High selective hydrocarbon and hydrogen products from catalytic pyrolysis of rice husk: Role of the ordered mesoporous silica derived from rice husk ash for Ni-nanocatalyst performance
This study successfully synthesized ordered mesoporous silica using a sodium silicate solution derived from high-purity silica extracted from rice husk (98.09%), aiming to catalyst support for integrating fast catalytic upgrading of rice husk. The ordered mesoporous silica, including MCM-41 and KIT-...
Saved in:
Published in: | Journal of analytical and applied pyrolysis Vol. 178; p. 106383 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier B.V
01-03-2024
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study successfully synthesized ordered mesoporous silica using a sodium silicate solution derived from high-purity silica extracted from rice husk (98.09%), aiming to catalyst support for integrating fast catalytic upgrading of rice husk. The ordered mesoporous silica, including MCM-41 and KIT-6, were synthesized by co-assembly with additional surfactants, consisting of Cetyl trimethylammonium bromide (CTAB) and Pluronic P123, respectively. A series of 10 wt.% Ni on MCM-41 (Ni/HMS1) and KIT-6 (Ni/HMS2) were synthesized via ethylene glycol ultrasound-assisted wetness impregnation, which enhanced bio-oil quality by reducing oxygen compounds. This method also improved NiO reducibility up to 91.41%, with nickel phyllosilicate playing a pivotal role in preventing Ni-metallic sintering during the reduction process. The well-dispersed small Ni particles yielded high Ni performance in deoxygenation. Moreover, the order of pore size and structure of the hexagonal nanochannel structures influenced the selective hydrocarbon products in bio-oil. Ni/HMS1, with smaller pore sizes (3–5 nm), achieved a balanced hydrocarbon composition with aromatic (44.91%) and aliphatic (15.65%) components, while Ni/HMS2, having larger pores (8–10 nm), predominantly contained aromatic hydrocarbons (67.45%). The utilization of a green methodology for extracting high-value silica from biological sources promises to innovate and boost eco-consciousness in all rice husk pyrolysis products.
[Display omitted]
•MCM-41 and KIT-6 synthesized from rice husk ash.•EG ultrasound-assisted impregnation of Ni on MCM-41 & KIT-6.•Silica-supported Ni catalysts applied upgrading rice husk pyrolysis.•Ni interaction with porous silica hinders the metal sintering.•Silica's structure and pore size regulate hydrocarbon selectivity. |
---|---|
ISSN: | 0165-2370 1873-250X |
DOI: | 10.1016/j.jaap.2024.106383 |