Effect of Porosity of the regenerator on the performance of a miniature Stirling cryocooler
•An experimental investigation is carried out to obtain an optimum porosity of the regenerator.•Wire-mesh number 400 is considered to be optimum for uniform regenerator.•Effect of hybrid regenerator on cool-down time and power consumption were investigated. The performance of a miniature Stirling cr...
Saved in:
Published in: | Thermal science and engineering progress Vol. 15; p. 100442 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier Ltd
01-03-2020
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | •An experimental investigation is carried out to obtain an optimum porosity of the regenerator.•Wire-mesh number 400 is considered to be optimum for uniform regenerator.•Effect of hybrid regenerator on cool-down time and power consumption were investigated.
The performance of a miniature Stirling cryocooler depends primarily on the porosity of wire-meshes used in the regenerator. A low porosity regenerator requires higher input power to get the same pressure ratio to compress the working fluid due to a higher pressure drop compared to that of a high porosity regenerator. On the other hand, a high porosity regenerator requires less power input. However, the thermal performance of the regenerator decreases as the porosity increases. In the present experimental study, uniform porosity and non-uniform porosity matrices were considered to obtain an optimum porous matrix of the regenerator for the cooling capacity of 0.5 W @80 K with Helium as the working fluid. In the parametric study, for the regenerator with the uniform porosity, the wire-mesh number of 200, 300, 400 and 500 are considered. Based on the cool-down time and power input, wire-mesh number 400 is considered to be optimum. For the reduction of cool-down time and power consumption, non-uniform porous matrix regenerators were considered with different combinations of wire meshes for a miniature Stirling cryocooler. Present study shows that non-uniform porous matrices reduce the power consumption or cool-down time considerably compared to the uniform porous matrix of the miniature Stirling cryocooler. |
---|---|
AbstractList | •An experimental investigation is carried out to obtain an optimum porosity of the regenerator.•Wire-mesh number 400 is considered to be optimum for uniform regenerator.•Effect of hybrid regenerator on cool-down time and power consumption were investigated.
The performance of a miniature Stirling cryocooler depends primarily on the porosity of wire-meshes used in the regenerator. A low porosity regenerator requires higher input power to get the same pressure ratio to compress the working fluid due to a higher pressure drop compared to that of a high porosity regenerator. On the other hand, a high porosity regenerator requires less power input. However, the thermal performance of the regenerator decreases as the porosity increases. In the present experimental study, uniform porosity and non-uniform porosity matrices were considered to obtain an optimum porous matrix of the regenerator for the cooling capacity of 0.5 W @80 K with Helium as the working fluid. In the parametric study, for the regenerator with the uniform porosity, the wire-mesh number of 200, 300, 400 and 500 are considered. Based on the cool-down time and power input, wire-mesh number 400 is considered to be optimum. For the reduction of cool-down time and power consumption, non-uniform porous matrix regenerators were considered with different combinations of wire meshes for a miniature Stirling cryocooler. Present study shows that non-uniform porous matrices reduce the power consumption or cool-down time considerably compared to the uniform porous matrix of the miniature Stirling cryocooler. |
ArticleNumber | 100442 |
Author | Sachdev, Sunil Singh, Manmohan Sadana, Mukesh Garg, Shital Kumar Premachandran, B. |
Author_xml | – sequence: 1 givenname: Shital Kumar surname: Garg fullname: Garg, Shital Kumar organization: Cryogenics Division, Solid State Physics Laboratory, Defence Research and Development Organisation (DRDO), Timarpur, Delhi 110054, India – sequence: 2 givenname: B. orcidid: 0000-0002-0378-4571 surname: Premachandran fullname: Premachandran, B. email: prem@mech.iitd.ac.in organization: Department of Mechanical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India – sequence: 3 givenname: Manmohan orcidid: 0000-0002-7618-3312 surname: Singh fullname: Singh, Manmohan organization: Cryogenics Division, Solid State Physics Laboratory, Defence Research and Development Organisation (DRDO), Timarpur, Delhi 110054, India – sequence: 4 givenname: Sunil surname: Sachdev fullname: Sachdev, Sunil organization: Cryogenics Division, Solid State Physics Laboratory, Defence Research and Development Organisation (DRDO), Timarpur, Delhi 110054, India – sequence: 5 givenname: Mukesh surname: Sadana fullname: Sadana, Mukesh organization: Cryogenics Division, Solid State Physics Laboratory, Defence Research and Development Organisation (DRDO), Timarpur, Delhi 110054, India |
BookMark | eNp9kM1KA0EQhAdRMMa8gKd5gY3zt7NZ8CIh_kBAQT15GGYn3XFCshN6RyFv767x4MlTF0VX0_VdsNM2tcDYlRRTKaS93kxzB_upErLuDWGMOmEjZUpZ1MLUp3_0OZt03UYIocqZ0fVsxN4XiBAyT8ifE6Uu5sOg8wdwgjW0QD4n4qn9sfZAmGjn2wDDlue72EafPwn4S460je2aBzqkkNIW6JKdod92MPmdY_Z2t3idPxTLp_vH-e2yCFqIXFg0SlcWwWoPshGVrkytrdWzlQe0JWjUKCohsWoar0qjAmKQFkNTqbqyeszU8W7oC3QE6PYUd54OTgo3EHIbNxByAyF3JNSHbo4h6D_7ikCuCxH6YqtIPRC3SvG_-Dc-i3Hx |
CitedBy_id | crossref_primary_10_1016_j_net_2020_07_011 crossref_primary_10_1088_1757_899X_1240_1_012132 crossref_primary_10_1016_j_apenergy_2020_115547 crossref_primary_10_1016_j_icheatmasstransfer_2024_107674 crossref_primary_10_1142_S2010132521300068 |
Cites_doi | 10.1016/j.cryogenics.2010.12.002 10.1016/j.cryogenics.2005.01.001 10.1016/j.applthermaleng.2017.05.152 10.1016/j.cap.2003.07.003 10.1115/AJK2011-17013 10.14429/dsj.63.5756 10.1016/j.physc.2008.05.281 10.1016/j.cryogenics.2017.03.003 10.1016/j.aej.2015.06.001 10.1016/j.cryogenics.2017.03.001 10.1016/j.tsep.2019.03.005 10.1016/j.cryogenics.2005.12.005 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd |
Copyright_xml | – notice: 2019 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.tsep.2019.100442 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2451-9049 |
ExternalDocumentID | 10_1016_j_tsep_2019_100442 S2451904919302471 |
GroupedDBID | --M AACTN AAEDW AAHCO AAIAV AAKOC AALRI AAOAW AAXUO ABJNI ABMAC ACDAQ ACGFS ACRLP ADBBV AEBSH AFKWA AFTJW AGUBO AHJVU AIEXJ AIKHN AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC EBS EFJIC EFLBG FDB FIRID FYGXN KOM OAUVE ROL SPC SPCBC SSR SST SSZ T5K ~G- 0R~ AAQFI AAXKI AAYXX AFJKZ AKRWK CITATION EJD |
ID | FETCH-LOGICAL-c300t-6f42376fe63ae1b07374936638daef65e3f3f0701f7bba2542cffc16fcb729763 |
ISSN | 2451-9049 |
IngestDate | Thu Sep 26 17:39:52 EDT 2024 Fri Feb 23 02:48:39 EST 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Keywords | Cryocooler Hybrid regenerator Stirling Porosity Regenerator Optimization |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c300t-6f42376fe63ae1b07374936638daef65e3f3f0701f7bba2542cffc16fcb729763 |
ORCID | 0000-0002-7618-3312 0000-0002-0378-4571 |
ParticipantIDs | crossref_primary_10_1016_j_tsep_2019_100442 elsevier_sciencedirect_doi_10_1016_j_tsep_2019_100442 |
PublicationCentury | 2000 |
PublicationDate | 2020-03-01 2020-03-00 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Thermal science and engineering progress |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Miyabe, Hamaguchi, Takahashi (b0015) 1982 Kishor Kumar, Kuzhiveli (b0060) 2017; 12 Boroujerdi, Esmaeili (b0075) 2015; 54 Park, Hong, Kim, Lee (b0020) 2003; 3 Garg, Premachandran, Singh (b0085) 2019; 11 Walker (b0005) 1989 Imura, Iwata, Yamamoto, Ohashi, Nomachi, Okumura (b0065) 2008; 468 Nam, Jeong (b0080) 2005; 45 Cai, Xu, Sun, Shen, Cheng, Zhao (b0045) 2014 Xu, Sun, Qiao, Yu, Zhang, Zhang (b0040) 2017; 83 De Boer (b0035) 2011; 51 Singh, Sadana, Sachdev, Pratap (b0010) 2013; 63 Nam, Jeong (b0025) 2006; 46 Gheith R, Aloui F, Tazerout M, Ben Nasrallah S. Study of the Regenerator Porosity Influence on Gamma Type Stirling Engine Performances. ASME-JSME-KSME 2011 Jt Fluids Eng Conf Vol 1, Symp – Parts A, B, C, D 2011:3573–3578. Bao, Tan, Zhang, Gao, Zhao, Dang (b0070) 2017; 123 Srinivasan, Arunachalam, Pokale, Mahalingam (b0055) 2017; 4 Bhojwani, Inamdar, Lele, Tendolkar, Atrey, Bapat (b0050) 2017; 83 10.1016/j.tsep.2019.100442_b0030 Bhojwani (10.1016/j.tsep.2019.100442_b0050) 2017; 83 Imura (10.1016/j.tsep.2019.100442_b0065) 2008; 468 Bao (10.1016/j.tsep.2019.100442_b0070) 2017; 123 Srinivasan (10.1016/j.tsep.2019.100442_b0055) 2017; 4 Miyabe (10.1016/j.tsep.2019.100442_b0015) 1982 De Boer (10.1016/j.tsep.2019.100442_b0035) 2011; 51 Garg (10.1016/j.tsep.2019.100442_b0085) 2019; 11 Walker (10.1016/j.tsep.2019.100442_b0005) 1989 Boroujerdi (10.1016/j.tsep.2019.100442_b0075) 2015; 54 Nam (10.1016/j.tsep.2019.100442_b0080) 2005; 45 Nam (10.1016/j.tsep.2019.100442_b0025) 2006; 46 Cai (10.1016/j.tsep.2019.100442_b0045) 2014 Xu (10.1016/j.tsep.2019.100442_b0040) 2017; 83 Kishor Kumar (10.1016/j.tsep.2019.100442_b0060) 2017; 12 Singh (10.1016/j.tsep.2019.100442_b0010) 2013; 63 Park (10.1016/j.tsep.2019.100442_b0020) 2003; 3 |
References_xml | – year: 1982 ident: b0015 article-title: An approach to the design of Stirling engine regenerator matrix using packs of wire gauzes publication-title: J. Vol. 4; Conf. 17. contributor: fullname: Takahashi – start-page: 164 year: 2014 end-page: 170 ident: b0045 article-title: Numerical simulation of a high power Stirling cryocooler publication-title: Int. Cryocooler Conf. contributor: fullname: Zhao – volume: 63 start-page: 571 year: 2013 end-page: 580 ident: b0010 article-title: Development of miniature Stirling cryocooler technology for infrared focal plane array publication-title: Def. Sci. J. contributor: fullname: Pratap – volume: 45 start-page: 368 year: 2005 end-page: 379 ident: b0080 article-title: Novel flow analysis of regenerator under oscillating flow with pulsating pressure publication-title: Cryogenics contributor: fullname: Jeong – volume: 83 start-page: 71 year: 2017 end-page: 77 ident: b0050 article-title: Opposed piston linear compressor driven two-stage Stirling Cryocooler for cooling of IR sensors in space application publication-title: Cryogenics contributor: fullname: Bapat – volume: 83 start-page: 78 year: 2017 end-page: 84 ident: b0040 article-title: Operating characteristics of a single-stage Stirling cryocooler capable of providing 700 W cooling power at 77 K publication-title: Cryogenics contributor: fullname: Zhang – volume: 46 start-page: 278 year: 2006 end-page: 287 ident: b0025 article-title: Development of parallel wire regenerator for cryocoolers publication-title: Cryogenics contributor: fullname: Jeong – year: 1989 ident: b0005 article-title: Miniature Refrigerators for Cryogenic Sensors and Cold Electronics contributor: fullname: Walker – volume: 3 start-page: 449 year: 2003 end-page: 455 ident: b0020 article-title: An experimental study on the phase shift between piston and displacer in the Stirling cryocooler publication-title: Curr. Appl. Phys. contributor: fullname: Lee – volume: 468 start-page: 2178 year: 2008 end-page: 2180 ident: b0065 article-title: Optimization of regenerator in high capacity Stirling type pulse tube cryocooler publication-title: Phys. C: Supercond. Appl. contributor: fullname: Okumura – volume: 11 start-page: 150 year: 2019 end-page: 161 ident: b0085 article-title: Numerical study of the regenerator