume: 3 start-page: 72 year: 2008 end-page: 79 ident: bib0280 article-title: DDSC: a density differentiated spatial clustering technique publication-title: J. Comput. contributor: fullname: Bhattacharyya – volume: PAMI-1 start-page: 224 year: 1979 end-page: 227 ident: bib0325 article-title: A cluster separation measure publication-title: IEEE Trans. Pattern Anal. contributor: fullname: Bouldin – volume: 14 start-page: 273 year: 2008 end-page: 298 ident: bib0240 article-title: Robust projected clustering publication-title: Knowl. Inf. Syst. contributor: fullname: Ester – start-page: 2012 year: 2012 ident: bib0285 article-title: Grid-based DBSCAN algorithm with referential parameters publication-title: International Conference on Applied Physics and Industrial Engineering contributor: fullname: Peng – volume: 16 start-page: 29 year: 2008 end-page: 51 ident: bib0245 article-title: Clustering multidimensional sequences in spatial and temporal databases publication-title: Knowl. Inf. Syst. contributor: fullname: Seidl – volume: 29 start-page: 1372 issue: 9 year: 2008 ident: 10.1016/j.asoc.2015.05.049_bib0225 article-title: A general grid-clustering approach publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2008.02.019 contributor: fullname: Yue – volume: vol. 2637 start-page: 271 year: 2003 ident: 10.1016/j.asoc.2015.05.049_bib0230 article-title: AGRID: an efficient algorithm for clustering large high-dimensional datasets contributor: fullname: Yanchang – year: 2013 ident: 10.1016/j.asoc.2015.05.049_bib0330 contributor: fullname: Desgraupes – year: 1998 ident: 10.1016/j.asoc.2015.05.049_bib0270 article-title: An efficient approach to clustering in large multimedia databases with noise contributor: fullname: Hinneburg – volume: 14 start-page: 273 issue: 3 year: 2008 ident: 10.1016/j.asoc.2015.05.049_bib0240 article-title: Robust projected clustering publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-007-0090-6 contributor: fullname: Moise – volume: 26 start-page: 332 issue: March (2) year: 2013 ident: 10.1016/j.asoc.2015.05.049_bib0180 article-title: A survey on enhanced subspace clustering publication-title: Data Min. Knowl. Discov. doi: 10.1007/s10618-012-0258-x contributor: fullname: Sim – start-page: 2012 year: 2012 ident: 10.1016/j.asoc.2015.05.049_bib0285 article-title: Grid-based DBSCAN algorithm with referential parameters contributor: fullname: Darong – volume: 11 start-page: 45 issue: 1 year: 2007 ident: 10.1016/j.asoc.2015.05.049_bib0210 article-title: Capabilities of outlier detection schemes in large datasets, framework and methodologies publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-005-0233-6 contributor: fullname: Tang – ident: 10.1016/j.asoc.2015.05.049_bib0300 – volume: 3 start-page: 72 issue: 2 year: 2008 ident: 10.1016/j.asoc.2015.05.049_bib0280 article-title: DDSC: a density differentiated spatial clustering technique publication-title: J. Comput. doi: 10.4304/jcp.3.2.72-79 contributor: fullname: Borah – volume: 3 start-page: 1 issue: March (1) year: 2009 ident: 10.1016/j.asoc.2015.05.049_bib0175 article-title: Clustering high-dimensional data: a survey on subspace clustering, pattern-based clustering, and correlation clustering publication-title: ACM Trans. Knowl. Discov. Data doi: 10.1145/1497577.1497578 contributor: fullname: Kriegel – volume: 16 start-page: 29 issue: 1 year: 2008 ident: 10.1016/j.asoc.2015.05.049_bib0245 article-title: Clustering multidimensional sequences in spatial and temporal databases publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-007-0121-3 contributor: fullname: Assent – ident: 10.1016/j.asoc.2015.05.049_bib0290 – volume: 31 start-page: 264 issue: September (3) year: 1999 ident: 10.1016/j.asoc.2015.05.049_bib0170 article-title: Data clustering: a review publication-title: ACM Comput. Surv. doi: 10.1145/331499.331504 contributor: fullname: Jain – volume: 16 start-page: 645 issue: May (3) year: 2005 ident: 10.1016/j.asoc.2015.05.049_bib0275 article-title: Survey of clustering algorithms publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2005.845141 contributor: fullname: Xu – volume: 19 start-page: 873 issue: July (7) year: 2007 ident: 10.1016/j.asoc.2015.05.049_bib0195 article-title: The concentration of fractional distances publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2007.1037 contributor: fullname: Francois – year: 2008 ident: 10.1016/j.asoc.2015.05.049_bib0250 article-title: Finding non-redundant, statistically significant regions in high dimensional data: a novel approach to projected and subspace clustering contributor: fullname: Moise – volume: PAMI-1 start-page: 224 issue: April (2) year: 1979 ident: 10.1016/j.asoc.2015.05.049_bib0325 article-title: A cluster separation measure publication-title: IEEE Trans. Pattern Anal. doi: 10.1109/TPAMI.1979.4766909 contributor: fullname: Davies – year: 1999 ident: 10.1016/j.asoc.2015.05.049_bib0185 article-title: When is “nearest neighbor” meaningful? contributor: fullname: Beyer – year: 2010 ident: 10.1016/j.asoc.2015.05.049_bib0200 article-title: Can shared-neighbor distances defeat the curse of dimensionality? contributor: fullname: Houle – volume: 20 start-page: 53 issue: 0 year: 1987 ident: 10.1016/j.asoc.2015.05.049_bib0320 article-title: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis publication-title: J. Comput. Appl. Math. doi: 10.1016/0377-0427(87)90125-7 contributor: fullname: Rousseeuw – year: 1999 ident: 10.1016/j.asoc.2015.05.049_bib0190 article-title: Density-based indexing for approximate nearest-neighbor queries contributor: fullname: Bennett – volume: 38 start-page: 317 issue: 3 year: 2013 ident: 10.1016/j.asoc.2015.05.049_bib0265 article-title: Enhancing density-based clustering: parameter reduction and outlier detection publication-title: Inform. Syst. doi: 10.1016/j.is.2012.09.001 contributor: fullname: Cassisi – year: 2010 ident: 10.1016/j.asoc.2015.05.049_bib0315 article-title: Understanding of internal clustering validation measures contributor: fullname: Liu – volume: 21 start-page: 299 issue: 3 year: 2009 ident: 10.1016/j.asoc.2015.05.049_bib0215 article-title: Subspace and projected clustering: experimental evaluation and analysis publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-009-0226-y contributor: fullname: Moise – year: 2002 ident: 10.1016/j.asoc.2015.05.049_bib0260 article-title: A Monte Carlo algorithm for fast projective clustering contributor: fullname: Procopiuc – volume: 84 start-page: 1524 issue: 9 year: 2011 ident: 10.1016/j.asoc.2015.05.049_bib0205 article-title: Enhancing grid-density based clustering for high dimensional data publication-title: J. Syst. Softw. doi: 10.1016/j.jss.2011.02.047 contributor: fullname: Zhao – ident: 10.1016/j.asoc.2015.05.049_bib0305 – volume: 28 start-page: 61 issue: June (2) year: 1999 ident: 10.1016/j.asoc.2015.05.049_bib0255 article-title: Fast algorithms for projected clustering publication-title: SIGMOD Rec. doi: 10.1145/304181.304188 contributor: fullname: Aggarwal – year: 2014 ident: 10.1016/j.asoc.2015.05.049_bib0310 – year: 2003 ident: 10.1016/j.asoc.2015.05.049_bib0235 article-title: Random projection for high dimensional data clustering: a cluster ensemble approach contributor: fullname: Fern – ident: 10.1016/j.asoc.2015.05.049_bib0295 – year: 2012 ident: 10.1016/j.asoc.2015.05.049_bib0220 article-title: A new elliptical grid clustering method contributor: fullname: Guansheng |
SSID | ssj0016928 |
Score | 2.1734695 |
Snippet | •This research introduces extremely fast and scalable clustering algorithm.•The proposed algorithm detects automatically clusters number.•Furthermore, this... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 143 |
SubjectTerms | Clustering Density-based clustering Subspace clustering |
Title | Fast Dimension-based Partitioning and Merging clustering algorithm |
URI | https://dx.doi.org/10.1016/j.asoc.2015.05.049 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LjpswFLXSmU03fVedvsSiO-QIY0PsZdomSitNN0nV2SEDpskMgRGBRf--19gmKFNVbaVKCKGLSCzfo-ODuQ-E3vEZ4EBFCqcBKzCTEcGcpwLzLJBcfwfifRHX1Xr25Yp_XLDFZOLCu462_-ppsIGvdebsX3h7-FEwwDX4HM7gdTj_kd-X8tACke11YHpdYb1K5aATG1OUyKUkXqqm706UlZ2ulNCby-91s2u3-7FedSL1AGzdh593rVvrdNDOVlaqB9RG7lXjL6fHUJCbXWnaRfnf5K7018OteZqr8kbmBisr0Lp7_3I6YsJt3ZlOx_V298PdshsTJLIZesNu2Z2MGUOwMcdM2G1HZWwAGCxi07rFsTId0yoxpZzsCk1Mido75G_2Ia6nEnCtg_aiviarqYh6UlR7rcehhwF6OKBC5-6fh0BVwJTn80-Lq8_Dl6hY9P15h3HbxCsTI3j6T78WNyPBsnmEHtg3DW9uIPIYTVT1BD10XTw8S-pP0XuNGO8EMd4YMR4gxrOI8Y6I8QbEPENfl4vNhxW2nTVwRoOgxYorlYkiDwMVxlEIRhVIBeoRxGQepRnJOFEFIUUu0zCmcUGzXIax4jEPUhZL-hydVXWlXiAPXi9YwVJGKY1YnhWpoLB8zohQRApQYBfId1OS3JoCKomLLLxO9AQmegKTAA4mLlDkZi2xEtBIuwSc_JvnXv7jc6_Q_SN0X6OztunUG3TvkHdvLRB-AknUfH8 |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+Dimension-based+Partitioning+and+Merging+clustering+algorithm&rft.jtitle=Applied+soft+computing&rft.au=Ghanem%2C+Tamer+F.&rft.au=Elkilani%2C+Wail+S.&rft.au=Abdelkader%2C+Hatem+M.&rft.au=Hadhoud%2C+Mohiy+M.&rft.date=2015-11-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=36&rft.spage=143&rft.epage=151&rft_id=info:doi/10.1016%2Fj.asoc.2015.05.049&rft.externalDocID=S1568494615003981 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |