Review of scaling laws applied to floating offshore wind turbines
The wind energy industry is moving to offshore installations allowing for larger wind turbines to be deployed in deep-water regions with higher and steadier wind speeds. Floating offshore wind turbines consist of two main subsystems: a wind turbine itself and a floating substructure that supports it...
Saved in:
Published in: | Renewable & sustainable energy reviews Vol. 162; p. 112477 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier Ltd
01-07-2022
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The wind energy industry is moving to offshore installations allowing for larger wind turbines to be deployed in deep-water regions with higher and steadier wind speeds. Floating offshore wind turbines consist of two main subsystems: a wind turbine itself and a floating substructure that supports it and provides stability. While the wind turbine technology is mature, the floating support structures for offshore wind turbines are still evolving and have not been deployed at a commercial scale. Due to a significant increase in the size of wind turbines over the last decade, it is important to understand how to design the floating platform to support larger wind turbines, and how the dynamics of the entire system change with increasing scale. Firstly, this article provides an overview of the trends in wind energy systems for offshore applications. Secondly, a review of existing semi-submersible platforms designed to support 5–15 MW wind turbines is provided. In addition, this article provides a comparative analysis of the techniques proposed to upscale floating support structures for larger wind energy systems with a particular focus on the system dynamics. The results demonstrate that the wind turbine mass, rated power and rotor thrust force scale with close to square rotor diameter. Towers designed for floating wind applications are usually significantly stiffer and heavier as compared to their fixed-bottom counterparts to place the tower’s natural frequencies outside the wave excitation region. The analysis of semi-submersible platforms revealed a strong correlation between the wind turbine rotor diameter and the product of the distance to the offset columns and their diameter. Also, it has been found that design practices adapted by the platform developers roughly follow the theoretical square–cube (or ‘mass’) scaling law when designing platforms for larger wind turbines.
•Identified scaling laws for offshore wind turbines up to 20 MW.•Towers for floating wind turbines are stiffer than for bottom-fixed foundations.•Waterplane area does not govern the design of a semisubmersible platform.•Fixed-draught scaling law leads to the platform’s highest motion amplitudes.•Platform scaling laws proposed in literature do not reflect industry practices. |
---|---|
AbstractList | The wind energy industry is moving to offshore installations allowing for larger wind turbines to be deployed in deep-water regions with higher and steadier wind speeds. Floating offshore wind turbines consist of two main subsystems: a wind turbine itself and a floating substructure that supports it and provides stability. While the wind turbine technology is mature, the floating support structures for offshore wind turbines are still evolving and have not been deployed at a commercial scale. Due to a significant increase in the size of wind turbines over the last decade, it is important to understand how to design the floating platform to support larger wind turbines, and how the dynamics of the entire system change with increasing scale. Firstly, this article provides an overview of the trends in wind energy systems for offshore applications. Secondly, a review of existing semi-submersible platforms designed to support 5–15 MW wind turbines is provided. In addition, this article provides a comparative analysis of the techniques proposed to upscale floating support structures for larger wind energy systems with a particular focus on the system dynamics. The results demonstrate that the wind turbine mass, rated power and rotor thrust force scale with close to square rotor diameter. Towers designed for floating wind applications are usually significantly stiffer and heavier as compared to their fixed-bottom counterparts to place the tower’s natural frequencies outside the wave excitation region. The analysis of semi-submersible platforms revealed a strong correlation between the wind turbine rotor diameter and the product of the distance to the offset columns and their diameter. Also, it has been found that design practices adapted by the platform developers roughly follow the theoretical square–cube (or ‘mass’) scaling law when designing platforms for larger wind turbines.
•Identified scaling laws for offshore wind turbines up to 20 MW.•Towers for floating wind turbines are stiffer than for bottom-fixed foundations.•Waterplane area does not govern the design of a semisubmersible platform.•Fixed-draught scaling law leads to the platform’s highest motion amplitudes.•Platform scaling laws proposed in literature do not reflect industry practices. |
ArticleNumber | 112477 |
Author | da Silva, L.S.P. Bachynski-Polić, E.E. Cazzolato, B.S. Arjomandi, M. Sergiienko, N.Y. Ding, B. |
Author_xml | – sequence: 1 givenname: N.Y. orcidid: 0000-0002-3418-398X surname: Sergiienko fullname: Sergiienko, N.Y. email: nataliia.sergiienko@adelaide.edu.au organization: The University of Adelaide, School of Mechanical Engineering, Adelaide, 5005, SA, Australia – sequence: 2 givenname: L.S.P. surname: da Silva fullname: da Silva, L.S.P. organization: The University of Adelaide, School of Mechanical Engineering, Adelaide, 5005, SA, Australia – sequence: 3 givenname: E.E. orcidid: 0000-0002-1471-8254 surname: Bachynski-Polić fullname: Bachynski-Polić, E.E. organization: Norwegian University of Science and Technology, Department of Marine Technology, Trondheim, 7491, Norway – sequence: 4 givenname: B.S. surname: Cazzolato fullname: Cazzolato, B.S. organization: The University of Adelaide, School of Mechanical Engineering, Adelaide, 5005, SA, Australia – sequence: 5 givenname: M. surname: Arjomandi fullname: Arjomandi, M. organization: The University of Adelaide, School of Mechanical Engineering, Adelaide, 5005, SA, Australia – sequence: 6 givenname: B. surname: Ding fullname: Ding, B. organization: The University of Adelaide, School of Mechanical Engineering, Adelaide, 5005, SA, Australia |
BookMark | eNp9kN1KxDAQRoOs4O7qC3iVF2idpGnTgDfL4h8sCKLXoU0mmlKbJakuvr0t9dqrGfg4HzNnQ1ZDGJCQawY5A1bddHlMGHMOnOeMcSHlGVmzWqoMKgWraS8qkUHB2QXZpNQBsLKWxZrsXvDb44kGR5Npej-80745Jdocj71HS8dAXR-acQ6Cc-kjRKQnP0zJV2z9gOmSnLumT3j1N7fk7f7udf-YHZ4fnva7Q2YKgDErW8VRVqVynKEqDTrHa1OCsq1BcKUUrha8FlZxkFZUlXWmsBKQKRSydcWW8KXXxJBSRKeP0X828Ucz0LME3elZgp4l6EXCBN0uEE6XTY9GnYzHwaD1Ec2obfD_4b-4dWf1 |
CitedBy_id | crossref_primary_10_1016_j_oceaneng_2022_112033 crossref_primary_10_1016_j_rser_2023_114271 crossref_primary_10_1016_j_rser_2023_113261 crossref_primary_10_1016_j_rser_2023_114263 crossref_primary_10_1016_j_adapen_2023_100122 crossref_primary_10_1016_j_energy_2024_132211 crossref_primary_10_1016_j_rser_2023_113416 crossref_primary_10_1016_j_renene_2024_120454 crossref_primary_10_1088_1742_6596_2626_1_012027 crossref_primary_10_1016_j_rser_2023_113872 crossref_primary_10_1038_s41598_023_28703_z crossref_primary_10_1016_j_renene_2024_120184 crossref_primary_10_1016_j_rser_2024_114302 crossref_primary_10_1016_j_heliyon_2024_e26017 crossref_primary_10_1016_j_renene_2022_09_014 crossref_primary_10_1016_j_oceaneng_2024_118189 crossref_primary_10_1016_j_ymssp_2024_111667 crossref_primary_10_1016_j_rser_2023_114092 crossref_primary_10_1016_j_joes_2024_02_003 crossref_primary_10_1016_j_renene_2023_119520 |
Cites_doi | 10.1016/j.enconman.2016.06.004 10.1016/j.renene.2017.04.021 10.1016/j.promfg.2018.07.084 10.1016/j.oneear.2020.06.009 10.1016/j.apenergy.2017.08.079 10.1016/j.soildyn.2016.09.024 10.1016/j.ref.2020.03.002 10.1115/1.4028028 10.1002/we.1970 10.1016/j.egypro.2016.09.212 10.4031/MTSJ.44.1.5 10.3390/en14248490 10.1504/IJESD.2002.002356 10.1016/j.marstruc.2018.10.015 10.1016/j.egypro.2014.07.210 10.1007/s12145-021-00632-3 10.1016/j.marstruc.2020.102771 10.3390/jmse7060169 10.1016/j.energy.2005.09.007 10.1063/1.3435339 10.1002/we.527 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.rser.2022.112477 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-0690 |
ExternalDocumentID | 10_1016_j_rser_2022_112477 S1364032122003811 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADHUB ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W JARJE KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSR SSZ T5K Y6R ZCA ~G- AAXKI AAYXX AFJKZ AKRWK CITATION |
ID | FETCH-LOGICAL-c300t-5b92e7659f21e95ceff28c509dbce0f574f84284d9207d466dfc3d70e19e47bf3 |
ISSN | 1364-0321 |
IngestDate | Thu Sep 26 16:26:10 EDT 2024 Fri Feb 23 02:39:39 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Scaling factor Wind energy Dynamics Floating offshore wind |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c300t-5b92e7659f21e95ceff28c509dbce0f574f84284d9207d466dfc3d70e19e47bf3 |
ORCID | 0000-0002-1471-8254 0000-0002-3418-398X |
ParticipantIDs | crossref_primary_10_1016_j_rser_2022_112477 elsevier_sciencedirect_doi_10_1016_j_rser_2022_112477 |
PublicationCentury | 2000 |
PublicationDate | July 2022 2022-07-00 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: July 2022 |
PublicationDecade | 2020 |
PublicationTitle | Renewable & sustainable energy reviews |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Orszaghova, Wolgamot, Draper, Eatock Taylor, Taylor, Rafiee (b72) 2019; 475 Kooijman, Lindenburg, Winkelaar, Van der Hooft (b67) 2003 Newman (b90) 2018 Jensen, Branner (b46) 2013 DNV G. Coupled analysis of floating wind turbines. Recommended practice DNVGL-RP-0286, 2019. Islam (b87) 2016 Hegseth, Bachynski (b15) 2019; 64 Bachynski (b62) 2014 Musial, Spitsen, Beiter, Duffy, Marquis, Cooperman, Hammond, Shields (b2) 2021 Luan, Michailides, Gao, Moan (b82) 2014 van de Kaa, van Ek, Kamp, Rezaei (b48) 2020; 153 Baldock, Sevilla, Redfern, Storey, Kempenaar, Elkinton (b57) 2014 Zhao, Li, Wang, Shi (b89) 2019; 7 Musial, Beiter, Tegen, Smith (b11) 2016 Sedaghat, Hassanzadeh, Jamali, Mostafaeipour, Chen (b38) 2017; 205 The Specialist Committee on Waves, Final report and recommendations to the 23rd ITTC. In: Proceedings of the 23rd international towing tank conference, Vol. II, pp. 505–736. Bachynski, Kvittem, Luan, Moan (b32) 2014; 136 Griffin (b43) 2001 George (b17) 2014 Bortolotti, Canet Tarrés, Dykes, Merz, Sethuraman, Verelst, Zahle (b28) 2019 Orszaghova, Taylor, Wolgamot, Madsen, Pegalajar-Jurado, Bredmose (b75) 2020 of Shipping (b65) 2021 Gaertner, Rinker, Sethuraman, Zahle, Anderson, Barter, Abbas, Meng, Bortolotti, Skrzypinski (b30) 2020 Madsen, Rasmussen, Risø (b37) 2010 Robertson, Jonkman, Masciola, Song, Goupee, Coulling, Luan (b59) 2014 Desmond, Murphy, Blonk, Haans (b26) 2016; 753 Schneider, Senders (b12) 2010; 44 Leimeister M, Bachynski EE, Muskulus M, Thomas P. Design optimization and upscaling of a semi-submersible floating platform. In: WindEurope summit 2016. Hamburg, Germany; 2016. Orszaghova, Wolgamot, Draper, Taylor, Rafiee (b73) 2020; 476 Silva de Souza, Berthelsen, Eliassen, Bachynski, Engebretsen, Haslum (b29) 2021 Yurdusev, Ata, Çetin (b41) 2006; 31 Riziotis, Voutsinas, Politis, Chaviaropoulos, Hansen, Madsen, Rasmussen (b36) 2008 Roddier, Cermelli, Aubault, Weinstein (b78) 2010; 2 (b4) 2021 Ashuri, Zaaijer, Martins, Zhang (b22) 2016; 123 Wu, Kim (b18) 2021; 14 Kim, Kim, Lee, Kim, Zhang (b80) 2017 Jonkman (b61) 2007 Crawford CA. The path from functional to detailed design of a coning rotor wind turbine concept. In: Proceedings of the canadian engineering education association (CEEA), 2007. Falnes, Kurniawan (b92) 2020 Allen, Viscelli, Dagher, Goupee, Gaertner, Abbas, Hall, Barter (b35) 2020 Leimeister, Bachynski, Muskulus, Thomas (b14) 2016; 94 Payne (b93) 2008; 254 (b8) 2020 Saeki, Tobinaga, Sugino, Shiraishi (b24) 2014; 63 Atcheson, Garrad, Cradden, Henderson, Matha, Nichols, Roddier, Sandberg (b13) 2016 Jamieson (b19) 2018 Van der Tempel J, Molenaar D. Soft-soft, not hard enough?. In: Proceedings of the world wind energy conference, Berlin, 2002. Huijs F, Mikx J, Savenije F, de Ridder E-J. Integrated design of floater, mooring and control system for a semi-submersible floating wind turbine. In: Proceedings of the EWEA offshore, Vol. 19, Frankfurt, Germany, 2013, p. 21. (b64) 2021 Sieros, Chaviaropoulos (b20) 2009 Barter, Robertson, Musial (b9) 2020; 34 Ashuri, Martins, Zaaijer, van Kuik, van Bussel (b31) 2016; 19 (b5) 2021 Pegalajar-Jurado, Madsen, Borg, Bredmose (b34) 2018 Jonkman (b58) 2010 Li, Peng, Wang, Zhang, Feng, Guan, Meng, Wei, Yang (b49) 2020; 3 Jonkman, Butterfield, Musial, Scott (b25) 2009 Luan (b81) 2018 Bak, Zahle, Bitsche, Kim, Yde, Henriksen, Hansen, Blasques, Gaunaa, Natarajan (b27) 2013 Robertson, Jonkman, Goupee, Coulling, Prowell, Browning, Masciola, Molta (b54) 2013 Cetin, Yurdusev, Ata, Özdamar (b40) 2005; 10 Wang (b88) 2014 da Silva, Cazzolato, Sergiienko, Ding (b74) 2021 Pegalajar-Jurado, Bredmose, Borg, Straume, Landbø, Andersen, Yu, Müller, Lemmer (b85) 2018; 1104 Genç, Karipoğlu, Koca, Azgın (b6) 2021; 14 Fingersh, Hand, Laxson (b44) 2006 Robertson, Jonkman, Vorpahl, Popko, Qvist, Frøyd, Chen, Azcona, Uzunoglu, Guedes Soares (b60) 2014 Malcolm, Hansen (b42) 2006 Huijs, de Bruijn, Savenije (b84) 2014; 53 (b63) 2018 Henderson, Morgan, Smith, Sorensen, Barthelmie, Boesmans (b39) 2002; 1 Council (b1) 2021 da Silva, Cazzolato, Sergiienko, Ding (b76) 2021; 236 (b50) 2021 Arany, Bhattacharya, Macdonald, Hogan (b56) 2017; 92 Roddier, Cermelli, Weinstein (b77) 2009 Cermelli, Roddier, Aubault (b79) 2009 Hayes, Sethuraman, Dykes, Fingersh (b47) 2018; 26 Karimirad (b3) 2014 Eatough (b7) 2021 Collu, Borg (b66) 2016 Kikuchi, Ishihara (b16) 2019; 1356 Yu, Müller, Lemmer, Bredmose, Borg, Sanchez, Landbo (b33) 2017; 4 Burton, Sharpe, Jenkins, Bossanyi (b70) 2001 Bir, Jonkman (b53) 2008 Hegseth, Bachynski, Martins (b52) 2020; 72 Sieros, Chaviaropoulos, Sørensen, Bulder, Jamieson (b21) 2012; 15 Fischer, Shan (b68) 2013 Petrović, Bottasso (b69) 2017; 111 Xue (b91) 2016 Dykes, Rinker (b23) 2018 Musial, Ram (b10) 2010 Dykes (10.1016/j.rser.2022.112477_b23) 2018 Bortolotti (10.1016/j.rser.2022.112477_b28) 2019 Allen (10.1016/j.rser.2022.112477_b35) 2020 Orszaghova (10.1016/j.rser.2022.112477_b72) 2019; 475 Leimeister (10.1016/j.rser.2022.112477_b14) 2016; 94 Silva de Souza (10.1016/j.rser.2022.112477_b29) 2021 George (10.1016/j.rser.2022.112477_b17) 2014 Roddier (10.1016/j.rser.2022.112477_b77) 2009 Kikuchi (10.1016/j.rser.2022.112477_b16) 2019; 1356 Hayes (10.1016/j.rser.2022.112477_b47) 2018; 26 Yu (10.1016/j.rser.2022.112477_b33) 2017; 4 Li (10.1016/j.rser.2022.112477_b49) 2020; 3 Collu (10.1016/j.rser.2022.112477_b66) 2016 Barter (10.1016/j.rser.2022.112477_b9) 2020; 34 Griffin (10.1016/j.rser.2022.112477_b43) 2001 Petrović (10.1016/j.rser.2022.112477_b69) 2017; 111 Fingersh (10.1016/j.rser.2022.112477_b44) 2006 Orszaghova (10.1016/j.rser.2022.112477_b75) 2020 Kim (10.1016/j.rser.2022.112477_b80) 2017 Ashuri (10.1016/j.rser.2022.112477_b31) 2016; 19 Bachynski (10.1016/j.rser.2022.112477_b32) 2014; 136 10.1016/j.rser.2022.112477_b45 Bir (10.1016/j.rser.2022.112477_b53) 2008 Zhao (10.1016/j.rser.2022.112477_b89) 2019; 7 da Silva (10.1016/j.rser.2022.112477_b74) 2021 10.1016/j.rser.2022.112477_b86 Jonkman (10.1016/j.rser.2022.112477_b58) 2010 10.1016/j.rser.2022.112477_b83 10.1016/j.rser.2022.112477_b71 Fischer (10.1016/j.rser.2022.112477_b68) 2013 Malcolm (10.1016/j.rser.2022.112477_b42) 2006 Sieros (10.1016/j.rser.2022.112477_b20) 2009 Yurdusev (10.1016/j.rser.2022.112477_b41) 2006; 31 Jonkman (10.1016/j.rser.2022.112477_b61) 2007 Islam (10.1016/j.rser.2022.112477_b87) 2016 Jonkman (10.1016/j.rser.2022.112477_b25) 2009 Madsen (10.1016/j.rser.2022.112477_b37) 2010 Burton (10.1016/j.rser.2022.112477_b70) 2001 Saeki (10.1016/j.rser.2022.112477_b24) 2014; 63 Sedaghat (10.1016/j.rser.2022.112477_b38) 2017; 205 Orszaghova (10.1016/j.rser.2022.112477_b73) 2020; 476 Musial (10.1016/j.rser.2022.112477_b10) 2010 Jamieson (10.1016/j.rser.2022.112477_b19) 2018 Eatough (10.1016/j.rser.2022.112477_b7) 2021 Robertson (10.1016/j.rser.2022.112477_b54) 2013 (10.1016/j.rser.2022.112477_b50) 2021 Falnes (10.1016/j.rser.2022.112477_b92) 2020 (10.1016/j.rser.2022.112477_b64) 2021 Riziotis (10.1016/j.rser.2022.112477_b36) 2008 Council (10.1016/j.rser.2022.112477_b1) 2021 Kooijman (10.1016/j.rser.2022.112477_b67) 2003 Payne (10.1016/j.rser.2022.112477_b93) 2008; 254 Wu (10.1016/j.rser.2022.112477_b18) 2021; 14 da Silva (10.1016/j.rser.2022.112477_b76) 2021; 236 Newman (10.1016/j.rser.2022.112477_b90) 2018 of Shipping (10.1016/j.rser.2022.112477_b65) 2021 Hegseth (10.1016/j.rser.2022.112477_b15) 2019; 64 Gaertner (10.1016/j.rser.2022.112477_b30) 2020 (10.1016/j.rser.2022.112477_b63) 2018 Karimirad (10.1016/j.rser.2022.112477_b3) 2014 (10.1016/j.rser.2022.112477_b4) 2021 van de Kaa (10.1016/j.rser.2022.112477_b48) 2020; 153 Robertson (10.1016/j.rser.2022.112477_b60) 2014 Luan (10.1016/j.rser.2022.112477_b81) 2018 Pegalajar-Jurado (10.1016/j.rser.2022.112477_b85) 2018; 1104 Bak (10.1016/j.rser.2022.112477_b27) 2013 Cermelli (10.1016/j.rser.2022.112477_b79) 2009 Baldock (10.1016/j.rser.2022.112477_b57) 2014 Schneider (10.1016/j.rser.2022.112477_b12) 2010; 44 Genç (10.1016/j.rser.2022.112477_b6) 2021; 14 (10.1016/j.rser.2022.112477_b8) 2020 Jensen (10.1016/j.rser.2022.112477_b46) 2013 Musial (10.1016/j.rser.2022.112477_b2) 2021 Xue (10.1016/j.rser.2022.112477_b91) 2016 Roddier (10.1016/j.rser.2022.112477_b78) 2010; 2 Wang (10.1016/j.rser.2022.112477_b88) 2014 Hegseth (10.1016/j.rser.2022.112477_b52) 2020; 72 Atcheson (10.1016/j.rser.2022.112477_b13) 2016 Pegalajar-Jurado (10.1016/j.rser.2022.112477_b34) 2018 Cetin (10.1016/j.rser.2022.112477_b40) 2005; 10 Arany (10.1016/j.rser.2022.112477_b56) 2017; 92 Huijs (10.1016/j.rser.2022.112477_b84) 2014; 53 Bachynski (10.1016/j.rser.2022.112477_b62) 2014 Sieros (10.1016/j.rser.2022.112477_b21) 2012; 15 Musial (10.1016/j.rser.2022.112477_b11) 2016 Robertson (10.1016/j.rser.2022.112477_b59) 2014 (10.1016/j.rser.2022.112477_b5) 2021 Desmond (10.1016/j.rser.2022.112477_b26) 2016; 753 Henderson (10.1016/j.rser.2022.112477_b39) 2002; 1 Ashuri (10.1016/j.rser.2022.112477_b22) 2016; 123 10.1016/j.rser.2022.112477_b55 Luan (10.1016/j.rser.2022.112477_b82) 2014 10.1016/j.rser.2022.112477_b51 |
References_xml | – year: 2014 ident: b60 article-title: Offshore code comparison collaboration continuation within IEA wind task 30: phase II results regarding a floating semisubmersible wind system publication-title: International conference on offshore mechanics and arctic engineering, Vol. 45547 contributor: fullname: Guedes Soares – year: 2009 ident: b25 article-title: Definition of a 5-MW reference wind turbine for offshore system development contributor: fullname: Scott – year: 2003 ident: b67 article-title: DOWEC 6 MW Pre-Design: Aero-elastic modeling of the DOWEC 6 MW pre-design in PHATAS contributor: fullname: Van der Hooft – year: 2009 ident: b20 article-title: Upscaling beyond classical similarity: case study W/T tower contributor: fullname: Chaviaropoulos – volume: 63 start-page: 414 year: 2014 ident: b24 article-title: Development of 5-MW offshore wind turbine and 2-MW floating offshore wind turbine technology publication-title: Hitachi Rev contributor: fullname: Shiraishi – start-page: 3 year: 2013 end-page: 28 ident: b46 article-title: Introduction to wind turbine blade design publication-title: Advances in wind turbine blade design and materials contributor: fullname: Branner – year: 2014 ident: b57 article-title: Optimization of installation, operation and maintenance at offshore wind projects in the US: Review and modeling of existing and emerging approaches contributor: fullname: Elkinton – year: 2017 ident: b80 article-title: Global performance analysis of 5 MW WindFloat and OC4 semi-submersible floating offshore wind turbines (FOWT) by numerical simulations publication-title: The 27th international ocean and polar engineering conference contributor: fullname: Zhang – year: 2020 ident: b30 article-title: Definition of the IEA 15-Megawatt offshore reference wind turbine contributor: fullname: Skrzypinski – volume: 19 start-page: 2071 year: 2016 end-page: 2087 ident: b31 article-title: Aeroservoelastic design definition of a 20 MW common research wind turbine model publication-title: Wind Energy contributor: fullname: van Bussel – volume: 475 year: 2019 ident: b72 article-title: Transverse motion instability of a submerged moored buoy publication-title: Proc R Soc Lond Ser A Math Phys Eng Sci contributor: fullname: Rafiee – volume: 31 start-page: 2153 year: 2006 end-page: 2161 ident: b41 article-title: Assessment of optimum tip speed ratio in wind turbines using artificial neural networks publication-title: Energy contributor: fullname: Çetin – year: 2021 ident: b4 article-title: Renewable capacity statistics 2021 – year: 2014 ident: b17 article-title: WindFloat design for different turbine sizes contributor: fullname: George – year: 2021 ident: b7 article-title: Floating offshore wind technology and operations review contributor: fullname: Eatough – year: 2016 ident: b13 article-title: Floating offshore wind energy contributor: fullname: Sandberg – year: 2013 ident: b54 article-title: Summary of conclusions and recommendations drawn from the DeepCwind scaled floating offshore wind system test campaign publication-title: International conference on offshore mechanics and arctic engineering, Vol. 55423 contributor: fullname: Molta – year: 2014 ident: b88 article-title: Design of a steel pontoon-type semi-submersible floater supporting the DTU 10 MW reference turbine contributor: fullname: Wang – volume: 753 year: 2016 ident: b26 article-title: Description of an 8 MW reference wind turbine publication-title: J Phys: Conf Ser contributor: fullname: Haans – volume: 123 start-page: 56 year: 2016 end-page: 70 ident: b22 article-title: Multidisciplinary design optimization of large wind turbines—Technical, economic, and design challenges publication-title: Energy Convers Manage contributor: fullname: Zhang – year: 2014 ident: b3 article-title: Offshore energy structures: for wind power, wave energy and hybrid marine platforms contributor: fullname: Karimirad – volume: 1356 year: 2019 ident: b16 article-title: Upscaling and levelized cost of energy for offshore wind turbines supported by semi-submersible floating platforms publication-title: J Phys: Conf Ser contributor: fullname: Ishihara – year: 2016 ident: b87 article-title: Design, numerical modelling and analysis of a semi-submersible floater supporting the DTU 10MW wind turbine contributor: fullname: Islam – year: 2010 ident: b58 article-title: Definition of the floating system for phase IV of OC3 contributor: fullname: Jonkman – volume: 10 start-page: 147 year: 2005 end-page: 154 ident: b40 article-title: Assessment of optimum tip speed ratio of wind turbines publication-title: Math Comput Appl contributor: fullname: Özdamar – start-page: 359 year: 2016 end-page: 385 ident: b66 article-title: Design of floating offshore wind turbines publication-title: Offshore wind farms contributor: fullname: Borg – year: 2020 ident: b8 article-title: The global wind atlas – volume: 254 year: 2008 ident: b93 article-title: Guidance for the experimental tank testing of wave energy converters publication-title: SuperGen Mar contributor: fullname: Payne – year: 2018 ident: b63 article-title: Floating wind turbine structures – year: 2021 ident: b29 article-title: Definition of the INO WINDMOOR 12 MW base case floating wind turbine contributor: fullname: Haslum – volume: 53 start-page: 2 year: 2014 end-page: 12 ident: b84 article-title: Concept design verification of a semi-submersible floating wind turbine using coupled simulations publication-title: Energy Procedia contributor: fullname: Savenije – start-page: 9 year: 2008 end-page: 14 ident: b36 article-title: Identification of structural non-linearities due to large deflections on a 5MW wind turbine blade publication-title: Proceedings of the 2008 European Wind Energy Conference and Exhibition contributor: fullname: Rasmussen – volume: 15 start-page: 3 year: 2012 end-page: 17 ident: b21 article-title: Upscaling wind turbines: theoretical and practical aspects and their impact on the cost of energy publication-title: Wind Energy contributor: fullname: Jamieson – volume: 136 year: 2014 ident: b32 article-title: Wind-wave misalignment effects on floating wind turbines: motions and tower load effects publication-title: J Offshore Mech Arct Eng contributor: fullname: Moan – year: 2006 ident: b42 article-title: WindPACT turbine rotor design study: June 2000–June 2002 (revised) contributor: fullname: Hansen – year: 2001 ident: b70 article-title: Wind energy handbook, Vol. 2 contributor: fullname: Bossanyi – volume: 111 start-page: 836 year: 2017 end-page: 848 ident: b69 article-title: Wind turbine envelope protection control over the full wind speed range publication-title: Renew Energy contributor: fullname: Bottasso – year: 2019 ident: b28 article-title: Systems engineering in wind energy-WP2. 1 reference wind turbines contributor: fullname: Zahle – volume: 476 year: 2020 ident: b73 article-title: Onset and limiting amplitude of yaw instability of a submerged three-tethered buoy publication-title: Proc R Soc Lond Ser A Math Phys Eng Sci contributor: fullname: Rafiee – start-page: 135 year: 2009 end-page: 143 ident: b79 article-title: WindFloat: A floating foundation for offshore wind turbines—part II: hydrodynamics analysis publication-title: International conference on offshore mechanics and arctic engineering, Vol. 43444 contributor: fullname: Aubault – year: 2018 ident: b81 article-title: Design and analysis for a steel braceless semi-submersible hull for supporting a 5-MW horizontal axis wind turbine contributor: fullname: Luan – volume: 14 start-page: 1213 year: 2021 end-page: 1225 ident: b6 article-title: Suitable site selection for offshore wind farms in Turkey’s seas: GIS-MCDM based approach publication-title: Earth Sci Inform contributor: fullname: Azgın – year: 2010 ident: b37 article-title: Influence of rotational sampling of turbulence in combination with up-scaling of wind turbine rotors publication-title: Note WP2 UpWind Proj contributor: fullname: Risø – volume: 72 year: 2020 ident: b52 article-title: Integrated design optimization of spar floating wind turbines publication-title: Mar Struct contributor: fullname: Martins – volume: 7 start-page: 169 year: 2019 ident: b89 article-title: Analysis of dynamic characteristics of an ultra-large semi-submersible floating wind turbine publication-title: J Mar Sci Eng contributor: fullname: Shi – year: 2021 ident: b2 article-title: Offshore wind market report: 2021 edition contributor: fullname: Shields – volume: 34 start-page: 1 year: 2020 end-page: 16 ident: b9 article-title: A systems engineering vision for floating offshore wind cost optimization publication-title: Renew Energy Focus contributor: fullname: Musial – year: 2001 ident: b43 article-title: Windpact turbine design scaling studies technical area 1-composite blades for 80-to 120-meter rotor contributor: fullname: Griffin – year: 2007 ident: b61 article-title: Dynamics modeling and loads analysis of an offshore floating wind turbine contributor: fullname: Jonkman – year: 2014 ident: b62 article-title: Design and dynamic analysis of tension leg platform wind turbines contributor: fullname: Bachynski – year: 2021 ident: b64 article-title: Floating wind turbine structures – year: 2013 ident: b68 article-title: A survey on control methods for the mitigation of tower loads contributor: fullname: Shan – year: 2016 ident: b11 article-title: Potential offshore wind energy areas in California: An assessment of locations, technology, and costs contributor: fullname: Smith – year: 2013 ident: b27 article-title: The DTU 10-MW reference wind turbine publication-title: Danish wind power research 2013 contributor: fullname: Natarajan – volume: 4 year: 2017 ident: b33 article-title: Public definition of the two LIFES50+ 10mw floater concepts publication-title: LIFES50+ Deliv contributor: fullname: Landbo – volume: 1 start-page: 356 year: 2002 end-page: 369 ident: b39 article-title: Offshore windpower: a major new source of energy for Europe publication-title: Int J Environ Sustain Dev contributor: fullname: Boesmans – volume: 205 start-page: 781 year: 2017 end-page: 789 ident: b38 article-title: Determination of rated wind speed for maximum annual energy production of variable speed wind turbines publication-title: Appl Energy contributor: fullname: Chen – year: 2018 ident: b19 article-title: Innovation in wind turbine design contributor: fullname: Jamieson – year: 2020 ident: b35 article-title: Definition of the UMaine VolturnUS-S reference platform developed for the IEA Wind 15-Megawatt offshore reference wind turbine contributor: fullname: Barter – volume: 3 start-page: 116 year: 2020 end-page: 125 ident: b49 article-title: Critical rare-earth elements mismatch global wind-power ambitions publication-title: One Earth contributor: fullname: Yang – volume: 14 year: 2021 ident: b18 article-title: Generic upscaling methodology of a floating offshore wind turbine publication-title: Energies contributor: fullname: Kim – year: 2006 ident: b44 article-title: Wind turbine design cost and scaling model contributor: fullname: Laxson – year: 2021 ident: b5 article-title: World energy outlook 2021 – volume: 26 start-page: 740 year: 2018 end-page: 752 ident: b47 article-title: Structural optimization of a direct-drive wind turbine generator inspired by additive manufacturing publication-title: Procedia Manuf contributor: fullname: Fingersh – volume: 236 year: 2021 ident: b76 article-title: Nonlinear dynamics of a floating offshore wind turbine platform via statistical quadratization—mooring, wave and current interaction publication-title: Ocean Eng contributor: fullname: Ding – volume: 2 year: 2010 ident: b78 article-title: WindFloat: A floating foundation for offshore wind turbines publication-title: J Renew Sustain Energy contributor: fullname: Weinstein – year: 2016 ident: b91 article-title: Design, numerical modelling and analysis of a spar floater supporting the DTU 10 MW wind turbine contributor: fullname: Xue – year: 2021 ident: b65 article-title: Guide for building and classing floating offshore wind turbines contributor: fullname: of Shipping – year: 2020 ident: b92 article-title: Ocean waves and oscillating systems: linear interactions including wave-energy extraction, Vol. 8 contributor: fullname: Kurniawan – volume: 92 start-page: 126 year: 2017 end-page: 152 ident: b56 article-title: Design of monopiles for offshore wind turbines in 10 steps publication-title: Soil Dyn Earthq Eng contributor: fullname: Hogan – volume: 64 start-page: 186 year: 2019 end-page: 210 ident: b15 article-title: A semi-analytical frequency domain model for efficient design evaluation of spar floating wind turbines publication-title: Mar Struct contributor: fullname: Bachynski – year: 2014 ident: b59 article-title: Definition of the semisubmersible floating system for phase II of OC4 contributor: fullname: Luan – year: 2018 ident: b34 article-title: Qualification of innovative floating substructures for 10MW wind turbines and water depths greater than 50 m. Deliverable D4.5 State-of-the-art models for the two LIFES50+ 10MW floater concepts contributor: fullname: Bredmose – year: 2021 ident: b50 article-title: The european wind energy association (ewea) – year: 2018 ident: b90 article-title: Marine hydrodynamics contributor: fullname: Newman – year: 2021 ident: b1 article-title: GWEC contributor: fullname: Council – volume: 153 year: 2020 ident: b48 article-title: Wind turbine technology battles: Gearbox versus direct drive-opening up the black box of technology characteristics publication-title: Technol Forecast Soc Change contributor: fullname: Rezaei – year: 2020 ident: b75 article-title: Second and third order sub-harmonic wave responses of a floating wind turbine publication-title: 35th international workshop on water waves and floating bodies (IWWWFB 2020) contributor: fullname: Bredmose – year: 2014 ident: b82 article-title: Modeling and analysis of a 5 MW semi-submersible wind turbine combined with three flap-type wave energy converters publication-title: International conference on offshore mechanics and arctic engineering, Vol. 45547 contributor: fullname: Moan – volume: 1104 year: 2018 ident: b85 article-title: State-of-the-art model for the LIFES50+ OO-star wind floater semi 10mw floating wind turbine contributor: fullname: Lemmer – start-page: 845 year: 2009 end-page: 853 ident: b77 article-title: WindFloat: A Floating foundation for offshore wind turbines—Part I: design basis and qualification process publication-title: International conference on offshore mechanics and arctic engineering, Vol. 43444 contributor: fullname: Weinstein – volume: 94 start-page: 434 year: 2016 end-page: 442 ident: b14 article-title: Rational upscaling of a semi-submersible floating platform supporting a wind turbine publication-title: Energy Procedia contributor: fullname: Thomas – start-page: 1 year: 2021 end-page: 17 ident: b74 article-title: Efficient estimation of the nonlinear aerodynamic loads of floating offshore wind turbines under random waves and wind in frequency domain publication-title: J Ocean Eng Mar Energy contributor: fullname: Ding – start-page: 669 year: 2008 end-page: 679 ident: b53 article-title: Modal dynamics of large wind turbines with different support structures publication-title: ASME 27-th international conference on offshore mechanics and arctic engineering (OMAE2008), Vol. 48234 contributor: fullname: Jonkman – year: 2010 ident: b10 article-title: Large-scale offshore wind power in the United States: Assessment of opportunities and barriers contributor: fullname: Ram – volume: 44 start-page: 32 year: 2010 end-page: 51 ident: b12 article-title: Foundation design: A comparison of oil and gas platforms with offshore wind turbines publication-title: Mar Technol Soc J contributor: fullname: Senders – year: 2018 ident: b23 article-title: Windpact reference wind turbines contributor: fullname: Rinker – volume: 123 start-page: 56 year: 2016 ident: 10.1016/j.rser.2022.112477_b22 article-title: Multidisciplinary design optimization of large wind turbines—Technical, economic, and design challenges publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2016.06.004 contributor: fullname: Ashuri – year: 2018 ident: 10.1016/j.rser.2022.112477_b63 – start-page: 359 year: 2016 ident: 10.1016/j.rser.2022.112477_b66 article-title: Design of floating offshore wind turbines contributor: fullname: Collu – start-page: 135 year: 2009 ident: 10.1016/j.rser.2022.112477_b79 article-title: WindFloat: A floating foundation for offshore wind turbines—part II: hydrodynamics analysis contributor: fullname: Cermelli – volume: 111 start-page: 836 year: 2017 ident: 10.1016/j.rser.2022.112477_b69 article-title: Wind turbine envelope protection control over the full wind speed range publication-title: Renew Energy doi: 10.1016/j.renene.2017.04.021 contributor: fullname: Petrović – year: 2014 ident: 10.1016/j.rser.2022.112477_b88 contributor: fullname: Wang – volume: 26 start-page: 740 year: 2018 ident: 10.1016/j.rser.2022.112477_b47 article-title: Structural optimization of a direct-drive wind turbine generator inspired by additive manufacturing publication-title: Procedia Manuf doi: 10.1016/j.promfg.2018.07.084 contributor: fullname: Hayes – year: 2021 ident: 10.1016/j.rser.2022.112477_b2 contributor: fullname: Musial – year: 2021 ident: 10.1016/j.rser.2022.112477_b29 contributor: fullname: Silva de Souza – year: 2001 ident: 10.1016/j.rser.2022.112477_b43 contributor: fullname: Griffin – year: 2020 ident: 10.1016/j.rser.2022.112477_b8 – volume: 3 start-page: 116 issue: 1 year: 2020 ident: 10.1016/j.rser.2022.112477_b49 article-title: Critical rare-earth elements mismatch global wind-power ambitions publication-title: One Earth doi: 10.1016/j.oneear.2020.06.009 contributor: fullname: Li – year: 2014 ident: 10.1016/j.rser.2022.112477_b82 article-title: Modeling and analysis of a 5 MW semi-submersible wind turbine combined with three flap-type wave energy converters contributor: fullname: Luan – year: 2014 ident: 10.1016/j.rser.2022.112477_b57 contributor: fullname: Baldock – year: 2018 ident: 10.1016/j.rser.2022.112477_b34 contributor: fullname: Pegalajar-Jurado – volume: 205 start-page: 781 year: 2017 ident: 10.1016/j.rser.2022.112477_b38 article-title: Determination of rated wind speed for maximum annual energy production of variable speed wind turbines publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.08.079 contributor: fullname: Sedaghat – volume: 63 start-page: 414 issue: 7 year: 2014 ident: 10.1016/j.rser.2022.112477_b24 article-title: Development of 5-MW offshore wind turbine and 2-MW floating offshore wind turbine technology publication-title: Hitachi Rev contributor: fullname: Saeki – year: 2013 ident: 10.1016/j.rser.2022.112477_b68 contributor: fullname: Fischer – start-page: 845 year: 2009 ident: 10.1016/j.rser.2022.112477_b77 article-title: WindFloat: A Floating foundation for offshore wind turbines—Part I: design basis and qualification process contributor: fullname: Roddier – year: 2014 ident: 10.1016/j.rser.2022.112477_b17 contributor: fullname: George – start-page: 1 year: 2021 ident: 10.1016/j.rser.2022.112477_b74 article-title: Efficient estimation of the nonlinear aerodynamic loads of floating offshore wind turbines under random waves and wind in frequency domain publication-title: J Ocean Eng Mar Energy contributor: fullname: da Silva – start-page: 669 year: 2008 ident: 10.1016/j.rser.2022.112477_b53 article-title: Modal dynamics of large wind turbines with different support structures contributor: fullname: Bir – volume: 475 issue: 2221 year: 2019 ident: 10.1016/j.rser.2022.112477_b72 article-title: Transverse motion instability