for a miniature Stirling cryocooler using the local thermal equilibrium (LTE) and the local thermal nonequilibrium (LTNE) models publication-title: Therm. Sci. Eng. Prog. contributor: fullname: Singh – volume: 4 start-page: 67 year: 2017 end-page: 73 ident: b0055 article-title: Theoretical analysis and optimization of regenerator of stirling cryocooler publication-title: Am. J. Sci. Technol. contributor: fullname: Mahalingam – volume: 12 start-page: 1514 year: 2017 end-page: 1524 ident: b0060 article-title: Performance enhancement of a miniature stirling cryocooler with a multi mesh regenerator design publication-title: J. Eng. Sci. Technol. contributor: fullname: Kuzhiveli – volume: 51 start-page: 105 year: 2011 end-page: 113 ident: b0035 article-title: Optimal performance of regenerative cryocoolers publication-title: Cryogenics contributor: fullname: De Boer – volume: 123 start-page: 1278 year: 2017 end-page: 1290 ident: b0070 article-title: A two-dimensional model of regenerator with mixed matrices and experimental verifications for improving the single-stage Stirling-type pulse tube cryocooler publication-title: Appl. Therm. Eng. contributor: fullname: Dang – volume: 54 start-page: 787 year: 2015 end-page: 794 ident: b0075 article-title: Characterization of the frictional losses and heat transfer of oscillatory viscous flow through wire-mesh regenerators publication-title: Alexandria Eng. J. contributor: fullname: Esmaeili – volume: 51 start-page: 105 year: 2011 ident: 10.1016/j.tsep.2019.100442_b0035 article-title: Optimal performance of regenerative cryocoolers publication-title: Cryogenics doi: 10.1016/j.cryogenics.2010.12.002 contributor: fullname: De Boer – volume: 45 start-page: 368 year: 2005 ident: 10.1016/j.tsep.2019.100442_b0080 article-title: Novel flow analysis of regenerator under oscillating flow with pulsating pressure publication-title: Cryogenics doi: 10.1016/j.cryogenics.2005.01.001 contributor: fullname: Nam – volume: 123 start-page: 1278 year: 2017 ident: 10.1016/j.tsep.2019.100442_b0070 article-title: A two-dimensional model of regenerator with mixed matrices and experimental verifications for improving the single-stage Stirling-type pulse tube cryocooler publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.05.152 contributor: fullname: Bao – start-page: 164 year: 2014 ident: 10.1016/j.tsep.2019.100442_b0045 article-title: Numerical simulation of a high power Stirling cryocooler publication-title: Int. Cryocooler Conf. contributor: fullname: Cai – year: 1982 ident: 10.1016/j.tsep.2019.100442_b0015 article-title: An approach to the design of Stirling engine regenerator matrix using packs of wire gauzes contributor: fullname: Miyabe – volume: 3 start-page: 449 year: 2003 ident: 10.1016/j.tsep.2019.100442_b0020 article-title: An experimental study on the phase shift between piston and displacer in the Stirling cryocooler publication-title: Curr. Appl. Phys. doi: 10.1016/j.cap.2003.07.003 contributor: fullname: Park – ident: 10.1016/j.tsep.2019.100442_b0030 doi: 10.1115/AJK2011-17013 – volume: 63 start-page: 571 year: 2013 ident: 10.1016/j.tsep.2019.100442_b0010 article-title: Development of miniature Stirling cryocooler technology for infrared focal plane array publication-title: Def. Sci. J. doi: 10.14429/dsj.63.5756 contributor: fullname: Singh – volume: 12 start-page: 1514 year: 2017 ident: 10.1016/j.tsep.2019.100442_b0060 article-title: Performance enhancement of a miniature stirling cryocooler with a multi mesh regenerator design publication-title: J. Eng. Sci. Technol. contributor: fullname: Kishor Kumar – volume: 468 start-page: 2178 year: 2008 ident: 10.1016/j.tsep.2019.100442_b0065 article-title: Optimization of regenerator in high capacity Stirling type pulse tube cryocooler publication-title: Phys. C: Supercond. Appl. doi: 10.1016/j.physc.2008.05.281 contributor: fullname: Imura – year: 1989 ident: 10.1016/j.tsep.2019.100442_b0005 contributor: fullname: Walker – volume: 83 start-page: 78 year: 2017 ident: 10.1016/j.tsep.2019.100442_b0040 article-title: Operating characteristics of a single-stage Stirling cryocooler capable of providing 700 W cooling power at 77 K publication-title: Cryogenics doi: 10.1016/j.cryogenics.2017.03.003 contributor: fullname: Xu – volume: 54 start-page: 787 year: 2015 ident: 10.1016/j.tsep.2019.100442_b0075 article-title: Characterization of the frictional losses and heat transfer of oscillatory viscous flow through wire-mesh regenerators publication-title: Alexandria Eng. J. doi: 10.1016/j.aej.2015.06.001 contributor: fullname: Boroujerdi – volume: 83 start-page: 71 year: 2017 ident: 10.1016/j.tsep.2019.100442_b0050 article-title: Opposed piston linear compressor driven two-stage Stirling Cryocooler for cooling of IR sensors in space application publication-title: Cryogenics doi: 10.1016/j.cryogenics.2017.03.001 contributor: fullname: Bhojwani – volume: 4 start-page: 67 year: 2017 ident: 10.1016/j.tsep.2019.100442_b0055 article-title: Theoretical analysis and optimization of regenerator of stirling cryocooler publication-title: Am. J. Sci. Technol. contributor: fullname: Srinivasan – volume: 11 start-page: 150 year: 2019 ident: 10.1016/j.tsep.2019.100442_b0085 article-title: Numerical study of the regenerator for a miniature Stirling cryocooler using the local thermal equilibrium (LTE) and the local thermal nonequilibrium (LTNE) models publication-title: Therm. Sci. Eng. Prog. doi: 10.1016/j.tsep.2019.03.005 contributor: fullname: Garg – volume: 46 start-page: 278 year: 2006 ident: 10.1016/j.tsep.2019.100442_b0025 article-title: Development of parallel wire regenerator for cryocoolers publication-title: Cryogenics doi: 10.1016/j.cryogenics.2005.12.005 contributor: fullname: Nam |
SSID | ssj0002584398 |
Score | 2.220366 |
Snippet | •An experimental investigation is carried out to obtain an optimum porosity of the regenerator.•Wire-mesh number 400 is considered to be optimum for uniform... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 100442 |
SubjectTerms | Cryocooler Hybrid regenerator Optimization Porosity Regenerator Stirling |
Title | Effect of Porosity of the regenerator on the performance of a miniature Stirling cryocooler |
URI | https://dx.doi.org/10.1016/j.tsep.2019.100442 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LrxIxFG4QNt6F8XVz8ZUu3JEhTDvPJSoGXbgBExIXk7bTiuQyYwZY-O89fQ4x5EZv4oZMGlrIOR89p4fvfEXoLScK8gwpoppRFSUihd-ciHlEM1YwCHBFacSel6v8y6b4sEgWg4EnkvZj_9XTMAa-1p2z_-DtsCgMwDP4HF7B6_D6V353csSG2ta1nnFhiITyu9GYhlO2-4tAixaHtgHTKKmVRozUJ2ShPzrTqi66X61o21tH490FeME811Dpmg5kr21oeV-e3aH5PczSyFZbfUvJxDC7w7bcyT3THch1Z8ux76ah8ANrbW1PUbNvtz2UVzChBtsYYlHjeCKuegFH1UDfsiU131bTc5hg5yNJqnkjVst0Ki-M-a07vRgFbEFiNz0epJYkjcup0cUjfcwLTMSVXlcvC4kspCtajWBEYM-CLXM0_7TYfA4FOwKpGjV3K4ev4pqwLF_wzw-7nOicJS_rx-iRO3XguYXLEzSQzVN0daZF-Qx9s8DBrcIeOPoZUILPgIPbxgydAUe_i-EAHOyBg3vgPEdfPy7W75eRu3kjEnQ2O0aZMmwpJTPKZMwhDORJSSE5LWomVZZKqqiCYBGrnHNG0oQIpUScKcHhsAYh6xoNm7aRNwgXs5IQLgmZcX3dHSuJ4nla1rzkFOKsHKOJN1P10wqsVJ55uKu0UStt1MoadYxSb8nKAdymfhX4_o55L-457yV62KP2FRoeu5N8jR4c6tMbh4_fna2LGg |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Porosity+of+the+regenerator+on+the+performance+of+a+miniature+Stirling+cryocooler&rft.jtitle=Thermal+science+and+engineering+progress&rft.au=Garg%2C+Shital+Kumar&rft.au=Premachandran%2C+B.&rft.au=Singh%2C+Manmohan&rft.au=Sachdev%2C+Sunil&rft.date=2020-03-01&rft.pub=Elsevier+Ltd&rft.issn=2451-9049&rft.eissn=2451-9049&rft.volume=15&rft_id=info:doi/10.1016%2Fj.tsep.2019.100442&rft.externalDocID=S2451904919302471 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2451-9049&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2451-9049&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2451-9049&client=summon |