of a submerged moored buoy publication-title: Proc R Soc Lond Ser A Math Phys Eng Sci contributor: fullname: Orszaghova – year: 2016 ident: 10.1016/j.rser.2022.112477_b87 contributor: fullname: Islam – start-page: 9 year: 2008 ident: 10.1016/j.rser.2022.112477_b36 article-title: Identification of structural non-linearities due to large deflections on a 5MW wind turbine blade contributor: fullname: Riziotis – volume: 92 start-page: 126 year: 2017 ident: 10.1016/j.rser.2022.112477_b56 article-title: Design of monopiles for offshore wind turbines in 10 steps publication-title: Soil Dyn Earthq Eng doi: 10.1016/j.soildyn.2016.09.024 contributor: fullname: Arany – volume: 236 year: 2021 ident: 10.1016/j.rser.2022.112477_b76 article-title: Nonlinear dynamics of a floating offshore wind turbine platform via statistical quadratization—mooring, wave and current interaction publication-title: Ocean Eng contributor: fullname: da Silva – year: 2001 ident: 10.1016/j.rser.2022.112477_b70 contributor: fullname: Burton – year: 2016 ident: 10.1016/j.rser.2022.112477_b11 contributor: fullname: Musial – volume: 34 start-page: 1 year: 2020 ident: 10.1016/j.rser.2022.112477_b9 article-title: A systems engineering vision for floating offshore wind cost optimization publication-title: Renew Energy Focus doi: 10.1016/j.ref.2020.03.002 contributor: fullname: Barter – volume: 136 issue: 4 year: 2014 ident: 10.1016/j.rser.2022.112477_b32 article-title: Wind-wave misalignment effects on floating wind turbines: motions and tower load effects publication-title: J Offshore Mech Arct Eng doi: 10.1115/1.4028028 contributor: fullname: Bachynski – year: 2010 ident: 10.1016/j.rser.2022.112477_b37 article-title: Influence of rotational sampling of turbulence in combination with up-scaling of wind turbine rotors publication-title: Note WP2 UpWind Proj contributor: fullname: Madsen – year: 2021 ident: 10.1016/j.rser.2022.112477_b7 contributor: fullname: Eatough – year: 2009 ident: 10.1016/j.rser.2022.112477_b25 contributor: fullname: Jonkman – year: 2021 ident: 10.1016/j.rser.2022.112477_b64 – volume: 753 year: 2016 ident: 10.1016/j.rser.2022.112477_b26 article-title: Description of an 8 MW reference wind turbine publication-title: J Phys: Conf Ser contributor: fullname: Desmond – volume: 10 start-page: 147 issue: 1 year: 2005 ident: 10.1016/j.rser.2022.112477_b40 article-title: Assessment of optimum tip speed ratio of wind turbines publication-title: Math Comput Appl contributor: fullname: Cetin – volume: 153 year: 2020 ident: 10.1016/j.rser.2022.112477_b48 article-title: Wind turbine technology battles: Gearbox versus direct drive-opening up the black box of technology characteristics publication-title: Technol Forecast Soc Change contributor: fullname: van de Kaa – volume: 254 year: 2008 ident: 10.1016/j.rser.2022.112477_b93 article-title: Guidance for the experimental tank testing of wave energy converters publication-title: SuperGen Mar contributor: fullname: Payne – volume: 19 start-page: 2071 issue: 11 year: 2016 ident: 10.1016/j.rser.2022.112477_b31 article-title: Aeroservoelastic design definition of a 20 MW common research wind turbine model publication-title: Wind Energy doi: 10.1002/we.1970 contributor: fullname: Ashuri – year: 2006 ident: 10.1016/j.rser.2022.112477_b42 contributor: fullname: Malcolm – year: 2018 ident: 10.1016/j.rser.2022.112477_b81 contributor: fullname: Luan – ident: 10.1016/j.rser.2022.112477_b86 doi: 10.1016/j.egypro.2016.09.212 – volume: 1356 year: 2019 ident: 10.1016/j.rser.2022.112477_b16 article-title: Upscaling and levelized cost of energy for offshore wind turbines supported by semi-submersible floating platforms publication-title: J Phys: Conf Ser contributor: fullname: Kikuchi – volume: 44 start-page: 32 issue: 1 year: 2010 ident: 10.1016/j.rser.2022.112477_b12 article-title: Foundation design: A comparison of oil and gas platforms with offshore wind turbines publication-title: Mar Technol Soc J doi: 10.4031/MTSJ.44.1.5 contributor: fullname: Schneider – volume: 14 issue: 24 year: 2021 ident: 10.1016/j.rser.2022.112477_b18 article-title: Generic upscaling methodology of a floating offshore wind turbine publication-title: Energies doi: 10.3390/en14248490 contributor: fullname: Wu – year: 2006 ident: 10.1016/j.rser.2022.112477_b44 contributor: fullname: Fingersh – year: 2010 ident: 10.1016/j.rser.2022.112477_b10 contributor: fullname: Musial – year: 2016 ident: 10.1016/j.rser.2022.112477_b13 contributor: fullname: Atcheson – volume: 1 start-page: 356 issue: 4 year: 2002 ident: 10.1016/j.rser.2022.112477_b39 article-title: Offshore windpower: a major new source of energy for Europe publication-title: Int J Environ Sustain Dev doi: 10.1504/IJESD.2002.002356 contributor: fullname: Henderson – volume: 1104 year: 2018 ident: 10.1016/j.rser.2022.112477_b85 article-title: State-of-the-art model for the LIFES50+ OO-star wind floater semi 10mw floating wind turbine contributor: fullname: Pegalajar-Jurado – volume: 64 start-page: 186 year: 2019 ident: 10.1016/j.rser.2022.112477_b15 article-title: A semi-analytical frequency domain model for efficient design evaluation of spar floating wind turbines publication-title: Mar Struct doi: 10.1016/j.marstruc.2018.10.015 contributor: fullname: Hegseth – year: 2019 ident: 10.1016/j.rser.2022.112477_b28 contributor: fullname: Bortolotti – volume: 476 issue: 2235 year: 2020 ident: 10.1016/j.rser.2022.112477_b73 article-title: Onset and limiting amplitude of yaw instability of a submerged three-tethered buoy publication-title: Proc R Soc Lond Ser A Math Phys Eng Sci contributor: fullname: Orszaghova – year: 2017 ident: 10.1016/j.rser.2022.112477_b80 article-title: Global performance analysis of 5 MW WindFloat and OC4 semi-submersible floating offshore wind turbines (FOWT) by numerical simulations contributor: fullname: Kim – ident: 10.1016/j.rser.2022.112477_b71 – year: 2020 ident: 10.1016/j.rser.2022.112477_b30 contributor: fullname: Gaertner – volume: 53 start-page: 2 year: 2014 ident: 10.1016/j.rser.2022.112477_b84 article-title: Concept design verification of a semi-submersible floating wind turbine using coupled simulations publication-title: Energy Procedia doi: 10.1016/j.egypro.2014.07.210 contributor: fullname: Huijs – volume: 14 start-page: 1213 issue: 3 year: 2021 ident: 10.1016/j.rser.2022.112477_b6 article-title: Suitable site selection for offshore wind farms in Turkey’s seas: GIS-MCDM based approach publication-title: Earth Sci Inform doi: 10.1007/s12145-021-00632-3 contributor: fullname: Genç – year: 2021 ident: 10.1016/j.rser.2022.112477_b65 contributor: fullname: of Shipping – year: 2009 ident: 10.1016/j.rser.2022.112477_b20 contributor: fullname: Sieros – volume: 72 issn: 0951-8339 year: 2020 ident: 10.1016/j.rser.2022.112477_b52 article-title: Integrated design optimization of spar floating wind turbines publication-title: Mar Struct doi: 10.1016/j.marstruc.2020.102771 contributor: fullname: Hegseth – year: 2014 ident: 10.1016/j.rser.2022.112477_b3 contributor: fullname: Karimirad – year: 2021 ident: 10.1016/j.rser.2022.112477_b1 contributor: fullname: Council – year: 2014 ident: 10.1016/j.rser.2022.112477_b62 contributor: fullname: Bachynski – ident: 10.1016/j.rser.2022.112477_b55 – start-page: 3 year: 2013 ident: 10.1016/j.rser.2022.112477_b46 article-title: Introduction to wind turbine blade design contributor: fullname: Jensen – ident: 10.1016/j.rser.2022.112477_b51 – ident: 10.1016/j.rser.2022.112477_b45 – year: 2021 ident: 10.1016/j.rser.2022.112477_b50 – year: 2020 ident: 10.1016/j.rser.2022.112477_b92 contributor: fullname: Falnes – year: 2018 ident: 10.1016/j.rser.2022.112477_b23 contributor: fullname: Dykes – volume: 4 year: 2017 ident: 10.1016/j.rser.2022.112477_b33 article-title: Public definition of the two LIFES50+ 10mw floater concepts publication-title: LIFES50+ Deliv contributor: fullname: Yu – year: 2020 ident: 10.1016/j.rser.2022.112477_b75 article-title: Second and third order sub-harmonic wave responses of a floating wind turbine contributor: fullname: Orszaghova – year: 2021 ident: 10.1016/j.rser.2022.112477_b4 – year: 2007 ident: 10.1016/j.rser.2022.112477_b61 contributor: fullname: Jonkman – year: 2018 ident: 10.1016/j.rser.2022.112477_b19 contributor: fullname: Jamieson – year: 2018 ident: 10.1016/j.rser.2022.112477_b90 contributor: fullname: Newman – year: 2003 ident: 10.1016/j.rser.2022.112477_b67 contributor: fullname: Kooijman – year: 2016 ident: 10.1016/j.rser.2022.112477_b91 contributor: fullname: Xue – year: 2013 ident: 10.1016/j.rser.2022.112477_b54 article-title: Summary of conclusions and recommendations drawn from the DeepCwind scaled floating offshore wind system test campaign contributor: fullname: Robertson – year: 2014 ident: 10.1016/j.rser.2022.112477_b60 article-title: Offshore code comparison collaboration continuation within IEA wind task 30: phase II results regarding a floating semisubmersible wind system contributor: fullname: Robertson – year: 2014 ident: 10.1016/j.rser.2022.112477_b59 contributor: fullname: Robertson – ident: 10.1016/j.rser.2022.112477_b83 – volume: 7 start-page: 169 issue: 6 year: 2019 ident: 10.1016/j.rser.2022.112477_b89 article-title: Analysis of dynamic characteristics of an ultra-large semi-submersible floating wind turbine publication-title: J Mar Sci Eng doi: 10.3390/jmse7060169 contributor: fullname: Zhao – volume: 94 start-page: 434 year: 2016 ident: 10.1016/j.rser.2022.112477_b14 article-title: Rational upscaling of a semi-submersible floating platform supporting a wind turbine publication-title: Energy Procedia doi: 10.1016/j.egypro.2016.09.212 contributor: fullname: Leimeister – year: 2020 ident: 10.1016/j.rser.2022.112477_b35 contributor: fullname: Allen – volume: 31 start-page: 2153 issue: 12 year: 2006 ident: 10.1016/j.rser.2022.112477_b41 article-title: Assessment of optimum tip speed ratio in wind turbines using artificial neural networks publication-title: Energy doi: 10.1016/j.energy.2005.09.007 contributor: fullname: Yurdusev – year: 2013 ident: 10.1016/j.rser.2022.112477_b27 article-title: The DTU 10-MW reference wind turbine contributor: fullname: Bak – volume: 2 issue: 3 year: 2010 ident: 10.1016/j.rser.2022.112477_b78 article-title: WindFloat: A floating foundation for offshore wind turbines publication-title: J Renew Sustain Energy doi: 10.1063/1.3435339 contributor: fullname: Roddier – year: 2010 ident: 10.1016/j.rser.2022.112477_b58 contributor: fullname: Jonkman – year: 2021 ident: 10.1016/j.rser.2022.112477_b5 – volume: 15 start-page: 3 issue: 1 year: 2012 ident: 10.1016/j.rser.2022.112477_b21 article-title: Upscaling wind turbines: theoretical and practical aspects and their impact on the cost of energy publication-title: Wind Energy doi: 10.1002/we.527 contributor: fullname: Sieros |
SSID | ssj0015873 |
Score | 2.5475745 |
SecondaryResourceType | review_article |
Snippet | The wind energy industry is moving to offshore installations allowing for larger wind turbines to be deployed in deep-water regions with higher and steadier... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 112477 |
SubjectTerms | Dynamics Floating offshore wind Scaling factor Wind energy |
Title | Review of scaling laws applied to floating offshore wind turbines |
URI | https://dx.doi.org/10.1016/j.rser.2022.112477 |
Volume | 162 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbK7gUOiKdYXvKBW5QocZw4OXaXIEAIoe0i7S1yYlvbpWpQH1vt_npmYjsNDyFA4hJVTl1HM19HM5NvZgh5Vaa5wsZUoSwLjgEKC2UjBHIamFTGYJMnTF3MxMfz4nXFq8nEpwb2a_9V07AGusbK2b_Q9vCjsACfQedwBa3D9Y_0fjrUoqxB_JgIWMjdOpDO2wRX0yw66cjOZn3RrXSwmyONcrtqkAM_dldPwRLu-uIqRMh6VGylbc2ga2Y65GlgcQ7G4kvnq7j8HSWD2Xxx1buqH6JZ9Gm4cyzbi2scnx0iF693bkVvoaNq-M6JvLmBGLwf-RQcw_ZxsoLtia0ug-araPaUJTS6ac7DOLWV0pG2a4XA7gh2lOhgqa3h_snq2wTEZbQCPUZ4LBZGcTce5vtu2jM8DM9irH9JCoHzIQMbBSbycPquOn8_vILKip6eMDycq7iy5MAfT_q1VzPyVM7ukbsuxKBTi437ZKKXD8idUePJh2RqUUI7Qx1KKKKEOpTQTUc9SqhHCUWUUI-SR-Tzm-rs5G3ohmmELfzfNmHWlEyLPCsNS3SZtdoYVrTgLqqm1bHJBDcFhKJclSwWiue5Mm2qRKyTUnPRmPQxOVh2S_2E0MSUuUoxtWA4V4WUMW8TYfKMa500rToigRdG_dX2TKk9mfCyRtHVKLraiu6IZF5etfP6rDdXg3p_s-_pP-57Rm7vkfmcHGxWW_2C3Fqr7UsHgW-QWnav |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Review+of+scaling+laws+applied+to+floating+offshore+wind+turbines&rft.jtitle=Renewable+%26+sustainable+energy+reviews&rft.au=Sergiienko%2C+N.Y.&rft.au=da+Silva%2C+L.S.P.&rft.au=Bachynski-Poli%C4%87%2C+E.E.&rft.au=Cazzolato%2C+B.S.&rft.date=2022-07-01&rft.pub=Elsevier+Ltd&rft.issn=1364-0321&rft.eissn=1879-0690&rft.volume=162&rft_id=info:doi/10.1016%2Fj.rser.2022.112477&rft.externalDocID=S1364032122003811 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-0321&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-0321&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-0321&client=summon |